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Abstract

Information graphics (infographics) in popular media are highly
structured knowledge representations that are generally designed to
convey an intended message. This paper presents a novel methodology
for retrieving infographics from a digital library that takes into account
a graphic’s structural and message content. The retrieval methodol-
ogy can be summarized thus: 1) hypothesize requisite structural and
message content from a natural language query, 2) measure the rel-
evance of each candidate infographic to the requisite structural and
message content hypothesized from the user query, and 3) integrate
these relevance measurements via a linear combination model in order
to produce a ranked list of infographics in response to the user query.
The methodology has been implemented and evaluated, and it signifi-
cantly outperforms a baseline method that treats queries and graphics
as bags of words.

1 Introduction

Information graphics (infographics) commonly appearing in popular media,
such as bar charts and line graphs, are effective visual representations of
a relationship between data entities. Designers of such graphics generally
construct them using well-known communicative signals (e.g., coloring a bar
differently to highlight it) to convey a high-level intended message. For ex-
ample, the bar chart in Figure 1 ostensibly conveys the message that Toyota
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Figure 1: Infographic Example

has the highest profit compared to the other car manufacturers listed. Al-
though it is possible to describe the content of an infographic by paragraphs
of written explanations, it is easier for a reader to absorb the information
quickly from a graphic [35], making infographics an important and unique
knowledge source that should be accessible and retrievable based on their
content. As a take-off from the proverb “a picture is worth a thousand
words”, we can similarly say that “a graphic is worth a thousand words”
since it contains a multitude of information.

Yet compared to the retrieval of text documents [36, 58] and pictorial
images [1,57], scant attention has been given to the retrieval of infographics.
Conventional search engines rely on the document text that contains the
infographic, including the infographic’s file name, the image tag from the
webpage html source file, and words in the accompanying article appearing
near the infographic in the source file. These approaches ignore the content
of the infographic itself.

Consider the query, “How does the net profit of major car manufacturing
companies compare?” This query is requesting infographics that convey a
comparison of car manufacturing companies according to their net profit,
as suggested in part by the use of the verb “compare” and the plural form
of “companies” in the query. When this query was entered into Google
Image Search on December 10th, 2014, no satisfactory graphics appeared
among the top 10 infographics returned. The infographic deemed most
relevant was the bar chart shown in Figure 2, which displays a car model
(Volkswagon Golf) and its sales trend, not a comparison of car companies;
the terms “profit”, “car”, and “company” appeared near the infographic in
the accompanying text article and may account for its retrieval. On the other
hand, a much more relevant graph is the one shown in Figure 1; it presents
a comparison of twelve car manufacturing companies by representing each
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Figure 2: Top Retrieved Infographic by Google Image

company by a bar on the independent axis and ordering the bars according
to the net profit of the companies that they represent. Although the retrieval
process of Google Image Search is unclear, it is fair to conclude that little
or no consideration is given to the content of infographics themselves.

Image search engines specialized for infographics, such as Zan-
ran numeric data search (http://www.zanran.com) and SpringerImages
(http://www.springerimages.com), also search by means of text around and
near a graphic’s image. In response to the same query as above, neither
SpringerImages nor Zanran returned any relevant infographics

In contrast, this paper presents a novel methodology for infographics re-
trieval, determining how well information needs gleaned from a user query
have been fulfilled by taking into account a candidate infographics’s struc-
ture and message content. This paper is an extended version of the initial
work presented in [38]. The methodology has been implemented and tested
on a corpus of infographics and user queries, and has been shown to signif-
icantly outperform a baseline approach that treats queries and graphics as
bags of words.

Section 2 identifies unique characteristics of infographics and describes
how user queries suggest the kind of infographics that are desired. Section 3
outlines the main components of our retrieval methodology for infographics,
followed by sections that present three major modules in our system: query
processing (Section 4), graphic preprocessing (Section 5), and rank-ordering
(Section 6). Section 7 presents an evaluation of our methodology. Section 8
discusses related work, including text document retrieval, content based im-
age retrieval, semi-structured data retrieval, and query processing. Section 9
summarizes the contributions of our work and discusses future research.
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Figure 3: Two Infographics with Similar Keywords but Different Content

2 Motivation for a Novel Retrieval Methodology

2.1 Structural Content of Infographics

Infographics have more structure than pictorial images. Infographics vi-
sualize the relationship between at least two types of entities, one on the
independent axis (or X-axis) (such as the bar entities in a bar chart) and
another on the dependent axis (or Y-axis) (such as what is measured about
the bar entities in a bar chart). For example, the graphic on the left in
Figure 3 contains names of endangered species on its X-axis and measures
their number of habitat countries on its Y-axis.

The structure of an infographic conveys much of its content. The content
captured by a word in an infographic greatly depends on the positioning
of that word within the graphic’s frame. For example, the words “asian
countries” appear on the Y-axis of the left bar chart in Figure 3, capturing
its Y-axis content; these same two words, “asian countries”, appear in the
caption of the right bar chart shown in Figure 3, and in this case they
capture the general concept of the graph’s X-axis bar labels. Thus the role
“asian countries” plays in the two bar charts is different. On the other hand,
the words “endangered creatures” appear in the caption of both graphics in
Figure 3. However in the bar chart on the left, “endangered creatures”
describes the general concept of its X-axis entities, whereas in the bar chart
on the right, “endangered creatures” appears both in the caption and above
the Y-axis and is the entity being measured on the Y-axis. Based on these
observations, we conclude that ignoring the structure of infographics by
treating all the words in a graphic as a single bag of words is not sufficient
when describing the graphic’s content.
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Figure 4: Graphics Displaying the Same Data with Different Messages

2.2 Message Content of Infographics

In addition to having structure, infographics often convey a high-level mes-
sage [10]. To convey this message, a graphic designer makes design choices
that serve as communicative signals.

Composition and layout are one kind of communicative signal. Consider
the bar charts in Figure 4. Both bar charts contain the same data (that is,
a person’s age on the X-axis and the number of doctor visits on the Y-axis),
but their layout is different. The bar chart on the left ostensibly conveys the
changing trend in doctor visits throughout a person’s life, while the bar chart
on the right side is designed differently to convey the ranking of age groups
by the number of visits. This correlates with an observation by Larkin and
Simon [35] that infographics may be informationally equivalent (that is, they
contain the same information) but not computationally equivalent (that is,
it may be more difficult to perceive the information from one graphic than
from the other).

Salience is another kind of communicative signal. An entity in a bar
chart might become salient because the bar representing it is much taller
than the other bars, or is colored differently from other bars. For example,
Figure 1 highlights the bar entity Toyota to emphasize the importance of it,
thereby helping convey the message that Toyota ranks highest among the
listed car manufacturing companies.

In these examples, the infographics convey a high-level message through
the visual signals in the graphic. Thus infographics are a form of language
since, according to Clark (Clark and Curran, 2007), language is any delib-
erate signal that is intended to convey a message.

Our research group identified and noted the importance of the high level
message of infographics [10] and referred to it as the intended message of the
graphic. For simple bar charts [21] and single line graphs [9], our group’s
previous work identified the major categories of intended messages:

• Trend messages: This category captures messages that convey a trend
over some ordinal entity, such as Rising-trend, Falling-trend, Changing-
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trend, etc. Note that while a graphic might convey a rising trend, a
query would be much more likely merely to request the trend of some
entity since the user would not know a priori whether the trend is
rising, falling, or stable.

