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ABSTRACT

Recent trends in multimedia technologies indicate a significant growth of interest for new imaging modalities
that aim to provide immersive experiences by increasing the engagement of the user with the content. Among
other solutions, point clouds denote an alternative 3D content representation that allows visualization of static
or dynamic scenes in a more immersive way. As in many imaging applications, the visual quality of a point
cloud content is of crucial importance, as it directly affects the user experience. Despite the recent efforts from
the scientific community, subjective and objective quality assessment for this type of visual data representation
remains an open problem. In this paper, we propose a new, alternative framework for quality assessment of point
clouds. In particular, we develop a rendering software, which performs real-time voxelization and projection of
the 3D point clouds onto 2D planes, while allowing interaction between the user and the projected views.
These projected images are then employed by two-dimensional objective quality metrics, in order to predict the
perceptual quality of the displayed stimuli. Benchmarking results, using subjective ratings that were obtained
through experiments in two test laboratories, show that our framework provides high predictive power and
outperforms the state of the art in objective quality assessment of point cloud imaging.
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1. INTRODUCTION

New information and communication systems are progressively adopting 3D visual modalities for content rep-
resentation in order to better approximate the perception of real-world sceneries. To this aim, point cloud
technology provides a viable solution to represent richer visual stimulations, due to the low complexity and
high efficiency in capturing, encoding and rendering of 3D contents. An overview of the wide range of target
applications for which point clouds can be adopted is detailed in a recent JPEG document “Use cases and
requirements”.1 When it comes to immersive applications and communication technologies, the visual quality
of a content is of crucial importance, as it directly affects the user experience. Yet, the quality assessment for
this type of imaging remains a challenge. Subjective evaluations are extremely valuable for their reliability;
however, they are expensive in terms of time and cost. Hence, the development of an objective metric that would
accurately predict the perceptual quality of distorted point cloud contents, is essential. Such an advance would
benefit several technologies, such as sophisticated compression and transmission mechanisms, which typically
depend on fast and inexpensive ways to assess introduced degradations.

A number of studies has been recently focused on subjective quality assessment of point clouds, under
different types of degradations and using different content representations. In particular, Zhang et al.2 conducted
experiments with point clouds, whose geometry and color were degraded using various levels of uniform noise.
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Alexiou et al.3,4 performed subjective evaluation of geometry-only contents subject to Gaussian noise and octree-
based compression. The distorted models were visualized as raw point clouds and assessed using an interactive
protocol in a desktop setup and an augmented reality scenario, respectively. Mekuria et al.5 conducted a study
involving compression of dynamic colored point clouds, which were assessed in a tele-immersive environment.
Javaheri et al.6 performed subjective evaluations of octree- and graph-based encoding schemes, while the color
attributes of the original models remained uncompressed. The point clouds were displayed using cube primitives,
whose size was automatically adjusted based on nearest neighbors and assessed in a passive way. Javaheri et
al.7 performed quality assessment of point cloud denoising algorithms, with the subjects visualizing the resulted
contents after applying Screened Poisson surface reconstruction. Similar approach was followed in another study,8

where colorless point cloud models were encoded using octree-pruning and then visualized as polygonal meshes
using the same surface reconstruction algorithm.

As implied by the numerous alternative content representations that were adopted in the aforementioned
studies, one main issue towards defining an adequate solution for quality assessment of point clouds is the way
this visual data is displayed. In particular, cube primitives have been proposed, whose size is either fixed,
or adaptively determined based on the intrinsic geometry resolution of the contents.7,9 In several studies,2–4

raw point clouds were adopted, which is rather uncommon approach for visualization of 3D models. In other
studies,7,8 a mesh reconstruction was employed as a rendering algorithm to account for a more natural way
of consumption. Notably, the latter study showed poor correlation between visualization of raw point clouds
and reconstructed meshes as rendering means for identically degraded point clouds. Furthermore, benchmarking
results of the state-of-the-art objective quality metrics, which was conducted as part of the majority of the
aforementioned studies, show that their performance is not sufficiently accurate. In fact, there are two main
reasons why poor correlation is observed: (a) The current metrics do not consider the rendering approach, which
naturally affects the visual perception of artifacts. (b) The current metrics are focused on providing an objective
score based on either the geometric or the color degradation of an impaired object, without defining a formula
that properly combines the influence of each type of distortion in the overall perceived quality.

In this study, we aim at tackling these issues by proposing a novel framework that provides an alternative to
quality assessment of point clouds. As a first step, we devise a rendering scheme for visualization of point clouds
in typical 2D screens. In particular, to enable manual handling and display configuration for the rendering of
the contents under assessment, a prototype software implementation was developed based on real-time mapping
of the 3D volumes to 2D images using orthographic projection. As a second step, we propose the use of
conventional 2D metric techniques, which are applied on the projected views as they are visualized in the
proposed renderer. This way, we combine geometric and color degradations of the point cloud contents in a
single objective score, while also taking under consideration the specific way in which the objects are displayed.

Although perspective projection provides a more accurate model of how the human visual system works, the
use of orthographic projections comes with a number of advantages, stemming from the fact that processing is
independent of the distance between the viewer and the object. In fact, perspective projection behaves identically
to orthographic when the point of view goes to infinity. In other terms, the latter model approximates the effect
of seeing an object from a distance, without causing any discomfort to the viewers for visualization of contents in
mid- or closer-ranges. Moreover, orthographic projections come with a number of positive consequences. Firstly,
they do not suffer from the effect of perspective distortion, in which different parts of the same object can appear
to warp or change their relative sizes based on the viewing position. In perspective projections, objects closer
to the observer appear larger than objects that are farther away. By using an orthographic projection, this
effect disappears, which reduces both the computational cost of visualizations and a number of artifacts that are
introduced in the projected images, simplifying the analysis. A second advantage is that rendered elements can
have a fixed, predetermined size while remaining watertight, even when the rendered image is magnified. This
is not the case with other rendering approaches, such as the use of fixed sized splats, which can reveal empty
spaces between image elements while zooming into the object.

