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ABSTRACT Combination of the Motor Imagery EEG (MI-EEG) imaging and Deep Convolutional Neural

Network is a prospective recognition method in brain computer interface. Nowadays, the frequency or time-

frequency analysis has been applied to each channel of MI-EEG signal to obtain a spatio-frequency or time-

frequency image, and even the images from several channels are infused to generate a combined image.

However, the real position information of channels or electrodes is lost in these MI-EEG images, and this is

contradictory to the activation area of MI-tasks. In this paper, the MI period and the frequency band covered

by µ and β rhythms are divided into ten time windows and three sub-bands, respectively. Then, for each

electrode, Fast Fourier Transform (FFT) is employed to transform each time window to spectrum, and its

inverse FFT is calculated for each sub-band. The time-domain powers of ten time windows are averaged for

the same sub-band. So, three average powers are generated as the time-frequency features of each electrode of

MI-EEG. They are further arranged to the electrode coordinate figure by using Clough-Tocher interpolation

algorithm, and a complicated image, in which the time-frequency features are correctly located at the real

position of each electrode, is obtained to embody the MI-EEG in detail. Furthermore, a VGG network is

modified to perform effective recognition for MI-EEG image, and it is called mVGG. Extensive experiments

are conducted on three publicly available datasets, and the 10-folds cross validation accuracies of 88.62%,

92.28% and 96.86% are achieved respectively, and they are higher than that of the state-of-the-art imaging

methods. Kappa values and ROC curves demonstrate our method has lower class skew and error costs. The

experimental results show that the effectiveness of proposedMI-EEG imagingmethod, and it is well-matched

with mVGG.

INDEX TERMS Brain computer interface, convolutional neural network, interpolation method, machine

learning, MI-EEG imaging method.

I. INTRODUCTION

Electroencephalography (EEG)-based Brain-Computer inter-

face (BCI) technology is an efficient pathway of communi-

cation between patients and peripheral equipment. BCI aims

at transforming the mental activity of the human brain into

EEG signals that can be processed by a computer. Due to

the high temporal resolution and easy operation, this non-

invasive method is frequently used in some applications, e.g.,

text input systems [1], wheelchairs [2], and rehabilitation

devices [3], [4] etc., which has practical implications for

disabled patients.

The associate editor coordinating the review of this manuscript and

approving it for publication was Benyun Shi .

MI-EEG refers to the EEG signal of imagining bodymove-

ment without actual movement. The power of MI-EEG sig-

nals will decrease or increase in the µ and β rhythm when

a subject imagines body parts moving [5]; they are called

event-related desynchronization (ERD) or event-related syn-

chronization (ERS) phenomena [6]. Therefore, the MI-EEG

signal has significant time-frequency characteristics. In addi-

tion, differences exist in the activated brain regions between

different MI tasks. Thus, the MI-EEG signal also has spatial

distribution characteristics. So, the key of feature extraction

and recognition lies in the effective use of the time, frequency

and spatial information of MI-EEG.

The convolutional neural network (CNN) has been applied

to EEG recognition. CNN, which is inspired by the sen-

sory field mechanism of the biological visual nerve [7],
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can learn local non-linear features (through convolutions and

nonlinearities) and represent higher-level features as com-

positions of lower level features (through multiple layers

of processing) [8]. The combination of CNN and MI-EEG

recognition can be distinguished as two classes, non-imaging

measure and imaging measure. The non-imaging measure

directly uses the raw or the spatially filtered MI-EEG signal

as the CNN’s input. The raw MI-EEG without prior time-

frequency domain knowledge and handcrafted features was

directly handled, even the feature fusion was considered in

CNN framework to retain the information in both abstract

and global levels [9], [10]. Furthermore, the raw signals were

filtered by common spatial pattern (CSP) or its extended

algorithms, the CSP features from multi-level decomposi-

tion of the frequency ranges were calculated, and they were

stacked to input to a sequential CNN, or they were directly

input to a separated CNN to independently encode tempo-

ral and/or frequency information [11]–[14]. To make full

use of the temporal, frequency and spatial domains charac-

teristics of MI-EEG and the superiority of CNN in image

recognition, some imaging methods were also developed.

Based on Fast Fourier Transform (FFT), Short Time Fourier

Transform (STFT) and Wavelet Transform (WT) etc., each

electrode of MI-EEG sequence was converted to form a

spatio-frequency or time-frequency image. The images from

multi-electrodes were fed to a CNN separately or merged into

one image as the representation of a trail [15]–[23].

In summary, the spatio-frequency or time-frequency char-

acteristics are infused into the MI-EEG image, and the recog-

nition accuracies of imaging methods are relatively better

than non-imaging ones. However, the real location informa-

tion of electrodes is not reflected in the MI-EEG image, and

it is very relevant to the activation of MI-tasks. In this paper,

based on Clough-Tocher interpolation algorithm and FFT,

a novel MI-EEG imaging method is proposed to integrate

the time-frequency features with the exact location informa-

tion of electrodes, and the power change of each electrode

MI-EEG signal with time and frequency is simultaneously

displayed in a MI-EEG image. In addition, the Deep CNN

(DCNN) structure is modified to deal with the exploding

information. The extensive experimental results show the

effectiveness of the proposed imaging, the superiority of the

modified DCNN for MI-EEG images, and the good degree of

matching between the imaging method and DCNN.

The rest of this paper will be organized as follows.

Section II details the related work about imaging methods.

Section III relays the feature extraction, imaging methods

and CNN design. Section IV introduces comparative exper-

iments and the results on three public datasets. Section V

discusses internal relations of experiments and a summary of

the results. Section VI concludes the study and summarizes

the shortcomings and future directions.

II. RELATED WORK

In this section, the related FFT, STFT andWT based imaging

methods of MI-EEG will be described in detail.

A. FFT-BASED IMAGING METHOD

Uktveris and Jusas [15] employed FFT for computing the

ith MI-EEG channel signal energy estimation in the fre-

quency domain, forming a single row in the FFT energy map

(FFTEM). A full signal window was used to gain a global

energy view. Each element was calculated using formula (1).

H (i) = |FFT (x (i))| , i = 1, 2, · · · ,N (1)

where N is the number of electrodes. The resulting spatio-

frequency image was generated, as shown in Fig. 1.

FIGURE 1. FFT energy map.

B. STFT-BASED IMAGING METHOD

Based on STFT, each MI-EEG time-series can be converted

into a time-frequency representation by computing spectro-

grams, and the images generated from multi-electrodes are

even integrated, yielding a combined image.