• Comparison messages: This class is comprised of five intended message
categories that compare entities according to some criteria. Members
of this class are:

– Min and Max: convey the entity that has the smallest or largest
value with respect to other entities.

– Rank-all: convey the relative rank of a set of entities

– Rank: convey the rank of a specific entity with respect to other
entities.

– Relative-Difference: convey the relative difference between two
entities

• General: convey no specific message and just display data

The entity (or entities) that is specifically focused on by the intended
message is referred to as the focused entity (or focused entities), denoted
as Gfx. For example, Figure 1 conveys a Max intended message, which
conveys that the highlighted entity Toyota has the largest net profit among
the listed car manufacturing companies. Our representation of the intended
message indicates whether there are focused entities and what the focused
entities are. Entities on the X-axis which are not specifically focused on by
the intended message are referred to as Gnx, such as the car manufacturing
companies that are not highlighted in Figure 1.

2.3 Queries and their Information Needs

Most text retrieval systems work with keyword queries, since the probability
or frequency of query keywords in an unstructured text document could
indicate the overall relevance of the document to the query. When retrieving
semi-structured or structured text documents, systems usually require the
input to be either in a particular query language format [30,51] (such as SQL
or XQL), or full sentence natural language queries [13, 16]. This is because
the information need of users for semi-structured or structured data is more
specific than that for unstructured data.

Similarly, keywords cannot fully express a user’s information need for the
content of infographics. For example, a keyword query such as “endangered
animal Asian countries” can only indicate that the requested infographics
are about endangered animals and asian countries. However, within this
broad domain, there are numerous infographics with distinct content; this
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Figure 5: An Infographic Showing the Dramatic Increasing Trend of Animal
Extinction in Asian Countries

is especially true when the domain is about popular topics or events. For
example, both infographics shown earlier in Figure 3 are in this domain,
as is the infographic shown in Figure 5 demonstrating a sharp increase in
the trend of animal extinction. Moreover, the keyword query might also
retrieve graphics such as a line graph that demonstrates a decreasing trend
in government spending to protect endangered animals in Asia and a bar
chart that compares the number of endangered animals in Asia with that of
other continents. The content of these infographics vary greatly even though
they are all in the domain of the keyword query. Thus infographic retrieval
cannot be done effectively on the basis of keyword queries.

In contrast, a full sentence query provides important semantic clues
about the structure and message content of the desired infographic. Con-
sider the following two full sentence natural language queries:

Q1: “Which Asian countries have the most endangered animals?”
Q2: Which endangered animals are found in the most Asian countries?

The structure of query Q1 indicates that it is asking for a comparison of
“Asian countries” (X-axis) in terms of their population of “endangered ani-
mal” (Y-axis) whereas the structure of query Q2 indicates that it is seeking
a comparison of “endangered animals” (X-axis) according to the number of
“Asian countries” they dwell in (Y-axis). These two queries contain almost
identical words but are asking for very different graphics; the two queries are
asking for graphics where the two mentioned entities, “Asian countries” and
“endangered animals”, are completely flipped around, just by organizing the
query in a different way. Moreover, the use of the superlative “the most”,
along with the plural “countries” in query Q1 and “animals” in query Q2,
suggests a Rank All message conveying a ranking of Asian countries (query
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Q1) or endangered animals (query Q2), as opposed to a different kind of
message such as a Trend message.

Thus we have developed an infographic retrieval system where the in-
put is full sentence interrogative queries whose semantics are analyzed to
identify the desired characteristics of relevant graphs: what is expected on
the X-axis and Y-axis, the type of preferred intended message, and whether
there should be a focused entity emphasized by the intended message. Our
retrieval system then measures how infographics satisfy these four aspects
of query information need and ranks them for retrieval.

3 A Novel Retrieval Methodology: Background

and Overview

This paper presents a new methodology for retrieving relevant infographics
from a digital library. We assume that user queries are full sentences, are
grammatically correct, and do not contain spelling errors. Methods exist or
could be devised for correcting misspellings and grammatical errors and that
is not the focus of this research. We further assume a digital library that
contains a collection of infographics along with their XML representations;
the XML representation of an infographic gives its content, including the
content of the X-axis Gx, the content of the Y-axis Gy, other descriptive
text in the graphic, the category of intended message GIM , and the message
focused entities Gfx (if any) and non-focused entities Gnx. Note that Gx is
comprised of Gfx and Gnx.

We assume that all of the above components of each infographic G have
been correctly extracted and stored in the graphic’s XML representation
in the digital library. A number of research efforts have focused on pars-
ing a graphic into its constituent pieces. Futrelle et al. devised a graphic
parser for vector-based PDF documents [54]. Information extraction from
graphics in raster form, such as bitmap graphics, is a harder problem than
extraction from vector-based graphics. For raster graphics, both graphical
component extraction and text recognition are needed: low-level image fea-
tures are used for image segmentation and extracting the underlying data;
optical character recognition (OCR) techniques are employed to extract the
textual information in the infographics. Yokokura et al. used a network
structure to represent the layout information of bar chart images based on
vertical and horizontal projections [61]. Zhou and Tan applied Hough trans-
form to extract bars from bar charts; their system was able to deal with bar
charts lying in any orientation and even hand-drawn bar charts [63]. Savva
et al. developed a system for redesigning poorly designed infographics; as
the first step, their system extracts the graphical marks and infers the un-
derlying data [53]. Other research provides methodologies to improve upon
traditional OCR technologies and transform raw raster infographics into
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Figure 6: Overall Infographic Retrieval System Flowchart

semi-structured textual representations [12, 29].
Although the axes of the infographics are essential for retrieval, many

infographics often do not explicitly label the Y-axis with what is being mea-
sured in the infographic. Previous work on this project developed a method-
ology for hypothesizing what is being measured by the dependent axis of a
bar chart [19], by using heuristics to extract and meld together words from
different pieces of the graphic. We assume a similar methodology (or a
program such as this) has extracted the Y-axis content Gy. Prior work on
our project [21, 59] developed systems that extract communicative signals
from the XML representation of a bar chart or line graph and use them
in a Bayesian system that identifies the infographic’s intended message and
focused entity (if any). Again, we assume that the intended message has
been extracted and stored in the XML representation of infographics in our
digital library.

Figure 6 gives an overview of our system. When an infographic is stored
in the digital library, the words in the infographic are expanded as discussed
in Section 5, resulting in an expanded XML representation of each graphic
(Expansion Module). Given a query, a candidate set of infographics are
first preselected by matching words from the expanded representation to
the words in the user query (Graphic Preselection Module). Our retrieval
methodology then analyzes the query to identify the requisite characteristics
of infographics that will best satisfy the user’s information need (Query
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Processing Module). Then the candidate set of infographics are rank-ordered
according to how well their structure and content satisfy this information
need as hypothesized from the user’s query (Graphic Ranking Module).

Section 4 discusses the processing of user queries, Section 5 discusses our
expansion technique to tackle text sparsity issues, and Section 6 describes
the ranking of infographics for retrieval in response to a user query.

