
International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 4, February 2015

33

A Novel Methodology to Implement Optimization

Algorithms in Machine Learning

Venkata Karthik Gullapalli
Vellore Institute of Technology

School of Computing Science and Engineering
VIT University, India

Rahul Brungi
Vellore Institute of Technology

School of Computing Science and Engineering
VIT University, India

ABSTRACT

Optimization is considered to be one of the pillars of

statistical learning and also plays a major role in the design

and development of intelligent systems such as search

engines, recommender systems, and speech and image

recognition software. Machine Learning is the study that gives

the computers the ability to learn and also the ability to think

without being explicitly programmed. A computer is said to

learn from an experience with respect to a specified task and

its performance related to that task. The machine learning

algorithms are applied to the problems to reduce efforts.

Machine learning algorithms are used for manipulating the

data and predict the output for the new data with high

precision and low uncertainty. The optimization algorithms

are used to make rational decisions in an environment of

uncertainty and imprecision. In this paper a methodology is

presented to use the efficient optimization algorithm as an

alternative for the gradient descent machine learning

algorithm as an optimization algorithm.

General Terms

Optimization Algorithms, Machine Learning

Keywords

Gradient Descent, BFGS, Cost Function, Data Analysis

1. INTRODUCTION
Machine Learning is a field that grew out of artificial

intelligence giving new capabilities for computers. In a world

of high uncertainty and imprecision the decisions should be

taken which provide results in an efficient way. For this

purpose machine learning algorithms are used. The amount of

data in the world seems increasing and computers make it

easy to save the data. As the volume of data increases,

inexorably, the proportion of it that people

understand decreases alarmingly [5]. When there are very

large amounts of data, there is a need to use the efficient

algorithms for data analysis and providing accurate results.

Depending on the types of data, machine learning algorithms

are further classified into supervised learning algorithm,

unsupervised learning algorithm, reinforcement learning

algorithm and others. Supervised learning algorithm refers to

the fact that given an algorithm a data set and the task of the

algorithm is to produce the right answers. This is also called a

regression problem. Regression problem provides a

continuous valued output. The term classification in the

supervised learning refers to the fact that the algorithm is

trying to predict a discrete valued output. In a supervised

learning algorithm, the data is a set of training examples with

the associated correct answers. The algorithm learns to predict

the correct answer from this training set. An example of this

would be learning to predict whether an email is spam if given

a million emails, each of which is labeled as spam or non-

spam. Unsupervised learning algorithm is also called as a

clustering algorithm. Unsupervised learning algorithm breaks

the data into clusters. In unsupervised learning algorithm the

algorithm can find the trends in the data it is given without

looking for some specific correct answer. The dataset is given

as input to a learning algorithm and the hypothesis is formed.

The hypothesis is a function that takes the dataset and gives

the output precisely. The hypothesis can be represented as a

linear function and nonlinear function depending on the type

of data and the amount of datasets. A models performance is

quantified by cost function. A cost function is computed using

some parameters and then it is minimized to find the correct

values for these parameters. Based on the values found by

minimizing the cost function the hypothesis function is

formed. An optimization problem is generally the problem of

finding the best solution from all feasible solutions. Gradient

descent and BFGS are the optimization problems. The

gradient descent algorithm is used for finding the parameters.

Gradient descent algorithm is an optimization algorithm used

in many applications of machine learning. The aim of this

paper is to explore the various stages involved in

implementing optimization methods and choosing the

appropriate one for a given task. From an optimization point

of view learning in a neural network is equivalent to

minimizing a global error function which is multivariate

function that depends on the weights in the network [9].

2. GRADIENT DESCENT ALGORITHM

2.1 Gradient Descent Algorithm
Gradient descent algorithm offers a very good perspective for

solving problems related to data analysis. Is is an algorithm

that is also used to minimize functions. Gradient descent

algorithm when given a function with an initial set of

parameter values starts the procedure iteratively and moves

towards the parameter values that minimize the function. The

iterative minimization is achieved by taking steps in the

negative direction of the function gradient. The gradient

descent can take many iterations to compute a precise local

minimum. There are a large number of people still using

gradient descent on neural networks and many other

architectures. Gradient descent algorithm exploits the datasets

given by the derivative of the function that is to be minimized.

The goal of linear regression function is to fit a line

corresponding to the dataset.