In [21], each channel of MI-EEG in the selected time

period (4s) was calculated by STFT to obtain a time-

frequency image with a frequency band in the range from

0∼120 Hz, Fig. 2 shows the time-frequency image of the

C3 electrode. Three images from the C3, Cz and C4 chan-

nels were input into CNN. Similarly, Wang et al. [16] used

STFT to generate a time-frequency image for each channel

of MI-EEG. The frequency components from 8∼30 Hz were

extracted, which included the rhythms ofµ and β. In contrast,

the images of C3, Cz and C4 were merged into one image,

as shown in Fig. 3, and further input into CNN.

FIGURE 2. Time-frequency image of C3.
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FIGURE 3. Time-frequency image of three electrodes.

The time-frequency images were also produced by STFT

in [17], but the frequency bands were selected as 6∼13 Hz

and 17∼30 Hz. In each window of STFT, the spectral power

was calculated as the feature value. Images of three electrodes

were also merged in one figure. Fig. 4 shows an example of

the image in [17].

FIGURE 4. Example of an STFT-based image.

C. WT-BASED IMAGING METHOD

Each channel of theMI-EEG signal was multi-scale-analyzed

by WT, and a time-frequency image was obtained [19]. The

frequency band was in the range from 0∼60 Hz. The images

generated from three channels (C3, Cz and C4) were finally

combined as the final input images of a CNN. The wavelet

time-frequency image of C3 is shown in Fig. 5, and the final

image is demonstrated in Fig. 6.

FIGURE 5. Wavelet Time-frequency image of C3.

FIGURE 6. Combined wavelet time-frequency image of three electrodes.

III. METHODOLOGY

The imagingmethod and the framework design of DCNNwill

be developed. In Section III-A, Clough-Tocher interpolation

algorithm is reviewed and how it is employed in MI-EEG

imaging. In Section III-B, the feature calculation and inter-

polation operation are presented in steps. The framework of

Visual Geometry Group Network (VGG) and its modification

are presented in Section III-C.

A. CLOUGH-TOCHER INTERPOLATION ALGORITHM

Clough-Tocher (CT) interpolation algorithm was first intro-

duced in 1960’s [24], and it has been the most widely used

multi-dimensional scattered data interpolant. Consider the

scattered points (xn, yn) located in the x-y plane and their

values zn over the plane, the triangulation of the scattered

points in the x-y plane induces a piecewise triangular sur-

face over the plane, whose nodes are the points (xn, yn, zn).

In CT algorithm, a piecewise cubic function is employed as

the interpolant for each triangle. Specifically, each triangle

is further divided into three equivalent subtriangles, where a

cubic function in the form of B’ezier surface is estimated. The

finite element method based CT algorithm can preserve the

local spatial relation and reconstruct the relation of the orig-

inal input. Therefore, it is selected to construct the MI-EEG

image with time-frequency-space features in this paper.

B. TIME DOMAIN POWER AND CLOUGH-TOCHER

INTERPOLATION-BASED IMAGING (TPCT)

To sufficiently utilize both time-frequency feature ofMI-EEG

and the location of electrodes, the novel imaging method is

proposed based on time domain power on interest frequency

bands and CT interpolation algorithm, noted as TPCT. The

frequency band 8∼30 Hz is taken as the region of interest for

motor imagery [25]. It is divided into three sections, on which

the time-frequency features are independently extracted by

using FFT. CT algorithm is further applied to guarantee the

time-frequency features locating at corresponding electrode

position.

1) TIME-FREQUENCE FEATURE CALCULATION

Suppose that xm ∈ R1×Ns is the MI-EEG signal over the mth

electrode, where m ∈ {1, 2, 3, . . . ,Nc}, Nc is the number of
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electrodes, Ns represents the number of sampling points. So,

Xm can be described by the following Eq.:

xm =
[

xm (1) , xm (2) , . . . , xm (Ns)
]

∈ R1×Ns (2)

Then, the xm is divided intoND windows,ND ∈ N+. The data

in each window are

xDm,j ∈ R
1× Ns

ND , (3)

where j is the serial number of windows, j ∈ {1, 2, 3, . . . ,

ND}. So, xDm,j concludes the sampling points:

xDm,j =

[

x
((j−1)× Ns

ND
)

m . . . x
(j× Ns

ND
)

m

]

∈ R
1× Ns

ND (4)

FFT was used to transfer the data from each time window

to the frequency domain. In order to improve the frequency

resolution, the discrete time series xDm,j is zero-padded to

length NFFT , the transferred sequence was denoted as XFm,j.

XFm,j ∈ C1×NFFT , (5)

Furthermore, the frequency band 8∼30 Hz was divided into

three sub-bands, i.e. 8∼13 Hz, 13∼21 Hz and 21∼30 Hz, and

the three corresponding sub-sequences of XFm,j were obtained

as shown in Eq. (6):

XFm,j,f ∈ C1×NF,f , (6)

where f ∈ {1, 2, 3} is the serial number of frequency bands.

The length of each sub-sequences isNF,f , which is calculated

by Eq. (7).

NF,f = (FH ,f − FL,f ) ×
NFFT
fs
2

, (7)

where FH ,f and FL,f are the upper limit and lower limit of

one frequency band, and fs is the sampling frequency.

Then, XFm,j,f is transferred into time domain independently

based on Inverse FFT (IFFT). Thus, xIm,j,f is obtained as

follows.

xIm,j,f = IFFT
(

XFm,j,f

)

∈ R1×NF,f , (8)

It is further described as shown in Eq. (9).

xIm,j,f = (xIm,j,f (1) , xIm,j,f (2) , . . . , xIm,j,f (NF,f )), (9)

The average power is calculated independently for each fre-

quency band sequence according to Eq. (10).

xPm,j,f =
1

NF,f

∑NF,f

Tf =1
xI

2

m,j,f (Tf ), (10)

The feature xFm,f is obtained by averaging three power values

over ND time windows as shown in Eq. (11).

xFm,f =
1

ND

∑ND

j=1
xPm,j,f ∈R

1, (11)

So the feature matrix of one trail is constructed by Eq. (12):

xF =







xF1,1 xF1,2 xF1,3
...

...
...

xFNc,f xFNc,2 xFNc,3






∈ RNc×3, (12)

2) INTERPOLATION IMAGING

The Nc coordinates were acquired from the electrode’s distri-

bution figure of a BCI system, defined as M∈R2×NC . Then,

in view of the construction of time-frequency feature xF ,

slight movements were adopted twice for these coordinates

by adding and subtracting a small value in both the x and y

axes. Therefore, the new coordinate system of electrodes was

obtained, defined asM
′
∈ R2×(NC×3).

