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Abstract—This paper addresses the problem of constructing
a generative statistical model for an interconnect starting from
a limited set of S-parameter samples, which are obtained by
simulating or measuring the interconnect for a few random
realizations of its stochastic physical properties. These original
samples are first converted into a pole-residue representation
with common poles. The corresponding residues are modeled as
a correlated stochastic process by means of principal component
analysis and kernel density estimation. The obtained model allows
generating new samples with similar statistics as the original
data. A passivity check is performed over the generated samples
to retain only passive data. The proposed approach is applied to
a representative coupled microstrip line example.

Index Terms—Statistical model, interconnect, Principal Com-
ponent Analysis, Kernel Density Estimation

I. INTRODUCTION

The ever-growing impact of manufacturing variability on the

performance of electronic devices is prompting an increasing

interest in stochastic modeling techniques for signal integrity

investigations. Whereas very efficient modeling techniques

were proposed based on the framework of generalized polyno-

mial chaos (gPC) [1, 2], these approaches are hardly applicable

when the structure affected by variability is characterized by

means of measurements or by simulations involving hundreds

of uncertain parameters, simply because the data required to

construct the gPC models cannot be generated in a time- and

cost-effective way.

An alternative approach was proposed in [3], where a

generative statistical model was derived that is capable of

producing new random samples by suitably interpolating

measured S-parameter data in a statistically valid manner.

However, this method is not applicable to multiport passive

structures, since it models each S-parameter independently, as

such not preserving the existing relationship between the S-

parameters and (most likely) yielding non-passive samples.

In this paper, a novel strategy for multiports is put forward.

A small dataset of “training samples” is obtained by means

of Monte Carlo simulation or measurements. By “sample” we

mean a S-parameter frequency sweep and/or its corresponding

rational macromodel (see section II). These S-parameter sam-

ples are first converted into a pole-residue representation via

Vector Fitting (VF) [4, 5]. This allows operating with a finite

set of frequency-independent variables. For convenience, VF

with fixed common poles is adopted, to avoid the problem of

dealing with possibly unstable samples. Second, the stochastic

residues are statistically modeled by means of Principal Com-

ponent Analysis (PCA) and Kernel Density Estimation (KDE).

These models allow generating new S-parameter samples with

similar statistics and interrelationships as the original ones.

Non-passive samples are readily discarded in a post-processing

phase.

The approach is applied to the modeling of a coupled

microstrip line, for which it is shown that the newly generated

S-parameter samples closely resemble the simulated ones. As

expected, the agreement further improves as the variability is

reduced.

II. PROPOSED METHODOLOGY

Consider a multiconductor transmission line (MTL) with

n signal conductors and at least one reference conductor, prone

to variability. By means of measurements or simulations, a

limited set of K training samples is available in the form of S-

parameters. Hence, each such training sample is characterized

by a 2n × 2n matrix Sk(s), k = 1, . . . ,K, where s denotes

the complex frequency. In a first modeling step, each sample

of the MTL is fitted by a rational model with N poles ai and

N residue matrices Rk,i, as follows:

Sk ≈

N∑

i=1

Rk,i

s− ai
, k = 1, . . . ,K. (1)

This fitting is done by means of Vector Fitting [4, 5]. The poles

and residues are either real or come in complex conjugate

pairs. As seen from (1), all training samples are fitted with a

common set of poles {ai}
N
i=1

, while the residues pertain to a

specific sample k. This is achieved by first fitting all training

samples at once to obtain the common poles, and then, by

identifying the residues of each training sample separately.

Because the VF algorithm ensures stability by keeping the

poles in the left half of the complex plane (i.e., Re{ai} < 0),

any additional sample generated with these poles will also be

stable.

Owing to the reciprocity of the MTL, the K S-parameter

matrices are symmetrical. Hence, in total KN2n(2n + 1)/2
elements of the residue matrices need to be modeled. Given

this high dimensionality, the modeling problem may be-

come intractable. Therefore, a Principal Component Analysis



(PCA) [6] is applied to these KN2n(2n + 1)/2 random

variables (after rescaling to unit variance) to reduce the di-

mensionality. At the same time, this technique also produces

linearly decorrelated variables. The samples are then again

rescaled by the square root of their latent variance to obtain a

more spherical distribution.

Whereas the VF and PCA steps help to reduce the problem

dimensionality, the actual modeling is now done by means

of a Kernel Density Estimation (KDE) [7, 8]. This technique

approximates the probability density function (PDF) of the

residues — which are now already projected onto the reduced

space — by a sum of kernels centered on each training point.

In this case, Gaussian kernels were used, and their covariances

were estimated using the algorithm detailed in [8]. As the

distribution, in general, features nonlinear correlations, KDE

tends to provide a better estimate than a parametric fit of any

elliptical distribution would.