Rendering costs can be further reduced when the point clouds are voxelized. Voxelization is the process by
which 3D models are converted from a continuous space to a discrete spatial representation. In non-voxelized
contents, the coordinates of a point can be found at any position in 3D space. When points are voxelized, they
are represented as cubic volumetric elements, namely voxels, in a regularly spaced grid. This lattice grid is



typically accessed by integer indexes. Voxels can be either occupied or not. When they are occupied, a color
value is displayed, given by the corresponding point. In case more than one points fall within the same area, the
color of the voxel is given by the average of the color values of these points. An example, is shown in Figure 1.

Figure 1. Example of the voxelization process.

When voxels are projected frontally, i.e. when their faces are parallel to the projection plane, there is a
one-to-one relationship between visible voxels and pixels that belong to the projected image. This indicates that
there is no need for interpolation, or any other type of post-processing, when the projection plane is perpendicular
to one of the reference axes that define the coordinate system where the object is placed. In the case of a three-
dimensional Cartesian coordinate system, there are 6 projection planes that fulfil this condition. We exploit this
property by issuing the 2D objective metrics on the 6 orthographic projections of the voxelized contents that
correspond to their reference axes. Then, a total degradation value is obtained, which represents the level of
visual impairment of this content as perceived from the corresponding 6 viewing angles.

To assess the performance of our approach, subjective evaluations were conducted in two different test labo-
ratories using the proposed rendering scheme on a diverse set of contents. The point clouds were assessed after
being encoded by a wide range of geometry and color degradations. Correlation results show the superiority of
our methodology with respect to state-of-the-art objective quality metrics.

2. DESIGN OF EXPERIMENTS

2.1 Rendering Software

The rendering software used in experiments was developed in C++. Two point cloud files are read and rendered
in separate windows, shown side by side in a graphical user interface (GUI). The GUI also includes a set of rating
scores that users can choose from, and a button to load the next content to be displayed.

Rendering is done in two steps. In the first step, each point cloud is read point by point. The upper and
lower bounds in each dimension are recorded, along with the average position of all the points (i.e. the centroid).
By subtracting the centroid from each set of coordinates, the 3D model is centered in the viewing volume. Then,
both point clouds are scaled by multiplying the spatial coordinates of each point by the biggest power of two that
would still let the model fit in a cubic volume of side 1024. In other terms, spatial coordinates are multiplied by
a scaling component, s, given by Equation 1

s = zf × 2(10−⌈log
2
(wmax−wmin)⌉) (1)

where zf is a zoom factor that is inversely proportional to the virtual distance between the user and the content,
and is updated based on the user’s scrolling of the mouse wheel, whilst wmax and wmin correspond to the largest
and smallest coordinate values of the point cloud. Essentially, this procedure scales the content appropriately as
a function of the current virtual distance, and then projects the content (or part of it) in a pixel grid of 1024 by
1024 resolution. Subsequently, the points go through a rigid rotation, as a function of the viewing angle. This
is done by multiplying the spatial coordinates by a rotation matrix. This rotation matrix is calculated using
angles in two axes, which are determined dynamically by the user by clicking and dragging with the right mouse
button, across the screen in the X and Y directions. Rotations in these angles are equivalent to incremental
changes to the yaw and pitch, respectively, of the object being rendered. Both contents, namely the reference



and the distorted point clouds, are rotated identically, in order to facilitate simultaneous visualization from the
same angle.

In the second step, the spatial coordinates of both lists of points are quantized to integer values, after an
exhaustive iteration. As each point’s spatial position is read, an extra shift can be added to the x and y
coordinates. This shift, or panning, similarly to rotation and zoom level, is determined by the user, this time
after dragging the mouse while holding the left mouse button, and is issued on both the reference and the
distorted contents.

The color value of every point with spatial coordinates (x, y, z), as resulted from the aforementioned proce-
dure, is associated with an image pixel (x̂, ŷ) in the respective projected image. During the iteration, if another
point with identical (x, y) coordinates and a smaller distance from the projection plane is identified, the first
point is ignored, and the color value of the pixel (x̂, ŷ) is given by the second point. In the special case where
multiple points have coinciding coordinates after rotation, quantization and panning, the associated pixel value
is derived as the average of the color values of the points. This procedure is repeated for every point of both the
reference and the distorted point clouds, providing content projections that are finally rendered to the viewer.
Unoccupied pixels in the rendered images are given a default value of (127, 127, 127) in the RGB color space,
which corresponds to neutral gray.

2.2 Content Selection and Preparation

Preprocessing Scaling & Translation EncodingVoxelization

Reference Distorted

Figure 2. Pre-visualization processing workflow.

A total of 7 static contents with rather diverse characteristics were selected for experiments. In particular,
both human bodies and inanimate objects were considered, each having different levels of geometry and color de-
tails. The longdress vox10 1300 (from now on cited as longdress), loot vox10 1200 (loot), redandblack vox10 1550
(redandblack),10 and statue Klimt contents were chosen from the MPEG repository∗ and belong to the first class.
The romanoillamp11 and biplane models were selected from the JPEG repository†, while the amphoriskos12 point
cloud was found in the online platform Sketchfab‡. Such point clouds are typically acquired when objects are
scanned by sensors that provide either directly or indirectly a cloud of points representing their 3D shape. Typ-
ical use cases involve applications where the models are consumed from the outside, and viewers may interact
with them by virtual rotations in a desktop set up, or by moving around them in the physical world, assuming
an augmented or a virtual reality scenario.