4 Query Processing

As illustrated earlier, full sentence queries provide clues to the structural and
message content of requisite infographics. Figure 7 outlines the Query Pro-

Figure 7: Query Processing Module

cessing Module. Our approach to query processing was described in [39,40].
This section expands on that work. Given a new query, the system first
passes it to a CCG parser [14] to produce a parse tree. The parser we use
was developed by Clark and Curran and trained specifically for questions
whereas most parsers are trained entirely or mostly on declarative sentences.
From the parse tree, the Query Processing Module populates a set of noun
phrases as candidate entities E1, E2, . . . , En, and extracts a set of linguistic
attributes associated with each query-entity pair, Q-Ei. Each query-entity
pair is input to a decision tree for determining whether the entity repre-
sents the content of the X-axis, or the content of the Y-axis, or none of the
axes [40]. Then the Query Processing Module uses the content of the axes in
a second decision tree to identify the category of intended message requested
by the user’s query [39]. A third decision tree utilizes the results of both the
axes decision tree and the message decision tree to decide whether an entity
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is the message focused entity.
In order to build and evaluate decision trees, we need a corpus of queries.

To construct a corpus of full-sentence queries oriented toward retrieval of
infographics, a human subject experiment was conducted by an undergrad-
uate research assistant. Each subject was shown a set of infographics on
a variety of topics such as adoption of children, oil prices, etc. For each
displayed graphic, the subject was asked to construct a query that could be
best answered by the displayed graphic. After dropping off-target queries,
this resulted in a total of 192 queries. 1

A second human subject experiment was conducted in addition to the
first experiment. In the second experiment, each participant was given sev-
eral sets of infographics; each set consisted of four graphics on similar topics
but with different intended messages. For each graphic in a set, the sub-
jects were asked to write a query where that graph would be more relevant
than the other graphs in the set. The two experiments together produced a
corpus of 324 queries.

4.1 Hypothesizing Axes Content from a User Query

4.1.1 Enumeration of Candidate Axes Entities

To hypothesize the content of the axes from a user query, we first need to
generate a set of candidate axis entities that will be considered by the deci-
sion tree as possible content of the axes. First, phrases that describe a period
of time are extracted by an automata and included in the candidate entities.
Then the query is parsed using a CCG parser [14] and noun phrases that
are not part of time intervals are extracted from the parse tree and added
to the set of candidate entities; noun-noun phrases are treated as a single
noun. The set of entity candidates is filtered to remove certain categories
of simple noun phrases which are used to describe a graph rather than to
refer to the content of the graph. These include nouns such as “trend” or
“change” that are part of the trend category of words and “comparison”
and “difference” which are part of the comparison category of words.

For example, Figure 8 shows an abbreviated version of the parse tree for
the following query:

Q5: How does the revenue of Discover compare to American
Express in 2010?

First, a specific time point phrase, “in 2010”, is extracted. Then the noun
phrase “the revenue” and “Discover” are extracted from the parse tree and
added to the set of candidate entities. The noun phrase “American Express”

1The link to the experiment’s online SQL database is
http://www.eecis.udel.edu/∼stagitis/ViewAll.php
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How does the revenue of Discover compare to American Express in 2010?

Wh-Q

Y/N-Q

NP

NP PP

VP

V PP

P NP

NP PP

Figure 8: Abbreviated Parse tree for query Q9

is added to the candidate list as a single noun phrase. The final set of query-
entity pairs for query Q5 are:

Q5-E1: the revenue
Q5-E2: Discover
Q5-E3: American Express
Q5-E4: in 2010

4.1.2 Cues from User Query for Axes Identification

We identified a set of attributes that might suggest whether a candidate
entity reflects the content of the X or Y-axis of a relevant graphic. These
clues can be divided into two classes:

1. Global query attributes that are features of the whole query and are
independent of any specific entity.

2. Specific entity attributes that are particular to each specific candidate
entity.

For example, the question type of the query sentence is a global query at-
tribute. Consider the following two queries:

Q6: Which country has the highest amount of exports?
Q7: How many students enter college each year in the United
States?

“Which” or “What” queries are often followed by a noun phrase that in-
dicates the class of entities (such as “country” in Q6) that should appear
on the X-axis. On the other hand, “How many” and “How much” queries
are often followed by a noun phrase that indicates what quantity (such as
number of students in Q7) should be measured on the Y-axis.
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Comparatives and superlatives also provide clues. For example, the pres-
ence of a comparative or superlative, such as “highest” in query Q6, often
suggests that the Y-axis should capture the noun phrase modified by the
comparative or superlative. Moreover, in query Q6, the entity “exports” is
modified by the noun phrase “the amount of”, indicating that “exports” is
a quantitative entity that could be captured on the Y-axis.

Certain categories of phrases provide strong evidence for what should be
displayed on the X-axis. For example, consider the following queries:

Q8: How does CBS differ from NBC in terms of viewers?
Q9: How does CBS compare with other networks in terms of
viewers?

The presence of a comparative verb such as “differ” or “compare” suggests
that the entities preceding and following it capture the content of the X-axis.
Furthermore, the plurality of the noun phrases is another clue. If both the
noun phrases preceding and following the comparative verb are singular, as
in query Q8, then the noun phrases suggest entities that should appear on
the X-axis; on the other hand, if one is plural (as in Q9), then it suggests the
class of entities to be displayed on the X-axis, of which the singular noun
phrase is a member.

Similar to comparative word sets, certain words, such as “trend” or
“change” in a query such as “How have oil prices changed from January to
March?”, suggest that the entity (noun phrase) that is the subject of the
verb is likely to be on the Y-axis. On the other hand, time interval entities,
such as “from January to March” or “in the past three years”, are likely
to capture the content of the X-axis. The set of attributes for identifying
requisite structural content from a user query is enumerated in Appendix A.

For each query-entity pair, we determine the value for each of the at-
tributes. This is accomplished by analyzing the parse tree and the part-
of-speech tags of the elements of the parse tree, and by matching regular
expressions for time intervals against the query-entity pair.

Each query-entity pair, along with its attributes, is processed by the
axes decision tree in order to categorize the entities into one of three classes:
whether this query entity describes the content of the X-axis, Y-axis, or
none of the axes in the desired infographic. Consider query Q5 as a working
example.

• Query Q5 is of the “How does” question type, causing the global query
attribute indicating whether the query is of How do question type to
be set to True for every query-entity pair derived from Q5.

• The system finds that the query contains a word from the comparison
word category; therefore the global query attribute for presence of a
Comparison category word is set to True for all the query-entity pairs
from Q5.
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• Regular expressions detect that Q5 contains a phrase describing a spe-
cific time point, namely query-entity pair Q5-E4 “in 2010”, so the at-
tribute indicating whether a specific query-entity pair contains a time
interval is set to True for Q5-E4, and False for the other query-entity
pairs from Q5.

• For query-entity pairsQ5-E2 andQ5-E3, the attribute designating that
the entity is on the left and right side respectively of the comparison
verb is set to True.

• Since E1 (“the revenue”) is the leftmost noun phrase following the
question head “How does” in the parse tree (Figure 8), the attribute
reflecting the leftmost noun phrase is set to True for Q5-E1 and to
False for the other query-entity pairs.

• Since all entities are tagged as singular nouns by the part-of-speech
tagger, the plurality attribute is set to False for each query-entity
pair.