Generating a new sample of the MTL is now performed as

follows. First, one training point is selected at random. Next,

from the kernel centered on that point, a new point is sampled.

Then the inverse PCA transformation is applied to project this

new point back to a new set of residues. Finally, these residues

are combined with the common poles to yield a new sample

of the S-parameters via equation (1).

If the newly generated sample is not passive, it is simply

rejected, and a new one is generated. Enforcing passivity as

in [9] is also a possibility, but may cause a bias in the generated

sample population and it is therefore undesired.

III. APPLICATION EXAMPLES AND DISCUSSION

To demonstrate its validity and appositeness, the above

method is applied to the case of two coupled symmetric

microstrip lines. In the nominal design, these lines have a

length of 10 cm, a trace width of 50 µm, a gap of 40 µm
between them, and they reside on a dielectric substrate of

thickness 60 µm and with relative permittivity ǫr = 3.7 and

tan δ = 0.02. A dataset was constructed using Synopsis’

HSPICE, where the distance between the lines, the substrate

thickness and the substrate’s ǫr were varied according to

a normal distribution. For the first dataset, a low standard

deviation of 1% was assumed, while for the second a high

standard deviation of 10% was applied. Each dataset contains

1000 simulated samples, 50 of which are used for training, the

other 950 for validation.

As a robust measure of accuracy, the sum of the areas

between the cumulative distribution function (CDF) of the

generated samples and the CDF of the validation samples is

calculated for each frequency point. This allows comparison to

other generative models, and here in particular, a multivariate

Gaussian model of the residues is leveraged as a reference. By

applying the above methods with K = 50 training samples

and N = 20 terms in the VF expansion (1), the S-parameter

results shown in Fig. 1 were obtained for the 1% standard

deviation dataset. The blue lines correspond to 500 out of

1000 generated new samples, while the green lines show 475

out of 950 validation samples. The red lines are superimposed
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Figure 1. S-parameters of 500 of the newly generated samples (blue lines),
and 475 simulated validation samples (green lines) for the case of 1% standard
deviation. The 50 training samples (50) are superimposed in red. The black
lines indicate the minimum and maximum of the validation samples.

and denote the 50 training samples. The black lines indicate

the minimum and the maximum of the validation samples.

at 1% standard deviation it is difficult to see the difference

between the various lines in Fig. 1. The reader might first

want to look at Fig. 2 for a better understanding. It is noticed

that all newly generated samples reside within these two black

lines (bounds) and that there is a good correspondence between

the validation samples and the newly generated samples. The

above proposed accuracy measure for these samples amounts

to 0.05, while for those generated by the reference multivariate

Gaussian model it is 0.04. This shows that for small variations

of the varied dimensions, the distribution of the residues is

sufficiently Gaussian. Consequently, both our novel advocated

technique and the multivariate Gaussian approach provide

a very good model for the actual distribution of the S-

parameters. The result of applying the proposed method to

the 10% standard deviation dataset yields the results shown

in Fig. 2, using the same colors for the samples as in Fig. 1.

Due to the increased variance, the generated samples do no

longer exactly follow the distribution of the simulated samples.

In the neighborhood of peaks, there is some overshoot of the
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Figure 2. S-parameters of 500 of the newly generated samples (blue lines),
and 475 simulated validation samples (green lines) for the case of 10%

standard deviation. The 50 training samples (50) are superimposed in red. The
black lines indicate the minimum and maximum of the validation samples.

generated samples. This is caused by the limited number of

training samples K combined with a limited set of terms N in

the rational expansion, leading to a non-perfect approximation.

Nevertheless, as can be seen from the figure, there is still

a very good correspondence between the validation samples

and the newly generated samples. Moreover, the accuracy of

the generated samples as indicated by the aforementioned

measure, is 2.3, while for the multivariate Gaussian model

it is 3.3. Clearly, for these larger variations, the distribution

of the residues is no longer well approximated by a Gaussian,

necessitating our proposed method.

IV. CONCLUSIONS

This paper proposes a novel technique to generate random

S-parameter samples starting from a small set of simulated

data. The technique first converts the original S-parameters

into a pole-residue representation with common poles. The

random residues are then modeled as a stochastic process by

means of PCA and KDE. The obtained statistical model allows

generating new samples that closely match the statistical

features of the original data. A passivity selection is performed

in a post-processing step to ensure that only passive data

is retained. The feasibility and applicability is demonstrated

by modeling a pair of coupled microstrip lines with random

geometrical and material properties. During the design of

novel high-speed links, the efficient generation of a statistically

correct population of samples of the interconnect structures

prone to variability, based on a limited set of training samples,

is of high importance and successfully achieved with our novel

method.
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