The datasets can be plotted on a graph using the standard line

equation y = mx+c where m is the slope of the line and b is

the y intercept of the line. The best line that fits the given

datasets can be found by finding the best set of slope m and y

intercept b. A standard approach to solve this type of problem

is to define the cost function that takes the data sets as the

input and returns the error value based on how well the line

fits the dataset. The hypothesis function picks the input data

and predicts the output for that input precisely. The sum the

square of distances between each point’s y value and the

candidate line’s y value is calculated for computing the error

for the line that fits the dataset by iterating through each point

in the dataset. It is always suggested to square this distance to

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 4, February 2015

34

ensure that it is positive and to make the cost function

differentiable. Gradient descent can also be used to solve the

system of nonlinear equations. Gradient descent is an iterative

optimization procedure that uses this information to adjust a

function’s parameters. It takes the value of the derivative,

multiplies it by a small constant called as learning rate and

subtracts the result from the current parameter value. This is

repeated for the new parameter value and so on until a

minimum is reached. The datasets along with the standard line

are pointed on a graph as shown in figure 1 and figure 2.

Figure 1

Figure 2

When the function is minimized the best line that fits the data

is drawn over the dataset. The equation for gradient descent

algorithm after partial differentiation can be calculated by

following the above procedure and is shown below.

(theta)j := (theta)j – (alpha/m) * Σ(i=1 to m)

(htheta(x
(i)

)-y
(i)

)xj
(i)

 (for all j)

The values of theta are to be updated simultaneously. Here m

is the number of training sets or data sets and theta is the

parameter. If alpha is small then the algorithm takes small

steps. If it is larger the algorithm takes big steps. It is also

called as batch gradient descent. Each step of the gradient

descent uses all the training examples.

2.2 Computational Example
The learning rate determines the step size and hence how

quickly the search converges. If it is too large and the cost

function has several minima, the search will overshoot and

miss a minimum entirely. If it is too small, progress toward

the minimum may be slow. The gradient descent can only find

a local minimum. The example of the gradient descent

algorithm implemented in octave and the screenshot of the

code for the cost function and the values of the parameters are

shown below in figure 3 and figure 4.

Figure 3

Taking the values of the function as

X = [1 1; 1 2; 1 3];

y = [1; 2; 3];

theta = [0;1];

The output cost function value after applying gradient

algorithm is zero. The corresponding screenshot of the

implementation in octave is shown in figure 4.

Figure 4

In this way the algorithm should be implemented for different

values of theta. For different values of theta the corresponding

cost function values are computed. All the values of cost

function are noted down and the lowest value among them is

considered to be the best value. The values of theta for which

the cost function’s value is least are the correct values for the

hypothesis function that gives the gradient descent boundary.

2.3 Disadvantages of Gradient Descent
There are equal disadvantages of using gradient descent

algorithm on the datasets available. The disadvantages are as

given below.

1. The value of step size alpha has to be

experimentally chosen in the gradient descent

algorithm.

2. Calculating partial derivatives of the cost function is

mandatory.

3. The number of iterations should be chosen

experimentally in the gradient descent algorithm.

4. Gradient descent algorithm takes time to converge

to the correct point based on the value of alpha.

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 4, February 2015

35

Gradient descent is relatively a slow algorithm when

compared with the others. As the number of training examples

increases the asymptotic rate of convergence becomes very

slow. Gradient descent increasingly zigzags for poorly

conditioned convex problems. For non-differentiable

functions, gradient methods are ill-defined and difficult to

find the local minimum. Gradient descent can be slow. Taking

infinitesimal steps in the direction of the gradient would take a

lot of time to compute, so finite step sizes must be used to

compute faster. The value of precise step size is unclear.

Many algorithms have been developed by people for adjusting

the step size. Many of these algorithms are not robust to noise

and they scale badly with the number of parameters. Gradient

descent where the step size is adjusted by a simple momentum

heuristic is used by many people. Gradient descent on many

architectures does not result in a global optima.

3. BROYDEN-FLETCHER-GOLDFARB-

SHANNO ALGORITHM

3.1 BFGS Algorithm
The family of Quasi-Newton methods to mimic Newton’s

Method, so it is called as Quasi-Newton method. The

approximations of the Hessian based on gradient and past

update step information are used in this method. Quasi-

Newton methods are faster per every iteration than the

Newton’s method as they are not explicitly computing the

Hessian. Newton’s method is an alternative to the gradient

descent methods for fast optimization and convergence.