4.1.3 Learning and Evaluating Axes Hypotheses

A learned decision tree model is trained for hypothesizing whether an entity
in a query captures content for the independent axis, for the dependent axis,
or neither. To construct the training set, candidate entities were automati-
cally extracted from each query, a set of query-entity pairs was constructed,
and values for each of the attributes were extracted. The correct classifica-
tion annotation of each query-entity pair was assigned by one researcher and
then verified by another researcher with the final annotation of each query-
entity pair indicating both researchers’ consensus [2]. Human annotated
classification is used as the ground truth. The evaluation measure is accu-
racy, measured as the proportion of instances in which the annotated correct
classification matches the system’s decision (X-axis, Y-axis, or None). Note
that the overall process for hypothesizing requisite query axes is evaluated
(not just the decision tree classification) since the test query is parsed and
its entities, along with the values of the attributes, are automatically com-
puted from the parse tree, its part-of-speech tags, and the use of regular
expressions. WEKA 2, an open source machine learning toolkit, is used to
construct the decision trees.

Since each query can produce more than one query-entity pair and since
global attribute values (those based on the whole query) are identical for
all query-entity pairs extracted from the same sentence, it would be unfair
to have some of a sentence’s query-entity pairs in the training set and some
in the test set. Thus we use a variant of leave-one-out cross validation

2http://www.cs.waikato.ac.nz/ml/weka/
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which will be referred to as leave-one-query-out cross-validation. In leave-
one-query-out cross-validation, all of the query-entity pairs extracted from
one query will be bundled together and used as the test set while all of the
remaining query-entity pairs will be used to construct the classifier. A total
of n repetitions of this custom cross-validation are performed, where n is
the number of unique queries in the data set.

Prediction of the x and y axis has a baseline accuracy of 52.14%; that is,
if the system always predicts the majority class of Y-axis for every query-
entity pair, its success rate would be 52.14%. Our methodology does con-
siderably better than the baseline, achieving an overall accuracy of 85.45%.
For identifying the X-axis, the query processing module achieved precision
of 85.16% and recall of 86.27%. For identifying the Y-axis, the module
achieved precision of 85.79% and recall of 88.87%.

4.2 Hypothesizing Message Category and Focused Entity

We use the classification result from the axes decision tree as part of the at-
tributes used to build a second decision tree that hypothesizes the preferred
intended message category of graphics that might be relevant to the user
query. For example, for a given query, if the axes decision tree identifies a
time interval entity as on the X-axis, then the intended message of graphics
relevant to this query is likely to fall into the trend category. Similarly, the
plurality of X-axis entities in a query is another clue about the preferred
intended message. Consider the following example queries:

Q10: How does the revenue of Google compare with that of other
technology companies?
Q11: How does the revenue of Google compare with that of Face-
book?

Knowing that Google and technology companies are components of the X-
axis, and that one is singular (Google) while the other is plural (technology
companies), suggests that query Q10 might be asking for a graphic whose
intended message falls into the Rank category, namely the rank of Google
among all technology companies. On the other hand, knowing that Google
and Facebook are the entities on the X-axis and that both are singular sug-
gests that query Q11 might be asking for a graphic whose intended message
falls into the Relative-difference category, namely a comparison between only
Google and Facebook. Although an infographic that shows the revenue of
many technology companies, including Google and Facebook, could provide
the information requested by query Q11, the user can extract that informa-
tion more easily from a graphic specifically devoted to Google and Facebook
without other technology companies distracting the reader’s attention. Thus
attributes for building the second decision tree include whether the X-axis
represents a time interval, the number of X-axis entities, and their plurality.
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The class of the main verb in the user’s query is also useful in hypoth-
esizing the intended message of relevant graphs. For example, comparison
main verbs, such as differ and compare, suggest that relevant graphics will
have a Relative-difference, Rank, or Rank-all intended message; on the other
hand, main verbs in the change class suggest a trend message. When a com-
parison verb is identified in a query, the number of extracted X-axis entities
and their positions with respect to the comparison verb are all useful at-
tributes for building the intended message decision tree. For example, when
there are two or more X-axis entities extracted in a query, it increases the
possibility that this query requests a Rank, Rank-all, or Relative-Difference
intended message. Consider the following two queries from our corpus:

Q12: “How do Ford, BMW, Toyota, and Honda compare in terms
of revenue?”
Q13: “How does the revenue of Ford and Toyota compare to that
of other car manufacturing companies?”

Our system correctly identifies four X-axis entities in query Q12, and three
X-axis entities in query Q13. The fact that all four X-axis entities in query
Q12 are on the left side of the comparison verb “compare” indicates that this
query requests an overall comparison of all four entities, thus requesting a
graphic with a Rank-all message; in query Q13, entities “Ford” and “Toyota”
are on the left side of the comparison verb, while entity “car manufacturing
companies” is on the right side of the comparison verb, suggesting that
query Q13 is asking for a Rank message focused on the rank of “Ford” and
“Toyota”.

Superlatives, such as the word highest, suggest that relevant graphics will
have a Maximum or Minimum intended message. Time intervals together
with a trend main verb suggest that a Trend message is preferred. If an
entity is modified by certain types of words, such as “all of”, “each”, and
“every”, this entity is likely to refer to the general concept of a group of
entities that are compared against each other, thereby suggesting that the
query is requesting a graph with a comparison-based intended message.

Using these attributes (Appendix B) along with a subset of the attributes
in Appendix A, a decision tree is learned for taking a user query as input
and hypothesizing the category of intended message of potentially relevant
graphs. Using leave-one-out cross validation, the model had a success rate
of 89.51%, which is much higher than the baseline of 61.42% that is achieved
by simply selecting the most prevalent category (namely Trend).

A third decision tree to determine whether an extracted entity from the
user query is the message focused entity uses the classification output from
the previous two decision trees (the axes decision tree and the intended
message category decision tree), a subset of the attributes described in Sec-
tion 4.1.2, and a few additional attributes. For example, if exactly two
entities from a query are classified as X-axis entities, then identification of
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the query as asking for a Rank intended message suggests that one of the X-
axis entities is likely to be a focused entity. If one of these two X-axis entities
is singular, it is likely to be the focused entity of the Rank message whereas
a plural entity is likely to describe the category of the X-axis entities. On
the other hand, identification of the query as asking for a Relative-difference
intended message suggests that both of these X-axis entities are highly likely
to be focused entities. If there are more than two entities classified as X-
axis entities, identification of the query as asking for a Relative-difference
intended message suggests that the focused entities are the entities located
directly on either side of the comparison main verb.

Noun phrases modifying an X-axis entity also provide clues about whether
that entity is focused. Phrases such as “the other” (in query Q10) and “the
rest of” are likely to modify a general concept describing the entire X-axis,
not a focused entity; adjectives such as “each” and “every” behave similarly.

Using leave-one-out cross validation, the focused entity decision tree
model achieved a success rate of 95.98%, with precision of 96.96% and re-
call of 96.60%. Since most entities in a query are not focused entities, the
baseline success rate, 86.25%, is achieved by always predicting the entity to
be a non-focused entity.

5 Expanded Representation of Infographics

The terms in a user query often do not match the terms in a relevant info-
graphic. Several problems must be addressed:

1. the query uses a word such as “income” whereas a relevant infographic
uses the term “revenue”. Thus either the term “income” from the
query must be expanded to include the term “revenue” or the term
“revenue” must be expanded to include the term “income”.

2. the query uses a term such as “credit card company” representing a
class of entities, whereas relevant infographics contain bar labels for
individual credit card companies but no mention of the class “credit
card companies”. Either the general class mentioned in the query must
be expanded to a list of all of its members or the set of labels in an
infographic must be generalized to its ontological class.