A 64∗64 pixel resolution grid system, denoted as

G∈R64∗64, was established based on four points (xmax , ymax),

(xmax , ymin), (xmin, ymax), and (xmin, ymin), which were com-

posed of the maximum and minimum values of M
′

∈

R2×(NC×3) on the x and y axes. Then,XFf was interpolated into

G ∈ R64∗64 byM
′
∈ R2×(NC×3). Thus, an imageGf ∈ R64∗64,

including tri-channel time-frequency features and electrode

coordinate information, was finally obtained.

Fig. 7 shows the generation process for the TPCT image.

Fig. 7 (a) shows a schematic diagram of the raw EEG

signal, in which CHi represents the ith channel, and i =

{1, 2, · · · ,NC}. Fig. 7 (b) shows the process of FFT transform

of each time window for each channel. The average power

of the time domain for the three frequency bands was calcu-

lated independently, as shown in Fig. 7 (c). Fig. 7 (d) shows

the 64-electrode distribution diagram. Fig. 7 (e) presents

the extracted coordinates of the 64-electrode diagram, and

Fig. 7 (f) shows the internal structure of the TPCT image.

In the feature extraction, the three frequency-bands of inter-

est are considered independently. The µ rhythm, including

8-13Hz, is preserved intact, and the β rhythm is divided into

13-21Hz and 21-30Hz to obtain the ample time-frequency

information. Thus, according to TPCT method, three average

powers of time domain from three frequency bands were

calculated, and their positions were located by using CT

interpolation. The detailed process of TPCT is as follows:

A 64 × 64 grid system was established in advance, and the

boundaries of features’ coordinate and the grid system were

coincided, then the values of all grid points were computed

by CT interpolation algorithm to expand the time-frequency

features into a 2D space, generating a complicated MI-EEG

image.

C. THE MODIFIED VISUAL GEOMETRY GROUP NETWORK

1) VISUAL GEOMETRY GROUP NETWORK

The Visual Geometry Group Network (VGG) was published

in ICLR 2015 and received proxime accessit in the ImageNet

Challenge 2014 [26]. Due to its good structural adaptability,

VGG is widely used in the fields of image feature extraction

and transfer learning [27]. The structure of VGG-16 layer

is shown in Fig. 8 (a). The study of VGG verified that the

deep stacking of small 3 × 3-size convolution kernels could

increase the nonlinear mapping combination and reduce the

computational complexity, which was also verified in the

large-scale image classification database [26].

The input and output dimensions of VGG were adjusted

to fit the MI-EEG data, and the Fully-Connected (FC) layer

3200 VOLUME 8, 2020
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FIGURE 7. Generation process of the TPCT.

FIGURE 8. Structures of two CNN frameworks. The input is TPCT image of MI-EEG.

length was changed from 4096 to 256. VGG was used as a

baseline to validate the viewpoints in this paper. The TPCT

images with the 64 × 64 pixels were input into the network,

and the 3 × 3 convolutional kernel was adopted to extract

the relationship of the raw pixels. The overall convolutional

structure contained five sections, and the spatial resolution of
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the feature map in each section was preserved by using the

padding of 1-pixel. The configuration is presented in Table 1.

At the end of each section, Max-pooling was performed over

a 2 × 2-pixel window to abstract features by preserving the

maximum pixel value.

TABLE 1. Configurations of VGG and mVGG.

TheMax-pooling operation demonstrated invariance prop-

erties in translation, rotation and scale, i.e., when the image

is shifted within a few pixels, the deviation will not affect the

final feature map, which can benefit the generation ability.

However, simply discarding the data also led to instability

of the training and a reduction of model accuracy. The fea-

ture map in the last section with a resolution of 2 × 2 was

stacked followed by three Fully-Connected (FC) layers: the

first two had 256 kernels each, and the third had 2 kernels

for each class. The final layer was the soft-max layer.

Regularization [28] and Dropout [29] techniques were used

in the FC layers to reduce overfitting problems and model

complexity.

2) THE MODIFIED VGG NETWORK

The VGG Network was modified to match dense infor-

mation images, like TPCT images, and the modified net-

work was referred to as mVGG. The structure of mVGG

is shown in Fig. 8 (b). The mVGG was mainly adjusted in

four aspects. The configurations of the VGG and mVGG are

shown in Table 1. The overall structure of mVGG consisted

of five sections of convolution labeled as 1th, 2nd. . . 5th.

Moreover, ‘DS’ denotes the Down Sampling layer, and ‘FC’

represents the Fully Connected layer.

In the description of configuration, for example,

‘(conv3-64) ×2’ means the size of the kernel is 3 × 3,

the amount of the kernel is 64 and there are 2 convolution

layers in this section. Concerning the remaining tags, the

‘M-pool’ represents the Max-pooling layer, the ‘A-pool’

represents the average pooling layer and ‘FC: 256’ indicates

the length of the FC layer is 256. The Soft-max function,

shown in Eq. (13), was employed for the final output to obtain

the corresponding probability.

P(z)j =
ezj

∑K
k=1 e

zk
(13)

where j ∈ {1, 2, 3, . . . ,K}. The ezj is the output of each kernel

of the last layer, and K is equal to the amount of classes.

a: REPLACING MAX POOLING WITH THE CONVOLUTION

LAYER

The max-pooling layer in the VGG structure was replaced

by the convolution operation. In studies of EEG recognition

and CNN, many researchers have described the instability

of Max-pooling. In our study, the convolution operation via

the 2 × 2 kernel with stride 2 was used for sub-sampling;

thus, each obtained pixel represented a nonlinear combination

of the input data. Fig. 9 shows the Max-pooling operation

in the third convolutional segment. It can be seen that a

Max-pooling kernel with a size of 2 × 2 covers the area

of 9 electrodes, and 75% of the information would be dis-

carded. Hence, this process would cause instability in the

training process.

