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ABSTRACT 

Optimization is considered to be one of the pillars of 

statistical learning and also plays a major role in the design 

and development of intelligent systems such as search 

engines, recommender systems, and speech and image 

recognition software. Machine Learning is the study that gives 

the computers the ability to learn and also the ability to think 

without being explicitly programmed. A computer is said to 

learn from an experience with respect to a specified task and 

its performance related to that task. The machine learning 

algorithms are applied to the problems to reduce efforts. 

Machine learning algorithms are used for manipulating the 

data and predict the output for the new data with high 

precision and low uncertainty. The optimization algorithms 

are used to make rational decisions in an environment of 

uncertainty and imprecision. In this paper a methodology is 

presented to use the efficient optimization algorithm as an 

alternative for the gradient descent machine learning 

algorithm as an optimization algorithm. 
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1. INTRODUCTION 
Machine Learning is a field that grew out of artificial 

intelligence giving new capabilities for computers. In a world 

of high uncertainty and imprecision the decisions should be 

taken which provide results in an efficient way. For this 

purpose machine learning algorithms are used. The amount of 

data in the world seems increasing and computers make it 

easy to save the data. As the volume of data increases, 

inexorably, the proportion of it that people 

understand decreases alarmingly [5]. When there are very 

large amounts of data, there is a need to use the efficient 

algorithms for data analysis and providing accurate results. 

Depending on the types of data, machine learning algorithms 

are further classified into supervised learning algorithm, 

unsupervised learning algorithm, reinforcement learning 

algorithm and others. Supervised learning algorithm refers to 

the fact that given an algorithm a data set and the task of the 

algorithm is to produce the right answers. This is also called a 

regression problem. Regression problem provides a 

continuous valued output. The term classification in the 

supervised learning refers to the fact that the algorithm is 

trying to predict a discrete valued output. In a supervised 

learning algorithm, the data is a set of training examples with 

the associated correct answers. The algorithm learns to predict 

the correct answer from this training set. An example of this 

would be learning to predict whether an email is spam if given 

a million emails, each of which is labeled as spam or non-

spam. Unsupervised learning algorithm is also called as a 

clustering algorithm. Unsupervised learning algorithm breaks 

the data into clusters. In unsupervised learning algorithm the 

algorithm can find the trends in the data it is given without 

looking for some specific correct answer. The dataset is given 

as input to a learning algorithm and the hypothesis is formed. 

The hypothesis is a function that takes the dataset and gives 

the output precisely. The hypothesis can be represented as a 

linear function and nonlinear function depending on the type 

of data and the amount of datasets. A models performance is 

quantified by cost function. A cost function is computed using 

some parameters and then it is minimized to find the correct 

values for these parameters. Based on the values found by 

minimizing the cost function the hypothesis function is 

formed. An optimization problem is generally the problem of 

finding the best solution from all feasible solutions. Gradient 

descent and BFGS are the optimization problems. The 

gradient descent algorithm is used for finding the parameters. 

Gradient descent algorithm is an optimization algorithm used 

in many applications of machine learning. The aim of this 

paper is to explore the various stages involved in 

implementing optimization methods and choosing the 

appropriate one for a given task. From an optimization point 

of view learning in a neural network is equivalent to 

minimizing a global error function which is multivariate 

function that depends on the weights in the network [9]. 

2. GRADIENT DESCENT ALGORITHM 

2.1 Gradient Descent Algorithm 
Gradient descent algorithm offers a very good perspective for 

solving problems related to data analysis. Is is an algorithm 

that is also used to minimize functions. Gradient descent 

algorithm when given a function with an initial set of 

parameter values starts the procedure iteratively and moves 

towards the parameter values that minimize the function. The 

iterative minimization is achieved by taking steps in the 

negative direction of the function gradient. The gradient 

descent can take many iterations to compute a precise local 

minimum. There are a large number of people still using 

gradient descent on neural networks and many other 

architectures. Gradient descent algorithm exploits the datasets 

given by the derivative of the function that is to be minimized. 

The goal of linear regression function is to fit a line 

corresponding to the dataset. 

The datasets can be plotted on a graph using the standard line 

equation y = mx+c where m is the slope of the line and b is 

the y intercept of the line. The best line that fits the given 

datasets can be found by finding the best set of slope m and y 

intercept b. A standard approach to solve this type of problem 

is to define the cost function that takes the data sets as the 

input and returns the error value based on how well the line 

fits the dataset. The hypothesis function picks the input data 

and predicts the output for that input precisely. The sum the 

square of distances between each point’s y value and the 

candidate line’s y value is calculated for computing the error 

for the line that fits the dataset by iterating through each point 

in the dataset. It is always suggested to square this distance to 
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ensure that it is positive and to make the cost function 

differentiable. Gradient descent can also be used to solve the 

system of nonlinear equations. Gradient descent is an iterative 

optimization procedure that uses this information to adjust a 

function’s parameters. It takes the value of the derivative, 

multiplies it by a small constant called as learning rate and 

subtracts the result from the current parameter value. This is 

repeated for the new parameter value and so on until a 

minimum is reached. The datasets along with the standard line 

are pointed on a graph as shown in figure 1 and figure 2. 