3. the query uses a common term for a focused entity but a relevant
infographic uses a synonym or abbreviation of the term used in the
query. These must be disambiguated to reference the same entity.

Each of these issues is discussed in the next subsections.
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5.1 Text Expansion

Short text expansion is a commonly used strategy in information retrieval
that bridges the vocabulary gap between terms in a query and those in
short documents. The basic idea is to expand the limited document text
with terms that are semantically similar. This addresses the problem en-
countered when the query uses the word car but the document uses the
word automobile. Similar to short documents, such as tweets, microblogs,
and short speech documents, text extracted from infographics is limited in
length and therefore yields little in the way of term frequency information.
Document and query expansion helps in such contexts [43]. Recent research
on document retrieval has shown that the relevance model (RLM) works
well with short documents [20, 23], where a model of relevance for every
word in the vocabulary is computed assuming each word would appear in
pseudo-relevant documents as well as the given short document. Consistent
and significant improvements in retrieval performance have also been shown
using Wikipedia-based document expansion [3].

We expand the text in each infographic using Wikimantic [7, 8], a term
expansion method that uses Wikipedia articles as topic concepts. Given
a sequence s of the text in a graphic, Wikimantic extracts all Wikipedia
articles and disambiguation articles whose titles contain a subsequence of
s; each of these articles is viewed as a Wikimantic Atomic Concept and
is weighted by the likelihood that the concept generates sequence s. The
weights of these extracted atomic concepts are then normalized so that their
weights sum up to 1. Wikimantic then builds a unigram distribution for
words from the articles representing these weighted Atomic Concepts.

To expand the text in an infographic using Wikimantic, our graph ex-
pansion module treats all of the text in the graphic as a string Gt = {ti} of
terms and gets a weighted vector of Wikimantic concepts MG = {ωj · Aj},
where MG is referred to as a Mixture Concept and wj captures the likelihood
of atomic concept Aj being the correct interpretation for a subsequence of
Gt. Wikimantic collects all of the words in the constituent weighted atomic
concepts to build a combined unigram distribution UG for MG. The com-
bined frequency tfi of each term ti in UG is a weighted sum of frequencies
tfij of that term in the unigram distribution of each constituent concept
Aj ∈ MG: tfi =

∑
j ωj · tfij .

The words in the unigram distribution are ranked by their term-frequency-
inverse-document-frequency value (tf-idf). For each word wi in the unigram

distribution, tf -idfi = tfi · log(
|W |+1

dfi+1
), where tfi is the term frequency of

word wi in the unigram distribution, |W | is the estimated total number of
Wikimantic concepts and dfi is the estimated number of Wikimantic con-
cepts that contain word wi. The words with the highest tf -idf values are
included in the expansion of the entire graph text.

Our methodology also expands the Y-axis of infographics within the
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Figure 9: An Infographic without the Ontological Category of X-axis Enti-
ties

context of the entire infographic. From the interpreted concept MG of the
entire text in an infographic Gt, constituent atomic concepts Ay that are
interpretations of Gy ∈ Gt are extracted as concepts for the mixture concept
My for the Y-axis. The top 30 terms in the unigram distribution of My with
the highest tf -idf value are used as the expansion of the graphic’s Y-axis.
For an infographic whose Y-axis measures “revenue”, this approach expands
the Y-axis to include words such as “profit” and “interest”.

However, infographics present an additional problem. A query from our
human subject experiment asks: “Which credit card company gained the
most market share in 2010?”. The infographic shown in Figure 9 satisfies
this query’s information need. A set of credit card company names are
listed on the X-axis (Visa, Mastercard, American Express, Discover) but
nowhere in Figure 9 does the term “credit card company” or a synonym
appear. Identifying the ontological category, such as credit card company,
of these labels is crucial for infographics retrieval since the user query often
generalizes the entities on the independent axis rather than listing them.

Our methodology expands the textual components of the infographics
(rather than expanding the words in the user query) for two reasons: first,
infographic expansion can be done off-line; more importantly, it is more
feasible to expand specific entity words to include hypernyms than to expand
general words to all possible specific entities that comprise the category.
For example, it is more feasible to recognize that Visa, Mastercard, and
American Express are all credit card companies than it is to expand the term
credit card company from the query to all possible entities that are credit
card companies, hoping to be able to include Visa, Mastercard, American
Express, and all other credit card company names that might appear in
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other relevant infographics.
The goal of expanding graphic X-axis labels (Gx) is to be able to include

words that describe a more general concept that captures the specific in-
stances listed on the graphic’s X-axis, such as the general concept of credit
card companies for specific instances Visa, Mastercard , American Express,
etc.. Given the context concept MG of the entire text in the graphic, we
extract the Wikimantic concepts MXe (e = 1, 2, ...) for each corresponding
X-axis entity Xe, construct its unigram distribution UXe, and consider the
top 30 words with the highest tf -idf values in the unigram distribution UXe.
For example, the top 30 words of the X-axis entity “Visa” include:

card, debit, bank, bankamericard, credit, bofa, ipo, payment,
electronic, issue, san, mateo, inc, merchant, business, hologram,
corporation, paywave, country, francisco, brand, secure, amer-
ica, transaction, barclaycard, financial, company

Using the same approach, the top 30 words of the X-axis entity “Mastercard”
include:

card, bank, paypass, debit, priceless, payment, credit, poland,
company, hsbc, datacell, purchase, intern, financial, world-
wide, corporation, european, banknet, global, york, interbank,
chief, network, unit, headquarter

Then the X-axis entities, X1, X2, ... ∈ Gx, vote to identify the most com-
monly expanded words. The words that receive a majority vote are included
in the expansion of the X-axis. The words “credit”, “card”, and “company”
appear in the expansion of both the Visa entity and the Mastercard entity;
therefore they receive votes from both entities as words to be included in the
expansion of the overall X-axis. Other general terms that receive votes from
both entities include “bank”, “debit”, “payment”, “financial”, and “corpo-
ration”. Intuitively, the general concept words, such as “company”, would
appear in most (if not all) of the Wikipedia entries for specific instances of
company, such as Visa and Mastercard. However, words that are relevant
to only one entity will not be expanded as general terms since they receive
fewer votes.

5.2 Interpretation of Message Focused Entity

Unlike the expansion of graphic X-axis content, there is no need for gen-
eralization when expanding an infographic’s message focused entity Gfx.
However, users are likely to choose synonyms of Gfx when forming their
queries. For example, suppose an infographic lists several technology com-
panies on its X-axis and the focused entity is labeled with “FB”; then it is
important to disambiguate “FB” to match queries that request a focused
entity “facebook”.
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Our approach is to extract the most heavily weighted (i.e., the most
likely) atomic concept among the weighted vector of concepts produced by
Wikimantic for Gfx as its disambiguation concept; the query focused entity
will also be disambiguated in the same fashion. For example, the most
heavily weighted atomic concept for the bar entity “FB” in the context of a
graphic listing technology companies on its X-axis is likely to be the atomic
concept of the company Facebook Inc.. If a query contains “Facebook” as
its focused entity, this entity will also likely be disambiguated into the same
concept Facebook Inc..