A point cloud compression scheme was applied on the selected objects, and the resulting stimuli were assessed
by test subjects. Before encoding, the test contents were prepared based on the work-flow indicated in Figure 2,
in order to reduce a number of influencing factors in our experiments, namely, number of points and geometric
structure. Please note that with green color we annotate preparation steps that were issued on a subset of the
test contents, whilst with blue color we specify processing that was enabled on the whole data set. Below, we
provide implementation details for every stage of our content preparation approach.

Pre-processing: This step was enabled in order to ensure similar number of points for every test content.
Specifically, biplane is provided in multiple versions that correspond to different scans. In this experiment,

∗http://mpegfs.int-evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/anchors/
†https://jpeg.org/plenodb/
‡https://sketchfab.com/



(a) amphoriskos (b) biplane (c) longdress (d) loot

(e) redandblack (f) romanoillamp (g) statue Klimt

Figure 3. Reference test contents.

we used a combined version that provides a fully reconstructed model (i.e., 1x1 Biplane Combined 000 ), which
consists of approximately 106 · 106 points. To reduce this number to acceptable limits, we applied subsampling
using the CloudCompare13 software, by setting a maximum allowed distance between nearest neighbors equal
to 0.009. Another content that was pre-processed was amphoriskos. In particular, the original model was
represented by approximately 200 ·103 points. To increase its resolution, we initially applied the Poisson Surface
Reconstruction algorithm,14 as implemented in CloudCompare, using default configurations and 1 samples per
node. Moreover, the original normal vectors that were associated to the coordinates of this point cloud were
employed. From the reconstructed mesh, 1 · 106 points were sampled by randomly picking a given number on
each triangle, using the same software. For the rest of the selected contents, no pre-processing was applied.

Voxelization: With this operation, we ensure a regular-spaced geometric structure for the point clouds, in
order to avoid biases that may be introduced by either the encoder or the proposed renderer. In particular, given
that a subset of our data set (i.e., human bodies) was already voxelized, we converted the continuous geometric
representations of the rest of the contents (i.e., inanimate objects) into sets of voxels that lie in three-dimensional
lattices of 10-bit depth, to remove this influencing factor (i.e., arbitrary geometric structure) from our results.

Scaling & Translation: This step ensures that the geometry of both the reference and the distorted contents
lies in the same dynamic range. Specifically, the selected codec produces point clouds with output coordinates
that are proportionally displaced in the range [−0.5, 0.5] with respect to the input. Considering our subjective
evaluation protocol that demands the simultaneous display of the reference and the distorted contents, there
is need for identical dimensions in both versions. Thus, appropriate scaling on the aforementioned range was
applied on every test content before encoding, and the models were translated to the origin (0, 0, 0). The output
of this processing step, as indicated in Figure 2, produces the reference contents of this experiment, which are
depicted in Figure 3. Information about their intrinsic geometric characteristics is provided in Table 1.



Table 1. Geometric description of every reference content.

Contents: amphoriskos biplane longdress loot redandblack romanoillamp statue Klimt

Points: 828,820 773,447 857,966 805,285 757,691 636,097 482,941

Min NN: 0.000977501 0.000977516 0.00101107 0.00101936 0.00103515 0.000977516 0.000977516

Max NN: 0.00239442 0.0470835 0.00226096 0.00203872 0.00253568 0.0693761 0.0100166

X/Y/Z: 0.60/1/0.68 0.65/0.23/1 0.40/1/0.20 0.35/1/0.41 0.44/1/0.30 1/0.45/0.51 0.30/1/0.29

Encoding: This step essentially produces the distorted versions of the test contents, which were assessed by
the subjects. The reference point clouds were encoded using an open source software that was used as the anchor
in the recent call for proposals issued by MPEG on point cloud compression.15 It is a typical octree-based
compression scheme, with the color attributes encoded using the JPEG algorithm, after they are mapped to
an image grid using a depth first tree traversal. A detailed description can be found in.5 To obtain a wide
range of impairments, 3 quality levels for geometry and 3 quality levels for color degradations were defined.
Specifically, the test contents were encoded using 8-bit, 9-bit and 10-bit octree depth (OD) that correspond to
low, medium, and high geometry quality, while for different levels of color fidelity the JPEG quality parameter
(QP) was set to 10, 50 and 90, respectively. The rest of the encoding options were identically set to the default
values of the configuration file provided with the software release.§ The point clouds were encoded using all
possible combinations of geometry and color quality levels, leading to a total of 9 degradations per content,
which were assessed by every subject. The output of this processing step produces the distorted contents of this
experiment, as indicated in Figure 2. In Table 2, we report the bits per input points (bpp) for every degraded
model, along with the corresponding percentage of remaining points. As expected, for the same OD and QP
values the distribution of bits for both geometry and color varies remarkably depending on the content.

2.3 Equipment and Environment

The experiments were conducted in two test laboratories across two different countries, namely, MMSPG at
EPFL in Lausanne, Switzerland and EED at UNB in Brasilia, Brazil. In both cases, a typical desktop setup
involving an Apple Cinema Display of 27-inches and 2560x1440 resolution (Model A1316) was installed. The
subjects visualized the contents under assessment through the renderer described in Section 2.1, and interacted
with them by zooming, rotation, and translation using the mouse. Radio buttons that correspond to the selected
grading scale were also provided in the GUI, and to submit a score, the subjects had to select the option that
would correspond to their judgement.