FIGURE 9. Impact of different representative features and the division of
frequency band on the recognition accuracies and Kappa values.

b: MODIFYING THE SIZE OF THE CONVOLUTION KERNEL

In contrast to the redundant information for the natural

scene image, the interpolation image-based electrode position

showed a greater relationship to the size of the convolution

kernel. We reserved the 3 × 3 kernel in the first convolution

layer, which helped to achieve a larger sensing field in the

low-order feature maps and changed all the subsequent con-

volution layers to the 2 × 2 kernel, which could provide a

more non-linear combination of electrodes. Thus, the mVGG

could make full use of the space information for MI-EEG,

which is more suitable for recognition compared with the

original VGG.
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c: DEEPENING NETWORK LAYERS

The convolutional layers close to the input contained a small

receptive field when projected back to the original image,

which represented specific features, while the convolutional

layer close to the output had a large receptive field in the orig-

inal image, which represented abstract features. Due to the

large number of electrodes in the BCI2000 dataset, a single

electrode only occupied a small number of pixels. Therefore,

7 convolution layers were arranged in the first convolution

segment of mVGG to facilitate specific feature extraction and

non-linear combination on such a small pixel scale. There

were 5 layers in the remaining segments.

d: USING AVERAGE POOLING INSTEAD OF THE FULLY

CONNECTED LAYER

To avoid the overfitting problem caused by the small amount

of neural biological signal datasets, the average pooling oper-

ation was adopted to replace the FC layers, which has obvi-

ous redundancy. Two convolutional kernels were adopted to

calculate 512 feature maps, which were output from the last

convolutional segment. Through the average-pooling layer,

the values, which represented information for the categories,

were obtained. This adjustment was able to alleviate overfit-

ting and computation complexity.

IV. RESULTS

A. RESULTS BASED ON THE BCI2000 DATASET

1) DESCRIPTION OF THE BCI2000 DATASET

This dataset includes 109 subjects, who performed differ-

ent motor imagery tasks while recording 64-channel EEG.

This multi-electrode system (BCI2000 system) can better

show the overall information of electrode linkage. The EEGs

were recorded from 64 electrodes as per the international

10-10 system (excluding electrodes Nz, F9, F10, FT9, FT10,

A1, A2, TP9, TP10, P9, and P10), as shown in Fig. 3 (d)).

The numbers below each electrode name indicate the order

in which they appear in the records. Note that signals in the

records are numbered from 0 to 63, while the numbers in the

figure range from 1 to 64.

The dataset includes 4702 trails, which contains half of

the imaging for opening and closing both fists and half of

the imaging for both feet. Each trail includes 800 samples

in 5 seconds, sampled at 160 samples per second. Moreover,

the first second corresponded to the rest that was applied in

the baseline elimination [30].

It is worth noting that all the data from 109 subjects

were arranged to merge into a uniform dataset to meet

the requirement of DCNN. In this way, the DCNN, as a

universal model, can be applied to a variety of scenarios

without manually selecting features or optimizing param-

eters for each subject. Meanwhile, it will request signifi-

cantly higher performance than the personalized recognition

methods.

2) EXPERIMENTAL ENVIRONMENT AND PERFORMANCE

INDEXES

a: EXPERIMENTAL ENVIRONMENT

The experiment in this study was performed in the Tensor-

Flow environment on NVDIA GTX1080Ti and Intel 2.1Ghz

Xeon Silver 4110 CPU with 64G RAM.

The network was designed in TensorFlow 1.6.

b: PERFORMANCE INDEXES

Two evaluation criterions were used to demonstrate the

model’s performance, which are the Accuracy and Kappa

value calculated by equations (14) and (15), respectively.

Accuracy =
TP

TP+ FN
(14)

Kappa =
Accuracy− R

1 − R
(15)

where ‘‘TP’’ was the True-Positives field in the confu-

sion matrix, ‘‘FN’’ was the False-Negatives field. The R

in Eq. (15) denotes the random classification rate for the

problem. The R is 0.5 in two-category classification problem.

Moreover, the receiver operating characteristic curve

(ROC) graph is applied to visualize the model’s performance.

The horizontal axis of the ROC is the false positive rate,

and the vertical axis is the true positive rate. According to

different thresholds, the ROC curve acquires different Ture

Positive rates on the vertical axis, reflecting the response

of the model to stimuli at various points. We can judge the

model by the Area Under the Curve (AUC) and determine

the stability and robustness of the discriminant probability.

3) COMPARISON OF DIFFERENT REPRESENTATIVE

FEATURES

In previous studies, many representative features were

selected and had a significant impact on the experimental

results. To represent the effectiveness of time domain power

as time-frequency features in proposed TPCT, the other com-

monly used two types of feature values were adopted to form

two comparison imaging methods, called the FFT energy

and Clough-Tocher interpolation-based imaging (FECT) and

the Spectral power and Clough-Tocher interpolation-based

imaging (SPCT). In FECT and SPCT, the length of FFT

and the spectral power were utilized as the representative

features of MI-EEG, respectively, and the frequency band

from 8∼30 Hz was also divided into three sub-frequency

bands, i.e., 8∼13 Hz, 13∼21 Hz and 21∼30 Hz, and three

feature values were obtained for one electrode of MI-EEG.

The interpolation processing in the two imaging methods

were followed the Section 3.1, which was same as the pro-

posed TPCT. Three technical indicators, namely accuracy,

the Kappa value and AUC, were adopted. All experiments in

this section were based on mVGG.
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a: ACCURACY AND KAPPA VALUE

The experiment results in this study were based on 10-fold

cross-validation, and the average accuracies and kappa values

of FECT, SPCT and TPCT were shown in Fig. 9.

From Fig. 9 we can see that the accuracy of FECT is

78.45%, and the Kappa value was 0.57. When the spectral

power is used as the feature value, the accuracy the Kappa

value of SPCT increased to 82.33% and 0. 65, respectively.

And in the proposed TPCT method, the accuracy reaches

88.62%, demonstrating the best performance among the three

methods. At the same time, the Kappa value achieves 0.77,

showing almost perfect consistency. The overall experiment

indicates that the time-domain power of interest frequency

bands is a superiority representative feature of MI-EEG, and

the proposed TPCT achieves the obvious improvements of

accuracy 6.29% and 10.17%, respectively, compared to the

SPCT and FECT imaging methods.

b: CONFUSION MATRIX

Fig. 10 shows the confusion matrix of the three methods.

FIGURE 10. Confusion matrices of the different imaging methods.

It’s is clear that the difference between the two motor

imagery tasks in FECT exceeded 10%. The difference is

still large when using spectral power as the feature value,

which also shows a 10% difference. However, the resulted

difference by TPCT decreases to 6.84%. In addition, the accu-

racy of every category increases among FECT, SPCT and

TPCT imaging methods. Therefore, TPCT achieves the best

result and shows the most stable performance in consistency,

demonstrating the great advantage of time domain power as

feature value in TPCT.

c: ROC

Furthermore, Fig. 11 (a) shows the ROC curves of three

imaging methods.

It can be seen that TPCT, SPCT and FECT from the top

down in terms of ROCs indicates that time domain power

of the interest frequency band is a superior characteristic to

the MI-EEG signal. Although the spectral feature-like FFT

energy and spectral power can reflect the variation trend of

the spectral component combination of a signal, it neglects

the time dynamics. Ultimately, the basic response of MI-EEG

signal is power in the time domain. In TPCT, three-channel

time domain power as time-frequency features can reflect the

dynamic characteristics of a signal in time and frequency

domains, and combined with the interpolation method,

FIGURE 11. ROCs of the different imaging methods.

they can reveal the activated space information of motor

imagery as well, endowing mVGGwith more information for

identification. In the following experiments, TPCT is used as

a feature extraction and imaging method.