 

Figure 1 

 

Figure 2 

When the function is minimized the best line that fits the data 

is drawn over the dataset. The equation for gradient descent 

algorithm after partial differentiation can be calculated by 

following the above procedure and is shown below. 

(theta)j := (theta)j – (alpha/m) *  Σ(i=1 to m) 

(htheta(x
(i)

)-y
(i)

)xj
(i)

 (for all j) 

The values of theta are to be updated simultaneously. Here m 

is the number of training sets or data sets and theta is the 

parameter. If alpha is small then the algorithm takes small 

steps. If it is larger the algorithm takes big steps. It is also 

called as batch gradient descent. Each step of the gradient 

descent uses all the training examples. 

2.2 Computational Example 
The learning rate determines the step size and hence how 

quickly the search converges. If it is too large and the cost 

function has several minima, the search will overshoot and 

miss a minimum entirely. If it is too small, progress toward 

the minimum may be slow. The gradient descent can only find 

a local minimum. The example of the gradient descent 

algorithm implemented in octave and the screenshot of the 

code for the cost function and the values of the parameters are 

shown below in figure 3 and figure 4. 

 

Figure 3 

Taking the values of the function as 

X = [1 1; 1 2; 1 3]; 

y = [1; 2; 3]; 

theta = [0;1]; 

The output cost function value after applying gradient 

algorithm is zero. The corresponding screenshot of the 

implementation in octave is shown in figure 4. 

 

Figure 4 

In this way the algorithm should be implemented for different 

values of theta. For different values of theta the corresponding 

cost function values are computed. All the values of cost 

function are noted down and the lowest value among them is 

considered to be the best value. The values of theta for which 

the cost function’s value is least are the correct values for the 

hypothesis function that gives the gradient descent boundary. 

2.3 Disadvantages of Gradient Descent 
There are equal disadvantages of using gradient descent 

algorithm on the datasets available. The disadvantages are as 

given below. 

1. The value of step size alpha has to be 

experimentally chosen in the gradient descent 

algorithm. 

2. Calculating partial derivatives of the cost function is 

mandatory. 

3. The number of iterations should be chosen 

experimentally in the gradient descent algorithm. 

4. Gradient descent algorithm takes time to converge 

to the correct point based on the value of alpha. 
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Gradient descent is relatively a slow algorithm when 

compared with the others. As the number of training examples 

increases the asymptotic rate of convergence becomes very 

slow. Gradient descent increasingly zigzags for poorly 

conditioned convex problems. For non-differentiable 

functions, gradient methods are ill-defined and difficult to 

find the local minimum. Gradient descent can be slow. Taking 

infinitesimal steps in the direction of the gradient would take a 

lot of time to compute, so finite step sizes must be used to 

compute faster. The value of precise step size is unclear. 

Many algorithms have been developed by people for adjusting 

the step size. Many of these algorithms are not robust to noise 

and they scale badly with the number of parameters. Gradient 

descent where the step size is adjusted by a simple momentum 

heuristic is used by many people. Gradient descent on many 

architectures does not result in a global optima. 

3. BROYDEN-FLETCHER-GOLDFARB-

SHANNO ALGORITHM 

3.1 BFGS Algorithm 
The family of Quasi-Newton methods to mimic Newton’s 

Method, so it is called as Quasi-Newton method. The 

approximations of the Hessian based on gradient and past 

update step information are used in this method. Quasi-

Newton methods are faster per every iteration than the 

Newton’s method as they are not explicitly computing the 

Hessian. Newton’s method is an alternative to the gradient 

descent methods for fast optimization and convergence. 

Newton’s method often converges faster than gradient descent 

methods. In the gradient descent algorithm, if the hypothesis 

function is non-linear function and there are enormous 

amounts of datasets then the algorithm would take lot of time 

to compute the cost function values and also takes time in 

choosing the learning rate. It will become a difficult process 

to calculate the parameter values for the non-linear function. 

Considering the above disadvantages for the gradient descent 

algorithm for computing cost function, Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm can be used as an 

alternative for gradient descent algorithm. Due to their 

combination of computational efficiency and asymptotic 

convergence, the BFGS quasi-Newton method and its 

memory-limited LBFGS variant are considered to be the 

efficient algorithms for nonlinear optimization. For 

constructing the Hessian matrix, the BFGS method 

approximates the objective function locally as a quadratic 

without evaluating the second partial derivatives of the 

objective function. The Hessian matrix is approximated by the 

previous gradient evaluations, such that there won’t be any 

vertical scalability issue when computing the Hessian matrix 

in the Newton’s method. As a result, BFGS often achieves 

faster convergence compared with other first-order 

optimization techniques. 