Regarding the environmental conditions, in MMSPG, the experiments were conducted in a room that fulfills
the ITU-R Recommendation BT.500-1316 for subjective evaluation of visual data representations. Specifically,
the room is equipped with neon lamps of 6500 K color temperature, while the color of the walls and the curtains
is mid gray. The brightness of the screen was set to 120 cd/m2 with a D65 white point profile, while the lighting
conditions were adjusted for ambient light of 15 lux, as was measured next to the screen, according to the ITU-R
Recommendation BT.2022.17 In UNB, the test room was isolated with no exterior light affecting the assessment.
The wall color was white, and the lighting conditions involved two fluorescent lamps of 4000 K color temperature.

2.4 Subjective Evaluations

The simultaneous double-stimulus impairment (DSIS) with 5-grading scale (5: Imperceptible, 4: Perceptible, but
not annoying, 3: Slightly annoying, 2: Annoying, 1: Very annoying) was selected for its high accuracy and
consistency in subjective quality assessment of point clouds;3 thus, the reference and the distorted contents were
visualized side-by-side by subjects, while being clearly annotated. In Figure 4, a screenshot of the visualization
of a pair of stimuli in our GUI is indicatively presented. In order to remove contextual effects, the position of the
reference was randomly selected for every subject, and remained fixed across the whole session. Thus, for half of
the subjects, the position of the reference was set at the right side of the screen with the distorted content placed

§https://github.com/cwi-dis/cwi-pcl-codec



Table 2. Output points, geometry, and color bpp, for every encoded test content.

Content Octree-depth
Percentage of

remaining points
Geometry bpp

Color bpp

QP = 10 QP = 50 QP = 90

amphoriskos

OD = 08 16.61% 0.400 0.078 0.234 0.652

OD = 09 53.92% 1.561 0.188 0.612 1.764

OD = 10 100% 5.006 0.301 1.004 2.889

biplane

OD = 08 8.04% 0.142 0.069 0.191 0.430

OD = 09 32.69% 0.618 0.209 0.686 1.623

OD = 10 100% 2.890 0.589 2.101 4.926

longdress

OD = 08 7.76% 0.169 0.047 0.134 0.358

OD = 09 29.63% 0.649 0.125 0.414 1.178

OD = 10 100% 2.520 0.347 1.169 3.423

loot

OD = 08 7.84% 0.173 0.034 0.078 0.210

OD = 09 29.99% 0.662 0.073 0.213 0.636

OD = 10 100% 2.556 0.182 0.561 1.716

redandblack

OD = 08 8.13% 0.182 0.039 0.093 0.258

OD = 09 31.09% 0.699 0.084 0.249 0.773

OD = 10 100% 2.694 0.199 0.632 2.037

romanoillamp

OD = 08 12.14% 0.282 0.055 0.159 0.447

OD = 09 42.47% 1.059 0.136 0.491 1.488

OD = 10 100% 3.827 0.289 1.124 3.492

statue Klimt

OD = 08 15.00% 0.324 0.098 0.286 0.722

OD = 09 50.56% 1.384 0.240 0.792 2.147

OD = 10 100% 4.552 0.413 1.392 3.889

at the left, and vice versa for the other half. Furthermore, the order of the test contents under assessment was
randomly picked for every session. To reduce temporal references, we intentionally avoided showing the same
reference content consecutively. The subjects were free to interact with the contents under assessment without
imposing any time limitation; thus, participants were able to spend as much time as needed for every individual
assessment, before making their judgment. Moreover, the physical distance between the viewer and the monitor
was adjusted as per each subject’s preferred position.

The experiments were split in two stages: (a) the training and (b) the actual test. In the training, the
subjects got familiarized with this type of visual data representation and the types of artifacts that would be
assessed during the actual test. Additionally, the training served the purpose of letting participants adapt with
the interaction part of our proposed framework. For this purpose, the statue Klimt content was selected; thus, it
was excluded from the actual tests. The training was performed identically in both test laboratories, as specific
instructions and descriptions were mutually agreed and delivered by the corresponding trainers. Subjects were
instructed to explicitly rate the visual quality of the degraded stimuli with respect to the reference, in terms of
how annoying is for them the level of impairment.

In each session, 6 contents and 9 degradations were assessed along with a hidden reference for sanity check,
leading to 60 stimuli per session. A total of 20 subjects participated in the experiments in UNB, involving 11
females and 9 males, with an average of 28 years of age. In EPFL, another 20 subjects took part, comprised of 6
females and 14 males, with an average age of 28 years old.

3. QUALITY ASSESSMENT METHODOLOGY

In this section we report the methods that were used to assess, both subjectively and objectively, the visual quality
of the distorted contents. Furthermore, a description of the performance indexes employed for the benchmarking
of the objective quality metrics is provided.



Figure 4. A screenshot of the GUI presenting the reference longdress content at the left, and its compressed version using
octree-depth equal to 10 and JPEG quality parameter equal to 10.