4) COMPARISON OF DIFFERENT DIVISION OF FREQUENCY

BAND

The division of the frequency band of interest had sev-

eral schemes in the previous studies, the frequency band of

8-30 Hz was mainly preserved as a single channel or was

considered as several independent sub-bands. In this section,

there were four segmentation approaches about the frequency

band 8-30 Hz. One case was that the frequency band of

interest was preserved, this means only single time domain

power was calculated for each electrode of MI-EEG signal,

and the imaging method was named as TPCTS; The second

case was that the frequency band of interest were divided

to µ rhythm 8-13Hz and β rhythm 13-30Hz, namely, two

time domain powers would be computed as the features of an

electrode, and the imaging method was called as TPCTT; The

third case was that the frequency band 8-30Hz was divided

to µ rhythm 8-13Hz, lower β rhythm 13-21Hz and higher β

rhythm 21-30Hz, the imaging method was just TPCT; The

last case was that the µ rhythm 8-13Hz remained intact, and

the β rhythmwas divided to lower β rhythm 13-19Hz, middle

β rhythm 19-25Hz and higher β rhythm 25-30Hz, four time

domain powers were used as the reprehensive features of an

electrode, thus the imaging method was denoted as TPCTF.

For the four cases, the average recognition accuracies and

Kappa values of 10-fold CV. were shown in Fig. 12.

Fig.12 shows that in TPCTS, it is insufficient to express the

information in 8-30Hz by using only one feature, 67.82% of

accuracy and 0.36 of Kappa value are obtained. So, the per-

formance is relatively poor, this perhaps is because of the

information super-compression in feature computation. In the

TPCTT, the 8-30Hz is divided into two sub-bands that caused

the augment of information, the accuracy and Kappa value

are increased to 86.54% and 0.73, respectively. Due to the

wide range of β rhythm, when it is further divided into two

sub-bands, called TPCTmethod, which can best represent the
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FIGURE 12. Impact of the division of the frequency band on the
recognition accuracies and Kappa values.

characteristics ofMI-EEG signal and its performance indexes

reaches the highest level. The accuracy is 88.62% and the

Kappa value is 0.77. When the β rhythm is further divided

into three sub-bands, namely, TPCTF, there may be redun-

dancy of information, performance indexes are declining,

79.32% of accuracy and 0.59 of Kappa value are obtained.

Besides, the MI-EEG image’s performance is very sensitive

to the density of electrodes’ coordinates distribution, it can

be speculated that there is an optimal matching relationship

between the density of coordinate points and the spatial char-

acteristic distribution of MI-EEG signal. When the frequency

band 8-30Hz is divided to three sub-bands in TPCT, both spa-

tial characteristics of the signal and the information contained

in the frequency band may be properly described.

5) INFLUENCE OF ELECTRODE POSITION INFORMATION

ON THE CLASSIFICATION PERFORMANCE

a: ACCURACY AND KAPPA VALUE

The TPCT with proper electrodes position was compared

with the TPCT with out-of-order electrodes (named as

TPCTO) to demonstrate the impact of electrodes position

information on the recognition performance. The TPCTO

undergone the same imaging process as TPCT but with a

scrambled electrode number corresponding to the coordinate.

Meanwhile, VGG and mVGG were also added into experi-

ments. Thus, four situations were considered, and their results

were shown in Fig. 13.

FIGURE 13. Impact of the electrode position on the recognition
accuracies and Kappa values.

It is clear that for the proposed ‘‘TPCT+mVGG’’ method,

the classification accuracy is 88.62%, and the Kappa value

is 0.77, indicating that substantial consistency is achieved in

‘‘TPCT+mVGG’’. And when the order of the electrodes is

scrambled, the accuracy of ‘‘TPCTO+mVGG’’ has a decline

of 12.29%, and the Kappa value drops to 0.53, reflecting

that the correct electrode coordinate information significantly

benefits the classification accuracy and could also improve

the data consistency. Moreover, the results of VGG show

the same trend. The accuracy of ‘‘TPCT+VGG’’ is 84.82%,

which is higher than the accuracy of ‘‘TPCTO+VGG’’,

73.02%. This declination is also shown in the Kappa value,

moving down from 0.7 to 0.46. Therefore, TPCT has supe-

riority compared to TPCTO by using VGG and mVGG, this

indicates the effectiveness of the electrodes’ position in the

imaging.

In addition, the mVGG based results has a significant

improvement compared to that of VGG, advance of 3.8%

is yielded by TPCT and 3.31% by TPCTO. Perhaps mVGG

can better recognize the spatial characteristics of MI-EEG,

and the position of electrodes has much contribution to the

performance of imaging, this would be why the experiment

of ‘‘mVGG+TPCT’’ yields the best result.

b: CONFUSION MATRIX

Figures 14 (a) - (d) show the confusion matrix for the four

combinations, which are successively ‘‘TPCT+mVGG’’,

‘‘TPCTO+mVGG’’, ‘‘TPCT+VGG’’ and ‘‘TPCTO+VGG’’.

The ‘‘BF’’ represents the MI-task of ‘‘imaging both fists’’,

and the ‘‘BFE’’ represents the MI-task of ‘‘imaging both

feet’’.

FIGURE 14. ROC of four combinations: TPCT + mVGG, TPCTO + mVGG,
TPCT + VGG and TPCTO + VGG.

Fig. 14 indicates that TPCT yields significantly higher

recognition accuracies for BF and BFE than TPCTO by using

both VGG and mVGG, and the result of TPCTO+mVGG

has better consistency compared to TPCTO+VGG. This

means that the introduction of electrode position not only can

increase the overall performance of classification, but also

can simultaneously improve the accuracy of each MI-task.

Furthermore, from figures 14 (a) and (c), we can see that

when TPCT is applied, mVGG only has a slight improvement

in contrast with VGG for feet motor imagery task. However,
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FIGURE 15. Confusion matrix of the four approaches.

for fists motor imagery task, the accuracy is increased from

85.45% to 92.04%. This may be because that BF can generate

the more intensive activation than BFE, and mVGG is helpful

to explore and utilize the spatial information of MI-EEG

images produced by TPCT. So, the combination of TPCT

and mVGG shows the potential and advantage, particularly

in recognizing BF task.

c: ROC

To fully evaluate the real performance of the trained CNN

model, we also provide the ROC comparison of the four

combinations, as shown in Fig. 15.