Newton’s method often converges faster than gradient descent

methods. In the gradient descent algorithm, if the hypothesis

function is non-linear function and there are enormous

amounts of datasets then the algorithm would take lot of time

to compute the cost function values and also takes time in

choosing the learning rate. It will become a difficult process

to calculate the parameter values for the non-linear function.

Considering the above disadvantages for the gradient descent

algorithm for computing cost function, Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm can be used as an

alternative for gradient descent algorithm. Due to their

combination of computational efficiency and asymptotic

convergence, the BFGS quasi-Newton method and its

memory-limited LBFGS variant are considered to be the

efficient algorithms for nonlinear optimization. For

constructing the Hessian matrix, the BFGS method

approximates the objective function locally as a quadratic

without evaluating the second partial derivatives of the

objective function. The Hessian matrix is approximated by the

previous gradient evaluations, such that there won’t be any

vertical scalability issue when computing the Hessian matrix

in the Newton’s method. As a result, BFGS often achieves

faster convergence compared with other first-order

optimization techniques.

The BFGS algorithm techniques can be used in various

machine learning algorithms such as Linear Regression and

Logistic Regression by passing the gradient of objective

function and the updater into optimizer instead of using the

training application programming interfaces. Application of

second order methods is not suggestible practically because

computation of the objective function Hessian inverses

amounts for a very high computational cost. BFGS modifies

gradient descent algorithm by introducing a Hessian

approximation matrix computed from finite gradient

differences. The BFGS method is considered as one of the

most popular and efficient algorithms of this class. The L-

BFGS is a limited-memory version of BFGS algorithm and is

particularly used for the problems with very large numbers of

variables. The L-BFGS algorithm should be modified to

handle the functions that include non-differentiable

components and constraints as the BFGS is designed to

minimize the functions without constraints. These methods of

modifying the algorithms are called active set methods as it is

based on the concept of the active set. The idea is that the

function and constraints can be simplified when restricted to a

small neighborhood of the current iterate.

3.2 Computational Example
BFGS method is based on Newton's method but performs

different calculations in an efficient way.

Here is a sample session to find the optimum for the following

function:

y = 10 + (X (1) - 2) ^2 + (X (2) + 5) ^2

The above function resides in file fx1.m. The search for the

optimum 2 variables has the initial guess of [0 0] and with a

minimum guess refinement vector [1e-5 1e-5]. The search

employs a maximum of 100 iterations, a function tolerance of

1e-7, and a gradient tolerance of 1e-7. The corresponding

screenshots of the function fx1 and the implementation of the

BFGS algorithm in octave are shown in figure 5 and figure 6.

Figure 5

Figure 6

4. RESULTS
The BFGS algorithm has few advantages over the gradient

descent algorithm such as BFGS increases the efficiency of

the computation. There is no need to pick alpha manually

using the BFGS algorithm. BFGS is often considered to be

faster than the gradient descent. The only disadvantage with

BFGS over gradient descent algorithm is that it is more

complex. The BFGS method is used to train the hypothesis

function properly and provide the accurate predictions for the

new inputs by giving precise parameter values. Several

experiments are performed and implemented using MATLAB

and Octave and the results proved that the BFGS algorithm is

http://en.wikipedia.org/wiki/L-BFGS
http://en.wikipedia.org/wiki/L-BFGS
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Active_set

International Journal of Computer Applications (0975 – 8887)

Volume 112 – No 4, February 2015

36

efficient in finding the hypothesis and predictions than the

Gradient Descent algorithm. The disadvantage of the

optimization algorithms like BFGS is that they are more

complex algorithms than the gradient descent algorithm and

are difficult to understand and implement. BFGS helps in

predicting the output for the nonlinear second order equations.

Each BFGS iteration will be more expensive but it takes fewer

of the iterations to reach a local minimum.

The execution and run time shown for the above implemented

algorithms in Octave is shown in table 1. From the given

analysis BFGS is better optimized algorithm to use in

nonlinear equations and problems with enormous amounts of

datasets.

Table 1

BFGS Gradient Descent

0.000073 seconds 0.000503 seconds

5. CONCLUSION
BFGS is a quasi-Newton method and will converge in fewer

steps than gradient descent and has a little less tendency to get

stuck while performing computations. Indeed, it has been

noted that in cases where BFGS does not encounter any non-

smooth point, it often converges to the optimum [14].

Gradient descent algorithm computes matrix-vector products,

which is useful if directional derivatives can be calculated

while the BFGS performs vector-vector products. BFGS will

calculate approximate Hessians using inner products of

gradient information so the gradient descent analysis does not

apply to BFGS. It is likely to get convergence in fewer

iterations with BFGS than the gradient descent algorithm.