3.1 Subjective Quality Metrics

The outlier detection algorithm defined in the ITU-R Recommendation BT.500-1316 was separately issued on
the collected subjective scores from each test laboratory, in order to exclude subjects whose ratings deviated
drastically from the rest of the scores. Based on this methodology, it is initially determined whether the dis-
tribution of scores for a particular content is normal or not. Specifically, for each test content, if the kurtosis
coefficient of the scores is between 2 and 4, the distribution can be considered as normal. Then, a confidence
interval is defined and based on the number of occurrences of scores being outside of this range, a subject is
rejected or not. Specifically, if the scores are distributed normally, for each score larger than 2 ·σ from the mean
of the scores (upper limit) of a content i, a counter Pi is incremented. For each score smaller than 2 · σ from the
mean of the scores (lower limit) of a content i, a counter Qi is incremented. In case of non-normal distributions,
the upper and lower limits are set as

√
20 · σ from the mean of the scores of a content. Assuming a total of Ns

number of stimuli, the scores of a subject are removed if the following conditions are met:

∑Ns

i=1(Pi +Qi)

Ns

> 0.05 and

∣

∣

∣

∣

∣

∑Ns

i=1(Pi −Qi)
∑Ns

i=1(Pi +Qi)

∣

∣

∣

∣

∣

< 0.3. (2)

No outliers were identified, thus, leading to 20 ratings per test content at every lab which is denoted by k,
with k ∈ {A, B}. Then, for every stimulus, the Mean Opinion Score (MOS) was computed on the collected
scores based on Equation 3

MOSkj =

∑N

i=1 mij

N
(3)

where N = 20 and mij is the score by subject i for the stimulus j. Furthermore, for every test content, the 95%
confidence interval (CI) of the estimated mean was computed assuming a Student’s t-distribution, based on
Equation 4



CIkj = t(1− α/2, N − 1) · σj√
N

(4)

where t(1−α/2, N − 1) is the t-value corresponding to a two-tailed Student’s t-distribution with N − 1 degrees
of freedom and a significance level α = 0.05, and σj is the standard deviation of the scores for content j.

3.2 Objective Quality Metrics

Objective quality assessment in point cloud representations is typically performed by full reference metrics, which
can be distinguished in two main categories: (a) point-based, and (b) projection-based.

Point-based metrics: The state-of-the-art point-based methods that assess the geometry of a content can be
distinguished in four classes:18 (i) point-to-point, (ii) point-to-plane, (iii) plane-to-plane and (iv) point-to-mesh.
The point-to-point metrics are based on Euclidean distances of associated points between the reference and
the content under assessment; the error value essentially reflects the geometric displacement from the reference
position. The point-to-plane metrics19 are based on the projected error of a point that belongs to a content under
assessment to the normal vector of a reference point; the error value indicates the deviation of the point from
the reference local surface. The plane-to-plane metrics20 are based on the angular similarity of tangent planes
that correspond to associated points between the reference and the content under assessment; the error value
provides an approximation of the dissimilarity between the corresponding local surfaces. The point-to-mesh
metrics are based on projected distances between a content under assessment and the reconstructed reference
object; however, they are considered sub-optimal, as the objective scores strongly depend on the selected surface
reconstruction algorithm. Thus, these metrics will not be considered in this study. Using any of these point-based
approaches, to obtain a value that represents the total geometric degradation of an impaired content, the Mean
Squared Error (MSE), the Root-Mean-Squared (RMS), or the Hausdorff distance are commonly used. Finally,
to account for differently scaled contents, the geometric Peak-Signal-to-Noise-Ratio (PSNR) is proposed, which,
in this study, is defined as the ratio of the squared maximum distance of nearest neighbors of the original content
divided by the squared error value.

The state-of-the-art point-based methods that assess the color of a distorted model are based on conventional
formulas that are employed in two-dimensional content representations. In particular, points that belong to the
content under assessment are associated to points that belong to the reference model, using typically the nearest
neighbor algorithm, and the total color degradation value is computed by using common formulas. In this study,
the well-known PSNR is used, after converting the default RGB color values associated to the coordinates of the
points to the YUV color space using the ITU-R Recommendation BT.709-3.21 Then, a weighted average on the
luma and color components is realized based on Equation 5.22

PSNRYUV =
(

6 · PSNRY + PSNRU + PSNRV
)

/8 (5)

For both geometry and color degradations, the symmetric error is commonly calculated. The symmetric error
is obtained by setting both the original and the distorted content as a reference, computing both error values,
and keeping the maximum.

To compute the objective scores, the software ver. 0.1223,24 was employed for point-to-point, point-to-plane,
and color distortions metrics. For the latter, the software, essentially, provides the PSNRY, PSNRU, and PSNRV
values, which were then combined using Equation 5 to derive a total color degradation score. For point-to-point
and point-to-plane metrics, the geometry degradation values were based on the MSE and the Hausdorff distance.
The plane-to-plane metrics were computed using the software release ver. 1.0¶. Since both the reference and
the distorted contents had in principle no associated normals assigned to their coordinates, the methodology
proposed by Hoppe et al.25 was selected for normal estimation as implemented in Point Cloud Library (PCL).26

This method is based on best fitting planes in the least-square sense, issued on local neighborhoods around every
point of interest. In our case, we selected a neighborhood of 12 nearest points.

¶https://github.com/mmspg/point-cloud-angular-similarity-metric



Projection-based metrics: In the projection-based approaches, the 3D point cloud contents are mapped onto
conventional two-dimensional planes by orthographic projection. It is desirable that projections cover as much
area as possible, thereby incorporating more information from the object. While any number of points of view
(and projection planes) can be selected, using too many projections is both impractical and unnecessary, as the
same area can be covered by an arbitrary number of planes, while cost grows linearly. We propose using a total
of 6 projected planes, which can be interpreted as setting a bounding cube around the object under analysis on
whose faces the content is projected. This ensures that when voxels are orthographically projected onto each
plane, there is a one-to-one correspondence between voxels and pixels in the projected images, and no further
processing is required.