6 Rank Ordering Infographics for Retrieval

Each infographic G in the candidate pool P must be ranked in terms of its
relevance R(Q,G) to the query Q. Our methodology measures the relevance
between the different components of the infographic and the corresponding
elements of the query, as depicted in Figure 10, and then combines each
component relevance measurement through a mixture model to estimate the
overall relevance R(Q,G). This approach is denoted as the component ap-
proach. The baseline approach we compare our methodology against simply
treats the entire text in the graphic as one bag of words, and the query as
another bag of words, without giving consideration to the structural and
message content of the infographic.

1. Baseline approach (bag of words): measures the relevance
Rbaseline(Q,G) = R(Qt, Gt), where Gt is all the words in a graphic,
and Qt is all the words in a query.

2. Component approach: measures the relevance of various graphic com-
ponents to the corresponding query components, as illustrated in Fig-
ure 10, and then combines the relevance measurements of these com-
ponents in a mixture model.

In the component approach, each of the following relevance measure-
ments estimates the relevance of a component of a candidate infographic to
the corresponding component specified in the user’s query:

• X Axis Relevance R(Qx, Gx): relevance of the graphic’s X-axis content
Gx to the requisite X-axis content Qx extracted from the user’s query.

• Y Axis Relevance R(Qy, Gy): relevance of the graphic’s Y-axis content
Gy to the requisite Y-axis content Qy extracted from the user’s query.

• Intended Message Category Relevance R(QIM , GIM ): relevance of the
category of intended message GIM of the infographic to the category
of intended message QIM preferred by the query.
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Figure 10: Relevance Measurements for Component Approaches

• Intended Message Focused Entity Relevance R(Qfx, Gfx) and
R(Qfx, Gnx): relevance of the graphic’s focused entity Gfx (if any)
to the focused entity Qfx (if any) extracted from the user’s query. In
cases where Qfx appears on the X-axis of a graphic but is not focused,
such graphics may address the user’s information need, though less so
than if the graphic also focused on Qfx. Therefore we also measure
the relevance of the non-focused X-axis entities Gnx ∈ Gx to Qfx as
R(Qfx, Gnx).

For comparison purposes, we consider three mixture models which re-
spectively capture structural relevance, message relevance, and both struc-
tural and message relevance. Since the results of query processing are not
always correct, we add to each model a back-off relevance measurement
R(Qt, Gt) which measures the relevance of all the words in the query to all
the words in a candidate infographic.

Model-1 (structural components): relevance of the structural compo-
nents (the X-axis and the Y-axis) computed as:

R1(Q,G) = ω0 ·R(Qt, Gt) + ω1 ·R(Qx, Gx) + ω2 ·R(Qy, Gy) (1)

Model-2 (message components): relevance of intended message compo-
nents (message category and message focused entity, if any) computed as:

R2(Q,G) = ω0 ·R(Qt, Gt) + ω3 ·R(QIM , GIM )

+ω4 ·R(Qfx, Gfx) + ω5 ·R(Qfx, Gnx)
(2)

Model-3 (both structural and message components): relevance of both
structural and intended message components, computed as:

R3(Q,G) = ω0 ·R(Qt, Gt) + ω1 ·R(Qx, Gx) + ω2 ·R(Qy, Gy)

+ω3 ·R(QIM , GIM ) + ω4 ·R(Qfx, Gfx) + ω5 ·R(Qfx, Gnx)
(3)

The weighting parameters, ωi, are learned using multi-start hill climbing
to find a set of parameters that yields a local maximal retrieval evaluation
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metric. Such hill-climbing search has been used successfully to learn param-
eters in other problems where the available dataset is small [44]. The next
subsections discuss how relevance is measured for each of the terms in the
above relevance equations.

6.1 Measuring Textual Relevance

The relevance between the words from the query and words from the graphic,
such as R(Gt, Qt), R(Gx, Qx), R(Gy, Qy), and R(Gfx, Qfx), are textual rel-
evances, measured by relevance function Rtext. We use a modified version
of Okapi-BM25 [22] for measuring textual relevance Rtext:

Rtext(Qc, Gc′) =
∑

wi∈Qc

log(
|D|+ 1

gfi + 1
) ·

tfi · (1 + k1)

tfi + k1

where Qc is a query component and Gc′ is a graphic component, |D| is the
total size of our graphic collection, gfi is the number of graphics that contain
the word wi, tfi is the term frequency of wi in Gc′ , and k1 is a parameter
that is set to 1.2, a widely used value. This version of Okapi-BM25 has
replaced the original inverse document frequency in Okapi with the regular
inverse document frequency (idf = log( |D|+1

gfi+1
)) to address the problem of

negative idf . Our version of Okapi also does not take graphic text length
into consideration, since text in graphics usually have similar limited lengths;
moreover, a graph component, such as the message focused entity or the Y-
axis, only consists of a noun entity and therefore normalizing the length of
such a component does not have the same affect as for documents. Our
version of Okapi also does not take query term frequency into consideration,
since most terms in the query occur only once.

In the graph preprocessing stage, as discussed in Section 5.2, Gfx is dis-
ambiguated into a Wikimantic concept. Once the query processing mod-
ule extracts a focused entity from a user query, the query focused en-
tity Qfx is also disambiguated into a Wikimantic concept. When measur-
ing R(Qfx, Gfx), the disambiguated concept name for Qfx and the disam-
biguated concept name for Gfx are used to compute Okapi-BM25. Thus, if a
query focused entity is disambiguated into the concept of “Facebook Inc.”, a
high Okapi-BM25 score is computed for an infographic whose focused entity
is also disambiguated into the concept of “Facebook Inc.”. The reason for
using Okapi-BM25 instead of an exact matching of concept names is to be
able to yield a non-zero R(Qfx, Gfx) score when Qfx and Gfx are disam-
biguated into similar but not exactly the same concepts. For example, if the
Qfx is disambiguated into the concept of “Facebook Messenger” (an instant
messaging service and software application developed by Facebook Inc.),
an exact matching of concept names would produce zero as the relevance
score whereas Okapi-BM25 will not result in a zero relevance measurement
because of the overlapping term “Facebook”.
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Figure 11: Intended Message Category Similarity

6.2 Measuring Relevance of the Intended Message Category

Intended message relevance measures the relevance of the category of the
intended message, such as Rank, (along with the message focused entity of
a query as described above) to those of an infographic.

We abstract a concept hierarchy containing the seven general intended
message categories, as shown in Figure 11. Our methodology uses relax-
ation as the paradigm for ranking infographics according to how well an
infographic’s category of intended message GIM satisfies the requisite cate-
gory of intended message QIM hypothesized from the user query.

A six degree relevance measurement for R(QIM , GIM ) is computed based
on this hierarchy. When GIM matches QIM , little perceptual effort is re-
quired for the user to get the message information he or she wants; this
infographic is deemed fully relevant to the query in terms of message cat-
egory relevance. However, when GIM differs from QIM , the amount of
perceptual effort that the user must expend to satisfy his information need
depends on GIM . By moving up or down the intended message hierarchy
from QIM → GIM , QIM is relaxed to match different GIM with different
degrees of penalties for the relaxation. The greater the amount of relaxation
involved, the less relevant the message category of the infographic is to the
query, and the more points penalized for message relevance.