The BFGS algorithm techniques can be used in various 

machine learning algorithms such as Linear Regression and 

Logistic Regression by passing the gradient of objective 

function and the updater into optimizer instead of using the 

training application programming interfaces. Application of 

second order methods is not suggestible practically because 

computation of the objective function Hessian inverses 

amounts for a very high computational cost. BFGS modifies 

gradient descent algorithm by introducing a Hessian 

approximation matrix computed from finite gradient 

differences. The BFGS method is considered as one of the 

most popular and efficient algorithms of this class. The L-

BFGS is a limited-memory version of BFGS algorithm and is 

particularly used for the problems with very large numbers of 

variables. The L-BFGS algorithm should be modified to 

handle the functions that include non-differentiable 

components and constraints as the BFGS is designed to 

minimize the functions without constraints. These methods of 

modifying the algorithms are called active set methods as it is 

based on the concept of the active set. The idea is that the 

function and constraints can be simplified when restricted to a 

small neighborhood of the current iterate. 

3.2 Computational Example 
BFGS method is based on Newton's method but performs 

different calculations in an efficient way. 

Here is a sample session to find the optimum for the following 

function: 

y = 10 + (X (1) - 2) ^2 + (X (2) + 5) ^2 

The above function resides in file fx1.m. The search for the 

optimum 2 variables has the initial guess of [0 0] and with a 

minimum guess refinement vector [1e-5 1e-5]. The search 

employs a maximum of 100 iterations, a function tolerance of 

1e-7, and a gradient tolerance of 1e-7. The corresponding 

screenshots of the function fx1 and the implementation of the 

BFGS algorithm in octave are shown in figure 5 and figure 6. 

 

Figure 5 

 

Figure 6 

4. RESULTS 
The BFGS algorithm has few advantages over the gradient 

descent algorithm such as BFGS increases the efficiency of 

the computation. There is no need to pick alpha manually 

using the BFGS algorithm. BFGS is often considered to be 

faster than the gradient descent. The only disadvantage with 

BFGS over gradient descent algorithm is that it is more 

complex. The BFGS method is used to train the hypothesis 

function properly and provide the accurate predictions for the 

new inputs by giving precise parameter values. Several 

experiments are performed and implemented using MATLAB 

and Octave and the results proved that the BFGS algorithm is 

http://en.wikipedia.org/wiki/L-BFGS
http://en.wikipedia.org/wiki/L-BFGS
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Active_set
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efficient in finding the hypothesis and predictions than the 

Gradient Descent algorithm. The disadvantage of the 

optimization algorithms like BFGS is that they are more 

complex algorithms than the gradient descent algorithm and 

are difficult to understand and implement. BFGS helps in 

predicting the output for the nonlinear second order equations. 

Each BFGS iteration will be more expensive but it takes fewer 

of the iterations to reach a local minimum. 

The execution and run time shown for the above implemented 

algorithms in Octave is shown in table 1. From the given 

analysis BFGS is better optimized algorithm to use in 

nonlinear equations and problems with enormous amounts of 

datasets. 

Table 1 

BFGS Gradient Descent 

0.000073 seconds 0.000503 seconds 

5. CONCLUSION 
BFGS is a quasi-Newton method and will converge in fewer 

steps than gradient descent and has a little less tendency to get 

stuck while performing computations. Indeed, it has been 

noted that in cases where BFGS does not encounter any non-

smooth point, it often converges to the optimum [14]. 

Gradient descent algorithm computes matrix-vector products, 

which is useful if directional derivatives can be calculated 

while the BFGS performs vector-vector products. BFGS will 

calculate approximate Hessians using inner products of 

gradient information so the gradient descent analysis does not 

apply to BFGS. It is likely to get convergence in fewer 

iterations with BFGS than the gradient descent algorithm. 

From the above implementations of both the gradient descent 

and BFGS algorithms, BFGS algorithm will be faster and 

reaches local minimum in fewer steps. This paper described 

the Gradient Descent and BFGS methods in the context of 

linear systems and the relationships between each of the 

algorithms. This paper presents a future scope for the 

applications of optimization algorithms in the data analysis 

and predictions. It also gives the scope on how to use the 

optimization algorithms efficiently accordingly for producing 

more efficient and accurate results. The implementation of 

these algorithms demonstrate that BFGS is the best choice for 

well-conditioned problems because of its faster convergence 

to the local minimum. BFGS optimization algorithm is always 

to be chosen as an alternative for gradient descent accordingly 

for producing result as precisely as possible. 
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