After the projected images are obtained, any 2D image metric can be used to compare the projected images
of the content under assessment with their respective image pair of the projected reference content. We have
investigated the performance of several 2D metrics applied to the projected images, as implemented in the VQMT
software.27 In particular, PSNR, PSNR-HVS, PSNR-HVS-M, SSIM, MSSIM and VIFP are employed in our test.
For each metric, one score for each of the 6 pairs of images is obtained, and then the average across the projected
planes is computed.

3.3 Comparison of Objective against Subjective Quality Metrics

To evaluate how well an objective quality metric is able to predict the perceptual visual quality of a test
content, the human ratings are commonly set as the ground truth and compared with predicted MOS values
that correspond to objective scores obtained from a particular metric. Specifically, let us assume that the result
of executing an objective metric provides a Point cloud Quality Rating (PQR). A predicted MOS value, denoted
as MOSP , that is assigned to a specific distorted content, is estimated after regression analysis on each [PQR,
MOS] pair. In our case, we used the monotonic cubic function as a regression model, and the predicted MOS
was computed based on Equation 6

MOSp = a · x3 + b · x2 + c · x+ d (6)

where a, b, c and d were determined using a least squares method. Then, following the Recommendation ITU-
T P.1401,28 the Pearson linear correlation coefficient (PCC), the Spearman rank order correlation coefficient
(SROCC), the root-mean-square error (RMSE), and the outlier ratio based on standard error (OR) were com-
puted between MOS and MOSP , to assess the linearity, monotonicity, accuracy and consistency of the predictions
of perceptual quality offered by every objective quality metric.

4. RESULTS

In this section we analyse the subjective scores collected in our experiments, followed by the benchmarking of
the state-of-the-art objective quality metrics.

4.1 Analysis of the Subjective Scores

The subjective results of the 6 contents that were involved in the tests after outlier detection are shown in
Figure 5, with the caption of each sub-figure indicating the test laboratory from which they were collected.
Specifically, we provide the MOS along with the CI for every test content in form of histograms, clustered per
type of degradation. The naming convention is as follows: ODXX QPYY, where OD and QP stand for octree-
depth and JPEG quality parameter, respectively, while XX ∈ {08, 09, 10} and YY ∈ {10, 50, 90} denote the
geometry and color quality levels.

Based on the results indicated in Figure 5, the subjective ratings vary per type of degradation for the
same content. In particular, it is obvious that for the sparsest versions (i.e., OD = 08), the mean score is
increasing slowly as the color quality level is getting better, independently of the model. Higher rates of increase
are observed as the geometry resolution becomes higher. This outcome essentially indicates that, when the
geometry resolution of a content remains low, the overall perceptual quality is severely affected, regardless of
color improvements. It is important to note that, in the proposed renderer, the absence of geometry details is
expressed by the presence of missing pixels. In particular, following the description of Section 2.1, a single voxel
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Figure 5. Subjective ratings for every content against degradations.

is projected in a limited neighborhood of pixels, as a function of the zooming applied by user interaction, in
order to reduce blurring effects on the reference stimuli. As such, missing color information is mainly observed
in contents encoded at an octree-depth of 8, while for octree-depth equal to 9, such artifacts become visible only
when a viewer inspects the object from very close virtual distances after zooming. Another reason that explains
the rating behaviors of contents with lowest geometry quality levels is the usage of the octree structure as basis
for point cloud compression. In particular, by reducing the geometry resolution of an octree, an increasing
number of points that belong to the original model naturally fall within the leaf nodes. Considering that the
color of a representative output point is given by blending the colors of input points that are placed in the same
leaf node, color degradations are by default bound by high geometry degradation.

Another conclusion that can be drawn based on Figure 5 is that, for a specific type of degradation, the
perceptual quality notably differs depending on the content. In fact, subjects seem to be more critical with point
clouds that represent humans, when compared to point clouds that represent inanimate objects. Smaller rating
deviations are observed between contents that belong to the same class (i.e., humans, or objects), indicating that
similar rating behavior can be observed within the groups.

Furthermore, by inspecting the total bitrates of the encoded contents, as reported in Table 2, and after com-
parison with the corresponding scores indicated in Figure 5, we conclude that higher bitrates do not necessarily
lead to better visual quality. For instance, for every test content, subjects from both test laboratories showed
their clear preference in the combination of best color quality (i.e., QP = 90) with medium geometry (i.e., OD
= 09), when compared to best geometry quality level (i.e., OD = 10) with the worst color quality (i.e., QP
= 10); the latter combination requires higher bitrates for every model. Although the obtained bpp values are
obviously codec dependent, such observations suggest that savings may be achieved by appropriate allocation of
bits between geometry and color. To verify these observations, a one-tail t-test at a 5% significance level was
issued on the collected data, separately, per test laboratory. The null hypothesis assumes that a mean score,
obtained by averaging the ratings over all contents for a particular color and geometry level, is the same with
the average score of all contents for any another combination of degradations. The results are presented in Fig-
ure 6. It can be seen that based on the subjective scores obtained in EPFL, the combinations OD09 QP50 and
OD09 QP90 are preferred 1 and 5 times in a total of 6 contents, against the combination OD10 QP10. Based
on the UNB scores, the same trend is observed for these particular cases with 2 and 5 times, respectively, while
similar preferences are obtained even for lower geometry levels, although not that strongly (i.e., OD08 QP50 and
OD08 QP90 was preferred 1 and 3 times against OD09 QP10).