At the top of the hierarchy is the General intended message category,
which captures the least information message-wise. Message categories lower
in the hierarchy contain more specific information. WhenQIM is lower in the
hierarchy than GIM , QIM requires more specific information than provided
by GIM . By relaxing QIM

up
−→ GIM , perceptual effort is needed for the user

to get the desired information; this infographic will be penalized for not
having specific enough information. For example, consider two graphics,
one whose intended message is the Rank of France with respect to other
European countries in terms of cultural opportunities (and thus France is
highlighted or salient in the graphic) and a second graphic whose intended
message is just a ranking (category Rank-all) of all European countries in
terms of cultural opportunities. If the user’s query requests the rank of
France with respect to other countries, then the first graphic matches the
user’s information need whereas the second graphic requires a relaxation
of message category from (QIM = Rank)

up
−→ (GIM = Rank-all); in this

latter case, user effort is required to search for France among the countries
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listed and thus the second infographic is penalized for message relevance.
If GIM = General, the user must expend even more perceptual effort to
extract the desired Rank message from this infographic. This is reflected
in the hierarchy in that relaxing (QIM = Rank)

up
−→ (GIM = General)

requires more upward movement than does relaxing (QIM = Rank)
up
−→

(GIM = Rank-all). However, relaxing the information need of (QIM =

Min/Max)
up
−→ Rank-all is penalized less than (QIM = Rank)

up
−→ (GIM =

Rank-all). This is because it is comparatively easier to identify the minimum
or maximum entity from a ranked bar chart (since it will appear first or last)
than looking for a specific bar entity among all the entities.

On the other hand, if QIM is higher in the hierarchy than GIM , then
the graphic provides a more specific message than requested by the user’s
query; QIM requires less specific information than provided in GIM . In this

case, QIM is relaxed to a category lower in the hierarchy (QIM
down
−−−→ GIM ),

and the infographic is penalized for containing extraneous information that
might be distracting to the user. For example, if the query only requests
a ranking of countries without focusing on a specific country (a Rank-all
message), then an infographic that focuses on the rank of a specific country
(GIM = Rank) distracts the reader’s attention to the highlighted country in

the graphic. We contend that relaxing QIM
down
−−−→ GIM should be penalized

less than QIM
up
−→ GIM , since it requires less effort to ignore the distrac-

tion than to look for information that has not been presented explicitly.

Therefore relaxing QIM
down
−−−→ GIM is penalized one point, while relaxing

QIM
up
−→ GIM is penalized two points.

7 Experiments and Evaluation

7.1 Corpus Construction and Relevance Judgments

To evaluate the retrieval methodology, we used queries from the second ex-
periment discussed in Section 4, in which each participant is shown five
sets of made-up infographics; infographics in each set are constructed from
data on the same topic and contain similar words, but they convey differ-
ent intended messages; these five sets of artificial infographics are on five
different domains. To get a collection of graphics, we used the 152 queries
from the second experiment to search on popular commercial image search
engines to get more infographics from the same domains. These commercial
search engines include: Google Image, Microsoft Bing Image Search, and
Picsearch. This produced in total 257 infographics that are in the domains
of the collected queries.

Each query-infographic pair was assigned a relevance score on a scale of
0-3 by an undergraduate researcher. A query-infographic pair was assigned
three points if the infographic was considered highly relevant to the query
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and 0 points if it was irrelevant. Infographics that were somewhat relevant
to the query were assigned 1 or 2 points, depending on the judged degree of
relevance.

7.2 Experiment Results

Section 6 discussed three combinations of relevance measurements in the
linear combination model, and a baseline ranking model. Textual relevance,
as discussed in Section 6.1, could be measured with the original text in
the graphics, or with Wikimantic expansion of the text as discussed in Sec-
tion 5.1. This section presents experiments that compare the four ranking
functions, with and without Wikimantic expansion of the words in the info-
graphics. Thus there are a total of eight sets of experiments to evaluate the
proposed methods.

The Bootstrapping method [45] has proven to be an effective evaluation
method for small data sets. For each run of the bootstrapping method,
the training query set is constructed by randomly selecting N queries with
replacement from the entire query collection, where N is the number of
queries in the collection. Queries that have not been selected for the training
set comprise the testing set. Thus the training set contains approximately
(1−1

e
) ≈ 63.2% of the overall query corpus, and the test set contains ap-

proximately 1

e
≈ 36.8% distinct queries. We average together the results of

10 runs with the Bootstrapping method.
Evaluation of retrieval systems usually follows the paradigm designed by

Cleverdon and colleagues [15], in which users give judgements of the rel-
evance of a set of documents given a set of queries. Standard evaluation
metrics following this paradigm include precision, recall, and Mean Average
Precision (MAP), which judge documents as either relevant or not relevant
to a given query. Normalized Discounted Cumulative Gain (NDCG) [31] is
an evaluation metric that improves upon the binary judgements so that doc-
uments are judged at multiple levels (for example, highly relevant, relevant,
somewhat relevant, and not relevant). Within the top K ranked documents,
Cumulative Gain (CG) is simply the sum of the graded relevance values
regardless of the position of documents. Discounted CG (DCG) introduces
a logarithmic penalty proportional to the position of documents. Normal-
ized DCG normalizes a query’s DCG by its ideal DCG, which is the DCG
value when the retrieval result is ordered by relevance. We use Normalized
Discounted Cumulative Gain (NDCG) [31] to evaluate the retrieval perfor-
mance of our methods. It is between 0 and 1 and measures how well the
rank-order of the graphs retrieved by our method agrees with the rank order
of the graphs identified as relevant by our evaluator. We use a Student’s
t-test for computing significance.
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Figure 12: Linear Combination Mixture Model - NDCG@1-20 Plot using
Learned Decision Tree Models for Query Processing

Graphic Model-1: Model-2: Model-3: Message
Expansion Baseline Structural Message and Structural

No Expansion 0.3245 0.3766 0.3568 0.4168

With Expansion 0.3544 0.4280 0.4191 0.4520

Table 1: NDCG@10 Results Using Learned Decision Tree Model for Query
Processing

Table 1 presents NDCG@10 results, with the second column of Table 1
giving the results for the baseline and the next three columns giving the
results for our three models (structural, message, and structural+message).
Furthermore, the first row show results when textual relevance is computed
using exact match of query words with graph words, whereas the second
row gives results when query words are matched with words in the ex-
pansion of the graph text via Wikimantic. The experimental results show
that utilizing structural relevance (Model-1) and utilizing message relevance
(Model-2) each provide significantly better results than the baseline ap-
proach (p≤0.0001). Furthermore, the combination of structural and message
relevance improves upon either alone (p=0.00005). The results also show
that Wikimantic graph expansion improves the retrieval performance con-
sistently throughout all of the approaches. Figure 12 plots the nDCG@1-20
values using each retrieval method.