Whether mVGG or VGG, the overall AUC of TPCT is

better than that of TPCTO, which indicates that regard-

less of the classification threshold selection, the MI-EEG

imaging method with correct electrode position always has

superiority in contrast to that with scrambled electrode

location. It is mainly because the electrode position is very

important in MI-EEG feature representation. Moreover, the

AUC of mVGG is greater than VGG for TPCTO, and the

ROC of mVGG is closer to the top-left corner than that of

VGG for TPCT. This illustrates that mVGG could achieve

better results when the threshold is approximately 0.5, which

is practically used in the classification. The trained model

of TPCT+mVGG gets the best balance between sensitivity

and specificity, yielding the advantage of its classification

performance.

6) COMPARISON OF DIFFERENT MODIFIED STRUCTURES

To further discuss the modifications of VGG, the compari-

son experiments were conducted in four aspects, including

the modification of max pooling layer, kernel size, fully

connected layer and model’s depth. Single variable analysis

was the main qualitative analysis method used in the follow-

ing experiments. Imaging data was based on the TPCT of

BCI2000 data set.

a: MARGINAL DATA

Table 2 shows modified items, accuracy and Kappa value.

The ‘‘VGG’’ represents the VGG-16 layers model, which

proposed by [26] and only changed the length of the softmax

layer from 1024 to 2 to accommodate the dichotomy task. The

‘‘M’’ model represents replacing the Max-pooling layer with

the convolutional layer to down sampling. The ‘‘C’’ model

refers to adopt the 2 × 2 convolutional kernel in each layer.

The ‘‘F’’ model refers to remove the Fully Connected layer.

The ‘‘D’’ model refers to different depth of model, for exam-

ple, ‘‘D-7’’ refers to the 7-layer convolution. The ‘‘mVGG’’

refers to our proposed network which is integrated all the

adjustments. The configurations of each modified network

were shown as Table 2.

TABLE 2. Configurations of different modified structures.
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b: BASELINE

As can be seen from Table 3, the ‘‘VGG’’ yields the accuracy

of 84.71% andKappa value of 0.72 that is used as the baseline

in this experiment.

TABLE 3. The accuracy and Kappa value of different modified VGG.

c: RESULTS OF ‘‘M’’ MODEL

The ‘‘M’’ model gets 2.21% improvement of accuracy and

0.04 of Kappa value compare to the VGG. This result verifies

that the information discarding by theMax-pooling operation

does cause the loss of accuracy. After using convolution oper-

ation as substitute, all the information is taken into account,

so that the advantage ofmulti-electrode interpolation imaging

in the expression of position information can be maximized.

d: RESULTS OF ‘‘C’’ MODEL

The ‘‘C’’ model has changed the convolution kernel’s size

from 3 × 3 to the 2 × 2 that has improved accuracy from

84.71% to 87.55%, and the Kappa value is also improved

from 0.70 to 0.75. Reducing the size of the convolution kernel

would greatly increase the nonlinear combination of features

and reduce the computational complexity. In the VGG, the

number of parameters in the first layer is (3×3×3+1)×64 =

1792, and after 2 × 2 convolution kernel is used, the number

of parameters is reduced to (2 × 2 × 3 + 1) ×64 = 832.

The number of parameters was reduced to 46% and

increasing the nonlinear combination of position information

between electrodes. The increasing number of combinations

of different electrodes can be considered as basis vectors that

may have great help to improve the model’s performance.

e: RESULTS OF ‘‘F’’ MODEL

The adopting of convolutional layer instead of the fully con-

nected layer has become an important branch of the develop-

ment of CNN in recent years [31] that could greatly reduce

parameters of model so as overfitting problem.

The Fully Connected layer contains most parameters of

CNN. Take the VGG model as an example. The final pooling

layer has (2 × 2 + 1) × 512 × 256 = 655360 parameters.

Where the 512 is the number of neurons in the pooling layer,

and 256 is the number of neurons in the fully connected layer.

In the ‘‘F’’ model, two 2 × 2 convolution kernels are used to

replace the Fully Connected layer, and (2 × 2 + 1) × 512 ×

(2 × 2 + 1) × 2 = 25600 parameters would be calculated.

Thus, the number of parameters is reduced by 96% only at

the connection between the FC layer and Max-pooling layer.

The advantage of using convolution to replace the entire

FC layer lies in the absence of flatten operation, which would

not affect the spatial structure of the feature map. Although in

the training process, the lack of FC layer would cause slight

instability of gradient descent, the reduction of model param-

eters still makes the training more efficient and improves the

final classification accuracy from 84.71% to the 85.38%.

f: RESULTS OF ‘‘D’’ MODEL

The enhancement of convolutional layers can improve the

model’s ability and finally show up in the model’s perfor-

mance. This model aims to verify the depth of our network

is necessary, when the shallow CNNs are adopted, the perfor-

mance shows significant declines. The modified ‘‘D’’ models

consist of ‘‘D-7’’, ‘‘D-11’’, and the original 3×3 convolution

kernel, the Max-pooling layer and Fully Connected layer are

retained. The ‘‘D-7’’ is designed because its scale is similar

to the mainstream method for classifying MI-EEG signals,

and the accuracy of 72.02% and Kappa value of 0.44 are

obtained in our experiment. The ‘‘D-11’’ model is also a

typical VGG [26], it yields accuracy of 74.84% and theKappa

values of 0.70. As a baseline, 84.71% is acquired on VGG.

When the deeper CNN is applied, the better descriptive

power and superior accuracy are obtained. The result illus-

trates the multi-electrode interpolation-imaging image con-

tains a large number of comprehensive information of spatial

domain, and the shallow CNN lacks in the abstraction and

combination ability of both specific and abstract features.

Therefore, when the depth is deepened, the CNN shows

higher classification accuracy.

B. RESULTS BASED ON BCI COMPETITION IV 2a AND 2b

DATASETS

In this section, our method is verified in two public datasets,

i.e., BCI Competition IV 2a and 2b datasets, to compare with

state-of-the-art methods.

1) RESULTS ON BCI COMPETITION IV 2a DATASET

a: BCI COMPETITION 2a DATASET

The BCI Competition IV dataset 2a includes one session for

the training set and one session for test set. Each session

has 288 trails for one subject, the overall dataset contained

5,184 trials. In Experimental paradigm, the cue-based BCI

paradigm consisted of four different motor imagery tasks,

namely the imagination of left hand (class 1), right hand

(class 2), both feet (class 3), and tongue (class 4) move-

ments. And the dataset includes 9 subjects. The Motor-

Imagery length is set to three seconds, and the sampling

frequency is 250Hz. A trial consists of 750 sampling points.