Finally, rating variations are noticed between subjects from different test laboratories. Based on Figure 5, it



(a) EPFL (b) UNB

Figure 6. Significance difference matrices at a 5% level, indicating the preference of subjects on a particular degradation
against all others, considering the whole data set.

seems that the subjects in EPFL were in principle more critical with highest color degradations (i.e., QP = 10),
especially for point clouds that represent human bodies, with respect to the participants of UNB. To examine
whether statistical differences on the rating behaviors of the subjects of each laboratory per test content are
obtained, in Figure 7, we provide the results of a one-tail t-test at a 5% significance level. In this case, the
null hypothesis suggests that the MOS values, as computed from the scores of the two labs, are equal for each
degraded content. Our results show that, when the null hypothesis is rejected, it is because the subjects in EPFL
give lower quality scores. This scoring difference is mainly observed for lower and medium color quality levels.
The only exception is noted for amphoriskos with lowest geometry and medium color quality, which was rated
lower by UNB. It is also worth remarking that the content redandblack obtained higher ratings in UNB with
respect to EPFL, for most of the cases.

These observations are verified by the results of a multi-way ANOVA performed on the scores, which are
reported in Table 3. The obtained p-values suggest that every influencing factor, namely, test laboratory (i.e.,
EPFL and UNB), type of content (i.e., human bodies and inanimate objects), geometry (i.e., OD = {08, 09, 10})
and color (QP = {10, 50, 90}) quality levels, leads to ratings that are statistically different at a 5% significance
level.

Table 3. Multi-way ANOVA.

Source SS DF MS F p

Test laboratory 8.82 1 8.817 13.92 0.0002
Content type 249.42 1 249.424 393.81 0
Geometry degradation 1460.84 2 730.422 1153.24 0
Color degradation 618.86 2 309.429 488.55 0
Error 1363.64 2153 0.633

Total 3701.58 2159

4.2 Benchmarking of Objective Quality Metrics

In this section we provide benchmarking results for the state-of-the-art projection-based and point-based objective
quality metrics. Please note that, although the geometry PSNR values for point-to-point and point-to-plane
metrics were computed considering both MSE and Hausdorff distances, their performance was found to be
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Figure 7. Significance difference matrices at a 5% level, indicating if subjects of one lab perceived significantly higher or
lower the visual quality of a particular degradation with respect to the other lab, for every test content.

worse. Thus, to reduce the load, they were not reported. In the tables and figures of this section we use the
abbreviations po2point, po2plane, and pl2plane to indicate the point-to-point, point-to-plane, and plane-to-plane
metrics, respectively, for spacing reasons.

Considering that the subjective scores obtained from the two test laboratories are statistically distinguishable,
as shown in Section 4.1, the benchmarking is conducted against the two sets of scores separately. Furthermore,
given that the subjective scores were found to be statistically different per type of content, the same analysis is
repeated on 3 sets of contents: (i) the whole data set, (ii) a subset of point clouds that represents human bodies,
and (ii) a subset of point clouds that represents inanimate objects.

In Table 4, we provide the performance indexes for every objective quality metric that was tested against the
ground truth subjective scores collected in EPFL, for every set of contents individually. In general, it is evident
that the projection-based objective quality metrics perform better than the point-based. The best-performing
metric on the whole data set was found to be VIFP, although the correlation remains weak. The correlation
is remarkably improved when the objective metrics are benchmarked with the subjective ratings obtained for
inanimate objects and human bodies, separately. In particular, both MSSIM and VIFP attain high predictive
power in both sets of contents, with the first being better in the case of objects, while the second being superior
in the case of human models.

In Figures 8 and 9, we present scatter plots indicating the correlation of the best-performing projection-based
and point-based approaches, for the 3 sets of contents. It is obvious that the point-based approaches are limited
by the fact that they either examine the geometry or the color degradation of a content. In particular, in Figure 9,
it is clear that every content is associated with a predicted MOS based on the octree-depth, and although the
subjective scores are increasing as the color quality is improved, the objective scores remain identical. On the
contrary, the projection-based methods attain higher discrimination power and are able to better predict the
visual quality perceived by subjects.

In Table 5, and Figures 10, 11 the correlation between the objective quality metrics and the subjective



Table 4. Benchmarking of objective quality metrics using subjective scores from EPFL as ground truth.

Metric
All Inanimate objects Human bodies

PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR

P
ro

je
c
ti
o
n
-b

a
se
d PSNR 0.520 0.497 0.981 0.741 0.797 0.786 0.735 0.630 0.744 0.739 0.633 0.704

PSNR-HVS 0.570 0.564 0.943 0.741 0.845 0.841 0.650 0.630 0.797 0.773 0.572 0.667

PSNR-HVS-M 0.601 0.585 0.918 0.741 0.866 0.851 0.609 0.593 0.822 0.795 0.539 0.667

SSIM 0.494 0.497 0.998 0.778 0.873 0.838 0.593 0.704 0.847 0.815 0.503 0.630

MSSIM 0.677 0.682 0.845 0.685 0.929 0.934 0.451 0.556 0.814 0.861 0.550 0.667

VIFP 0.754 0.717 0.754 0.648 0.906 0.932 0.516 0.593 0.905 0.861 0.402 0.519

P
o
in
t-
b
a
se
d

po2pointMSE 0.672 0.597 0.850 0.667 0.795 0.822 0.738 0.630 0.651 0.702 0.719 0.704

po2pointHausdorff 0.683 0.725 0.839 0.648 0.793 0.824 0.741 0.630 0.651 0.707 0.719 0.704

po2planeMSE 0.656 0.598 0.866 0.704 0.763 0.755 0.786 0.741 0.637 0.689 0.730 0.741

po2planeHausdorff 0.683 0.686 0.839 0.648 0.792 0.778 0.743 0.667 0.652 0.686 0.718 0.741

pl2planeRMS 0.679 0.676 0.843 0.759 0.707 0.702 0.861 0.778 0.756 0.653 0.620 0.630

pl2planeMSE 0.675 0.676 0.847 0.759 0.662 0.753 0.912 0.852 0.701 0.715 0.676 0.593