A question that arises is how much infographic retrieval is impacted
by errors in extracting requisite structural and message content from
user queries, since the learned models are not perfect, Table 2 compares
NDCG@10 results when the decision tree models are used to process queries
against the results when correct hand-labelled query data is used. Overall,
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Model-3:
Query Qx, Qy Graph Model-1: Model-2: Structural
QIM , Qfx Expansion Structural Message & Message

Learned No Expansion 0.3766 0.3568 0.4168
Model With Expansion 0.4280 0.4191 0.4520

Hand No Expansion 0.4348 0.3881 0.4576
Labeled With Expansion 0.4782 0.4433 0.4866

Table 2: NDCG@10 Comparison - Using Hand Labeled Query Data v.s.
Using Learned Decision Tree Model for Query Processing

Figure 13: Linear Combination Mixture Model - NDCG@1-20 Plot using
Hand Labeled Query Data

all of the six retrieval approaches show improvement when using hand la-
beled query data. Message category similarity is weighted much higher when
the models are trained using hand labeled query data. Using hand-labeled
query data for training, the average weight of message category similarity
in the mixture model is 0.15 whereas it is only 0.07 when training uses the
results produced by the decision tree for axis content, message category,
and focused entity. On the other hand, the weight assigned to the smooth-
ing relevance factor, R(Qt, Gt), is lower when training with hand labeled
query data than when training with the results produced by the decision
trees. These observations suggest that by improving the accuracy of the
query processing module, it is possible to achieve better retrieval perfor-
mance. Figure 13 plots the nDCG@1-20 values for each retrieval method
when trained on the hand-labelled query data.
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8 Related Work

8.1 Document Retrieval Research

Document retrieval research is concerned with retrieving and ranking rele-
vant text documents given a user query. Three major types of document re-
trieval models have been developed: 1) vector space models from the earlier
stages of information retrieval [52,55] that compare the distance between the
vector representation of the query and the vector representation of each doc-
ument in the term-document space, 2) classical probabilistic models [48–50]
that assume there is a set R of relevant documents to the given query and
estimate the probability of a document being in R by the occurrence of
query words in the document, and 3) language models [47,62] that estimate
the likelihood of a document generating the query.

The first step of retrieval in a vector space model is indexing, where
both documents and queries are represented by term vectors; indexing mod-
els include the 2-Poisson probabilistic indexing model [26], latent semantic
indexing model [18], and probabilistic latent semantic indexing model [28].

Classic probabilistic retrieval models rely on heuristic retrieval functions,
such as BM25 [49] that approximate a 2-Poisson mixture model of document
generation, combining term frequency and document length. Its later ver-
sion, Okapi-BM25 [50], is recognized as one of the most effective and robust
retrieval functions.

Retrieval models that apply language models rank documents in de-
scending order of the probability of query words being generated from doc-
uments [33]. The query likelihood scoring method [6, 47] is the earliest
attempt at applying language models in information retrieval. To better es-
timate the language model of each document, various smoothing strategies
are applied, ranging from simple additive smoothing [11] and Good Turing
smoothing [25] to more complex smoothing methods.

One can imagine treating the words in the graphics like a text document
and apply these retrieval methods directly; however, regarding queries and
documents as a single bags of words fails to take into consideration the
most important characteristics of infographics: their structure and message
content.

8.2 Infographic Processing and Image Retrieval

One branch of content-based image retrieval research consists of taking an
image as an input query and extracting visual features and/or segmenting
the provided query image, and searching in the space of visual features ex-
tracted from a collection of images for “similar” images [17,42,56]. Another
direction of image retrieval research follows the keyword-based paradigm:
an index is built on the textual annotations of images; such image retrieval
systems take keywords or free-text queries as input (instead of an image) and
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retrieve images using the constructed index. Other image retrieval systems
allow users to provide both image query and text query and combine search-
ing techniques on both visual features and text. Text-based approaches
usually rely primarily on the surrounding text from the multimedia doc-
ument [34] or user-provided metadata tags in social media such as Flickr
and Youtube [24]. Li et al. used a learned statistical model to automate
textual annotations with the most statistically significant terms for images
in a database [37]. These image retrieval techniques are insufficient for in-
fographic retrieval. Rarely would a user input an infographic and request
similar ones. Furthermore, images do not usually have an intended message
and they lack the structure of infographics.

8.3 Long Query Processing

Natural language queries are used in many retrieval systems to allow users to
fully describe their complex information need. These information retrieval
systems include question answering systems (QA systems), structured-data
retrieval systems (such as XML data retrieval), and linked data retrieval
(such as querying ontologies).

The degree of specificity of a search query corresponds roughly to the
length of that query [5, 46]. Bendersky presented a probabilistic model for
selecting the key concepts that will have the most impact on retrieval ef-
fectiveness of text documents from verbose (long) queries [4]. Linguistic
characteristics, such as hierarchical structures and semantic relationships,
have been utilized in other research to augment verbose query understand-
ing, especially natural language queries [41].

Research on retrieval of structured data, such as linked data and ontolo-
gies, also relies on the syntax and semantics of natural language queries [16,
32]. For example, the query “Who owns the biggest department store in Eng-
land?” specifies that the requisite type of attribute is a “person” and the
relationship of that person to department stores in England is “the owner
of”. In such queries, attributes and relationships in the data are explicitly
given in the ontology being searched, and the queries specify the desired
attribute and/or relationship. Our research is similar to these efforts in that
we also use full sentence queries. However, infographic search queries do
not explicitly state the desired attribute and/or relationship. Therefore ex-
tracting structural and message content from an infographic query is more
complex. Moreover, the objective of our research is retrieval of an info-
graphic as opposed to searching linked data, where the retrieval unit is a
single attribute or concept.
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8.4 Semi-structured Data Retrieval

Linear combination model has been an effective and flexible data fusion
method for combining multiple information retrieval results [60]. Hiemstra
proposed several language models to estimate the relevance of each XML
element of semi-structured XML data to query unigrams, and proposed a
linear combination mixture model and a translation mode to combine the
relevance from each element to estimate the overall document relevance [27].
Our ranking methodology also adopts a linear combination mixture model to
combine an arbitrary number of relevance components. A similar linear com-
bination mixture model is used for a different problem in the work of Met-
zler et al., where parameters are greedily learned with a simple coordinate-
level hill climbing search instead of expectation maximization given a small
dataset [44]. Our methodology uses a similar greedy algorithm to set weights
in the linear combination model so that a maxima in retrieval performance
is achieved.

9 Conclusion and Future Work

This paper has presented a novel methodology for infographics retrieval
based on the unique and fundamental characteristics of infographics: 1)
their two-dimensional structure – displaying two groups of entities, one on
the independent axis (X-axis) and another on the dependent axis (Y-axis);
2) the high-level intended message that their graphic designer intended to
convey through specific communicative signals.

Our work is the first to analyze a user query and hypothesize the requisite
structural and message content of infographics that might satisfy the user’s
information needs. The overall relevance of each candidate infographic to
a user query is estimated by how well the infographic satisfies each of the
different aspects of query information needs. A linear combination model
is used to integrate structural (axes) relevance measurements and message
relevance measurements and produce a rank ordering of the candidate info-
graphics for retrieval.

Our retrieval methodology has been implemented and evaluated on a
corpus of infographics and queries. Our experiments show that utilizing
structural relevance and utilizing message relevance each significantly out-
perform a baseline method that treats queries and infographics as bags of
words. Furthermore, utilizing a combination of both structural and mes-
sage relevance produces significantly better performance than either alone.
The results also show that our text expansion techniques improve retrieval
performance consistently throughout all of the approaches.

In the future, we will further improve the accuracy of our query process-
ing module. We will also explore a greater diversity of relevance measure-
ments on top of Okapi-BM25. Instead of trying to integrate more relevance
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measurements into a single linear function, we will investigate non-linear
retrieval models such as learning-to-rank models. In addition, we will ex-
tend the retrieval methodology presented in this paper to other types of
infographics, such as grouped bar charts and multiple line graphs.
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