The feature extraction process and the imaging method are

followed Section 3.1, and the coordinate information of the

interpolation imaging was extracted according to official

10-20 electrode system.
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b: RESULTS

To further verify the performance of TPCT+mVGG, it was

compared with other related methods based on BCI competi-

tion IV 2a dataset. To guarantee the comparability, the origi-

nal training set and test set in the dataset need to be re-divided

in the following experiments, and two schemes were consid-

ered. The first scheme, noted as S1, is that the training set and

test set are merged and evaluated by 10-fold CV. The second

scheme, noted as S2, is that the original training set and test

set are applied to train and test the model, respectively. The

experiment results were shown in Table 4.

TABLE 4. Comparison with relative study on 2a dataset.

In Table 4, the winner method of the BCI Competi-

tion IV [32] utilized Filter-Band CSP(FBCSP) matrix as the

feature, and its data partition was followed Competition’s

request, namely S2, the accuracy andKappa value are 67.75%

and 0.57, respectively. In the same data partition, the pro-

posed TPCT yields 88.87% of accuracy and 0.78 of Kappa

value, which is greatly increased comparing to FBCSP [32].

The work in [12] adopted the Augmented-CSP(ACSP)

method and combined with a three-layer CNN to do the

extraction and classification, the accuracy achieves 69.27%

based on 5 × 5-fold CV. The state-of-the-art method [19],

in which WT was employed to generate a time-frequency

image and the data of each electrode was taken as an inde-

pendent input channel, yields 85.59% of accuracy and 0.71 of

Kappa value by 5-fold CV, this shows the superiority of time-

frequency features. In [13], a new representation of FBCSP

was combined with CNN, this results in the relatively higher

accuracy 74.46% and Kappa value 0.66 by 10-fold CV in

contrast to the original FBCSP [32] and ACSP [12]. In [15],

2D-CNN is used to classify the FFTEM image, and the

accuracy of 68% is obtained based on 10-fold CV, which

verifies the availability of CNN combining spatio-frequency

imaging. However, the recognition is poor. Finally, the exper-

iment results are significantly improved when the proposed

TPCT is combined with mVGG, and 92.13% of accuracy and

0.90 of Kappa value are obtained. This is mainly due to the

introduction of real location of electrodes in TPCT and the

modification of VGG as well.

It is worth to note that the data of all subjects are merged

in recognition of TPCT based images, the overall results are

obtained by training one mVGG model. In the other methods

of Table 4, each subject needs a CNN model trained by using

his or her MI-EEG data and has conducted a CV, and the

results of all subjects are averaged as the final result. Besides,

our method can avoid personalized hyperparameters, thus

enhancing the adaptability of classification model among the

subjects as well as the stringency of our results.

Our method also has a good adaptability to the classifi-

cation of each category. The true positive rate, false positive

rate, true negative rate and false negative rate of the specific

category are shown in Fig. 16.

FIGURE 16. Confusion matrix of 2a data set.

Fig. 16 shows the confusion matrix of 2a dataset in the

scheme S1. The accuracies of four categories, which include

‘‘LH’’, ‘‘RH’’, ‘‘FT’’ and ‘‘T’’, are 93.42%, 92.27%, 90.99%

and 91.82%. Here, ‘‘LH’’, ‘‘RH’’, ‘‘FT’’, ‘‘T’’ in Fig. 16

represent four MI tasks: imaging left hand, imaging right

hand, imaging both feet and imaging tongue. The average

accuracy and Kappa value of four categories can be calcu-

lated, and they are 92.13% and 0.90, respectively. It means

our method achieves almost perfect in consistency. Besides,

the accuracies of ‘‘LH’’ and ‘‘RH’’ are higher than other

tasks which are 93.42% and 92.27%. It may demonstrate

that the ERS/ERD’s contribution in separability of spatial

is still effective. The accuracy of task ‘‘T’’ is the third high

in the results, and the task of ‘‘Feet’’ is hard to distinguish

relatively. It can be seen that the accuracies of four MI tasks

are all higher than 90.00%, and they are very close, which

shows the excellent consistency of the proposed method,

and the competitive result is obtained by this benefit. This

reveals that TPCT is superior in feature fusion expression

of time-frequency-spatial-domain. In addition, our modified

mVGG is more conducive to matching the multi-domain

fusion imaging method with qualified feature extraction abil-

ity, and finally the whole framework achieves excellent per-

formance. We suggest that TPCT is an excellent way to show

the spatial information sufficiently as well as the guaranteed

time-frequency features.

2) RESULTS ON BCI COMPETITION IV 2b DATASET

a: BCI COMPETITION 2b DATASET DESCRIPTION

The BCI Competition IV 2b dataset consisted of two classes,

namely the motor imagery (MI) of left hand (class 1) and

right hand (class 2). There were three sessions in the training

set, and two sessions in the test set. 9 subjects were included,

and the overall dataset contained 6300 trials. Each trial started

3208 VOLUME 8, 2020



M.-A. Li et al.: Novel MI-EEG Imaging With the Location Information of Electrodes

with a fixation cross and an additional short acoustic warning

tone (1kHz, 70ms). Some seconds later a visual cue (an arrow

pointing either to the left or right, according to the requested

class) was presented for 1.25 seconds. Afterwards the sub-

jects had to imagine the corresponding hand movement over

a period of 4 seconds. The data of 4s to 7s was used as the

MI data.

b: RESULTS

In order to compare with the related studies based on same

dataset, we conduct our experiments in two situations: the

first scheme S3 is that the training set and test set mentioned

above are merged and evaluated with 10-fold CV; the second

scheme S4 is that only the training set is utilized for the

10-fold CV. The experiment results are shown in the Table 5.

TABLE 5. Comparison with relative study on 2b dataset.

It can be seen, in [14], by encoding the CSP matrix of

multi-channel data independently via a separated channel

convolution, this method acquires accuracy of 73.00% based

on 9-subject CV. In [21], the STFT-based time-frequency

imaging is combined with a dCNN model, ample time-

frequency features are exploited, yielding the-state-of-the-

art result of 92.28% based on 5-fold CV. The proposed

method (TPCT) yields accuracy of 96.82% and Kappa value

of 0.94 in scheme S3, which has an improvement of 4.54%

compared to [21]. And due to the successful application

of 1D-convolution layer, [17] obtains the accuracy of 75.10%

based on the STFT imaging and CNN combining SAE

method, in which only the training set of 2b dataset was used

and 10× 10-fold CV was adopted. The structural innovation

in [18] obtains 3.1% improvement comparing to [17] by

replacing the SAE with VAE based on the same data parti-

tion. In scheme S4, namely, only training set is considered,

the TPCT yields accuracy of 96.48% by 10×10-fold CV and

has an increment of 18.28% in contrast to [18]. The excellent

robustness of TPCT is self-evident, so no obvious regression

is generated when the training set is reduced. The results may

reflect the great coordination between TPCT and mVGG,

and imply the effectiveness in application of the tri-electrode

system like BCI Competition IV 2b dataset.