Color - PSNRYUV 0.539 0.491 0.967 0.833 0.669 0.753 0.904 0.852 0.702 0.715 0.675 0.593
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(b) Inanimate objects.
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Figure 8. Best performing projection-based metric on EPFL subjective scores.
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Figure 9. Best performing point-based metric on EPFL subjective scores.

scores obtained by UNB is indicated. It is clear that the projection-based metrics are superior to point-based
algorithms using this set of subjective scores. The MSSIM and VIFP metrics were found to outperform the rest,
independently of the set of contents they were applied to. The RMSE and OR coefficients remain lower with
respect to the values achieved with the EPFL scores. This phenomenon can be explained considering that larger
CIs were obtained with UNB scores. In fact, the average CI of the UNB scores was 26.95% larger with respect
to the average CI of the EPFL scores.



Table 5. Benchmarking of objective quality metrics using subjective scores from UNB as ground truth.

Metric
All Inanimate objects Human bodies

PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR

P
ro

je
c
ti
o
n
-b

a
se
d PSNR 0.582 0.545 0.874 0.667 0.799 0.794 0.683 0.481 0.756 0.747 0.616 0.444

PSNR-HVS 0.623 0.608 0.840 0.648 0.835 0.850 0.625 0.519 0.805 0.783 0.558 0.407

PSNR-HVS-M 0.652 0.629 0.814 0.630 0.853 0.862 0.592 0.444 0.830 0.806 0.524 0.444

SSIM 0.566 0.570 0.886 0.667 0.880 0.893 0.539 0.593 0.865 0.831 0.471 0.370

MSSIM 0.739 0.738 0.724 0.537 0.940 0.961 0.389 0.222 0.859 0.886 0.482 0.370

VIFP 0.784 0.740 0.667 0.519 0.877 0.884 0.545 0.444 0.919 0.890 0.370 0.296

P
o
in
t-
b
a
se
d

po2pointMSE 0.747 0.652 0.714 0.556 0.843 0.792 0.610 0.481 0.728 0.758 0.645 0.519

po2pointHausdorff 0.757 0.775 0.702 0.537 0.844 0.839 0.609 0.481 0.728 0.757 0.645 0.519

po2planeMSE 0.736 0.670 0.727 0.500 0.824 0.798 0.643 0.519 0.713 0.740 0.659 0.556

po2planeHausdorff 0.758 0.749 0.701 0.537 0.844 0.806 0.610 0.481 0.730 0.762 0.643 0.519

pl2planeRMS 0.520 0.461 0.918 0.815 0.654 0.596 0.859 0.741 0.685 0.607 0.685 0.593

pl2planeMSE 0.666 0.664 0.801 0.704 0.629 0.678 0.882 0.778 0.771 0.781 0.599 0.444

Color - PSNRYUV 0.672 0.664 0.795 0.704 0.629 0.678 0.883 0.778 0.773 0.781 0.597 0.444
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(b) Inanimate objects.
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Figure 10. Best performing projection-based metric on UNB subjective scores.
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(b) Inanimate objects.
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Figure 11. Best performing point-based metric on UNB subjective scores.

A general remark of this analysis is that higher accuracy is obtained for point clouds that represent inanimate
objects. It is known that subjects tend to rate people in a different way with respect to objects, as they are
more sensitive to degradations that affect facial characteristics of the displayed images. Such differences are not
taken under consideration by the objective quality metrics, thus leading to different rating behaviors. This is
confirmed by the results of the ANOVA issued on the total set of scores, reported in Table 3, which shows that
the scores are not statistically equivalent.



It is noteworthy that, although an interactive approach was selected for the subjective evaluation protocol,
the objective metric is only computed on the 6 orthographic projections of the initial view that is displayed before
the interaction. However, the 6 projections seem to be sufficient to predict the visual quality of the content.
Further improvements in terms of correlation may be achieved by considering more viewing angles, and more
virtual distances between the content and the subject. Additional refinements may be observed by excluding
the natural grey background of the projected images from the computations. In fact, the gray background could
be the reason why we observe high differences in the objective scores between different contents, although the
subjective scores are very similar (i.e., amphoriskos and romanoillamp encoded at OD = 08 in Figure 8 (b)
and 10 (b)). Finally, a natural extension of our proposed framework would be the real-time and continuous
computation of an objective score, based on the projected view the observer is inspecting while interacting with
the contents under assessment. We aim to incorporate such extensions and improvements in our framework as
a future work.

5. CONCLUSIONS

In this study, a quality assessment methodology for point clouds is proposed. The 3D volumes are voxelized and
orthographically projected on 2D image planes in real-time. The 2D images are visualized by subjects using a
software implementation that was developed by the authors. In this testbed, the usage of conventional 2D image
quality metrics on a set of 6 viewing angles was tested, and found to be superior than the state of the art, using
as validation subjective evaluations that were conducted in two test laboratories. Our approach incorporates
geometric distortions, color degradations, and the rendering approach. Despite its simplicity, high predictive
power is achieved, providing an adequate alternative for quality assessment of point clouds.
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