From the above implementations of both the gradient descent

and BFGS algorithms, BFGS algorithm will be faster and

reaches local minimum in fewer steps. This paper described

the Gradient Descent and BFGS methods in the context of

linear systems and the relationships between each of the

algorithms. This paper presents a future scope for the

applications of optimization algorithms in the data analysis

and predictions. It also gives the scope on how to use the

optimization algorithms efficiently accordingly for producing

more efficient and accurate results. The implementation of

these algorithms demonstrate that BFGS is the best choice for

well-conditioned problems because of its faster convergence

to the local minimum. BFGS optimization algorithm is always

to be chosen as an alternative for gradient descent accordingly

for producing result as precisely as possible.

6. REFERENCES
[1] Malouf, Robert (2002). "A comparison of algorithms for

maximum entropy parameter estimation". Proc. Sixth

Conf. on Natural Language Learning (CoNLL). pp. 49–

55.

[2] Andrew, Galen; Gao, Jianfeng (2007). "Scalable training

of L₁-regularized log-linear models". Proceedings of the

24th International Conference on Machine Learning.

[3] C.; Byrd, Richard H.; Lu, Peihuang; Nocedal, Jorge

(1997). "L-BFGS-B: Algorithm 778: L-BFGS-B,

FORTRAN routines for large scale bound constrained

optimization". ACM Transactions on Mathematical

Software 23 (4): 550–560.

[4] Fletcher, Roger (1987), Practical methods of

optimization (2nd ed.), New York: John Wiley &

Sons, ISBN 978-0-471-91547-8.

[5] Venkata Karthik Gullapalli and Aishwarya Asesh, Data

Trawling and Security Strategies, ISSN – 2278-8727,

IOSR Journal of Computer Engineering, Volume 16,

Issue 6, Ver. 1, Nov - Dec 2014.

[6] Danilo P Mandic, A Generalized Normalized Gradient

Descent Algorithm, IEEE Signal Processing Letters, Vol.

11, No. 2, February 2004.

[7] Freund, Y., Iyer, R., Schapire, R., & Singer, Y.

(2003).An efficient boosting algorithm for combining

preferences. Journal of Machine Learning Research,

4,933–969.

[8] Herbrich, R., Graepel, T., & Obermayer, K. (2000).Large

margin rank boundaries for ordinal regression Advances

in Large Margin Classifiers, MIT Press (pp. 115–132).

[9] Martin F. Moller, A Scaled Conjugate Gradient

Algorithm for fast Supervised learning, ISSN 0105-8517,

Daimi PB 339, November 1990.

[10] D. E. Goldberg and J. H. Holland, Genetic Algorithms

and machine learning, Guest Editorial, Machine Learning

3: 95-99, 1988 Kluwer Academic Publishers - The

Netherlands.

[11] R. Johnson and T. Zhang, Accelerating stochastic

gradient descent using predictive variance reduction,

Adv. Neural Inf. Process. Syst., 26 (2013), 315–323.

[12] Mokbnache L., Boubakeur A. (2002) ‘’Comparison of

Different Back-Propagation Algorithms used in The

Diagnosis of Transformer Oil’’ IEEE Annual Report

Conference on Electrical Insulation and Dielectric

Phenomena, 244-247.

[13] Charalambous C. (1992) Conjugate Gradient Algorithm

for Efficient Training of Artificial Neural Networks,

IEEE Proceedings, 139 (3), 301-310.

[14] Jin Yu, S. V. N. Vishwanathan, Simon Gunter, Nicol N.

Schraudolph, A Quasi-Newton Approach to Non Smooth

Convex Optimization problems in Machine Learning,

Journal of Machine Learning Research, March 2010.

IJCATM : www.ijcaonline.org

http://acl.ldc.upenn.edu/W/W02/W02-2018.pdf
http://acl.ldc.upenn.edu/W/W02/W02-2018.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=78900
http://research.microsoft.com/apps/pubs/default.aspx?id=78900
http://research.microsoft.com/apps/pubs/default.aspx?id=78900
http://en.wikipedia.org/wiki/John_Wiley_%26_Sons
http://en.wikipedia.org/wiki/John_Wiley_%26_Sons
http://en.wikipedia.org/wiki/John_Wiley_%26_Sons
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-471-91547-8