Fig. 17 shows the confusion matrix in scheme S3. The

‘‘L’’ represents the MI task of imaging left hand and the

‘‘R’’ represents that of imaging right hand. The accura-

cies of ‘‘L’’ and ‘‘R’’ are 95.31% and 98.32%, respectively.

FIGURE 17. Confusion matrix of 2b data set.

The average accuracy of the two categories is 96.82%, and the

Kappa value is 0.94, which achieves almost perfect results.

From the above experimental results and analysis, we know

that whether in the BCI Competition IV 2a or 2b data set,

‘‘TPCT + mVGG’’ demonstrates the excellent performance

for two and four categories MI-tasks, and it is insensitive to

the number of electrodes, which shows the generality and

applicability of our presented method.

V. DISCUSSION

This study aimed to improve the classification accuracy of

MI-EEG signals by introducing the relative position of elec-

trodes to imaging process and promote the optimization of

DCNN in MI-EEG research. The public data set of imaging

both fists and feet recorded by 64-channel systemwas utilized

to discuss the proposed imaging method (TPCT) and the

modified VGG (mVGG). The TPCT method can sufficiently

utilize the MI-EEG’s characteristics by promoting the fusion

of temporal, frequency and spatial features. The representa-

tion of feature value and the division of frequency bands are

essential in the imaging process of MI-EEG signal. Fig. 9-11

show the comparison of different feature values, the accuracy

of FECT, SPCT and TPCT are 78.45%, 82.33% and 88.62%,

respectively. This means the time domain power on interest

frequency band (8-30Hz) is prominent than the frequency

domain length or power. Further, the interest frequency band

(8-30Hz) is preserved as an intact channel or divided into

two to four channels (namely, sub-bands), the trend of per-

formance is exhibited in Fig. 12. The best result (88.62%) is

obtained in the three-channel scheme and begins to decline

in the four-channel scheme. Presumably, there is a proper

matching degree among the spatial characteristic of MI-EEG,

the density of interpolation-based MI-EEG image and the

DCNN. When the number of channels is too small, ample

information is compressed and cannot do enough contribute

to the result; when the number of channels is too large,

the density of interpolation-based image may break the toler-

ance, which increases the interference between two adjacent

electrodes, causing the recognition accuracy going down.

The experimental results demonstrate that it is the most

proper scheme when the interest frequency band 8∼30Hz is

divided to three channels, and it is applied in the following

experiments.

Duo to the obvious spatial activation for MI tasks, the

MI-EEG signal has the characteristic of spatial distribution.
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Therefore, the location of electrodes has much contribution

to the decoding of MI tasks. By shuffling the relation of the

electrodes and their serial numbers, the location information

of electrodes is lost, and the resulted accuracy declines about

12% in Figures 14 and 15. It indicates the imaging with the

location of electrodes is matching with the physical basis

of MI-EEG signal and is helpful to display the spatial and

dynamic information.

To matching the TPCT imaging, VGG, a typical DCNN,

is considered to be modified in four aspects, Table 3 shows

the performance of different modified models. It implies that

when replacingMax poolingwith the convolution layer, mod-

ifying the size of the convolution kernel, and using average

pooling instead of the fully connected layer, the accuracies

are 86.92%, 87.55% and 85.38%, respectively, which are

higher than the original VGG’s result (84.71%); Besides,

when the network layers decreases to ‘‘D-7’’ and ‘‘D-11’’,

the accuracies significantly drop to 72.02% and 74.84%,

respectively. The modified VGG (called mVGG) achieves the

highest accuracy of 88.6% and the best Kappa value of 0.77 as

well. This indicates the necessaries of the modification for

VGG. In addition, from the ROC in Fig. 14, we know that

mVGG also ensures the best performance when the threshold

is 0.5.

To fully verify our method, extensive experiments are con-

ducted on BCI Competition IV 2a and 2b data set, and the

accuracies of 10-fold CV are 92.13% and 96.82%, respec-

tively. This means TPCT imaging integrated with mVGG

has superiority and competitiveness in the generalization and

adaptive ability to different data sets, no matter how many

electrodes are recorded. (see Tables 4 and 5). To comparewith

the related methods objectively, two data partition schemes

are adopted in 2a or 2b data set. Comparative results are

obtained, showing the robustness of our method in both

two-category and four-category classification.

Because the interpolation-based imaging method with

position of electrodes is rarely applied to decode MI-EEG

in current research, we should not ignore the outstanding

advantages of the utilization of location information. We will

further explore the improvement of the combination of the

MI-EEG and DCNN and enhance the utilization of time

information based current imaging method. In addition,

the modification of VGG is also a notable aspect in this

paper. It fully considers the physical basis of the MI-EEG

signal and provides a foundation and guarantee for the

classification of more multi-electrode MI-tasks. After the

adjustment of VGG’s convolution kernel, down-sampling

mode and fully connection layer, mVGG achieves great

improvement in rich experiments and achieves the best results

on three public data sets.With widespread application of deep

learning in MI-EEG, our TPCT imaging method establishes

a solid basis for combining time, frequency and position

features of MI-EEG signal into images and will promote

the integration of MI-EEG signals with more convolutional

models.

VI. CONCLUSION

A novel imaging method, called as TPCT, is proposed to

generate MI-EEG images for decoding MI tasks. Through

the interpolation algorithm, TPCT can fix the relevant posi-

tion of electrodes in MI-EEG image as well as assign the

time-frequency feature values to pixels, which may promote

the natural feature fusion in time-frequency-space domains.

To fully explore the features with deep dimensionality pro-

duced by TPCT, the original VGG is modified, which mainly

focuses on the unify of VGG’s structure andMI-EEG’s physi-

cal characteristics. The extensive experiment results on three

public data sets suggest that TPCT combined with mVGG

achieves excellent performance in MI-EEG recognition, and

it has a prominent advantage in accuracy, Kappa value, con-

fusion matrix and ROC in contrast to the existing related

methods. In the future work, we will devote developing more

interpolation-based imaging methods, and hope they can be

applied in areas such as disease diagnosis, rehabilitation engi-

neering and brain function research etc.
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