
A Novel Min-Cost Flow Method
for Estimating Transcript Expression

with RNA-Seq

Alexandru I. Tomescu1, Anna Kuosmanen1, Romeo Rizzi2,
Veli Mäkinen1

1Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland

2Department of Computer Science, University of Verona, Italy

RECOMB-Seq
April 11, 2013

1 / 12

THE BIOLOGICAL PROBLEM

gene
Exon 1 Exon 2 Exon 3 Exon 4

⇓ Transcription, alternative splicing

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

⇓ RNA-Seq

The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq read

2 / 12

THE BIOLOGICAL PROBLEM

gene
Exon 1 Exon 2 Exon 3 Exon 4

⇓ Transcription, alternative splicing

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

⇓ RNA-Seq

The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq read

2 / 12

THE BIOLOGICAL PROBLEM

gene
Exon 1 Exon 2 Exon 3 Exon 4

⇓ Transcription, alternative splicing

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

⇓ RNA-Seq

The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq read

2 / 12

THE BIOLOGICAL PROBLEM

gene
Exon 1 Exon 2 Exon 3 Exon 4

⇓ Transcription, alternative splicing

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

⇓ RNA-Seq

The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq read

2 / 12

EXISTING METHODS

Genome-independent:
I AbySS (’09)

Genome-guided:
I Spliced alignment to the genome:

TopHat (’09), SpliceMap (’10), GMAP (’05-’10),...

I Annotation-free:
Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 12

EXISTING METHODS

Genome-independent:
I AbySS (’09)

Genome-guided:
I Spliced alignment to the genome:

TopHat (’09), SpliceMap (’10), GMAP (’05-’10),...

I Annotation-free:
Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 12

EXISTING METHODS

Genome-independent:
I AbySS (’09)

Genome-guided:
I Spliced alignment to the genome:

TopHat (’09), SpliceMap (’10), GMAP (’05-’10),...

I Annotation-free:
Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 12

EXISTING METHODS

Genome-independent:
I AbySS (’09)

Genome-guided:
I Spliced alignment to the genome:

TopHat (’09), SpliceMap (’10), GMAP (’05-’10),...

I Annotation-free:
Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 12

EXISTING METHODS

Genome-independent:
I AbySS (’09)

Genome-guided:
I Spliced alignment to the genome:

TopHat (’09), SpliceMap (’10), GMAP (’05-’10),...

I Annotation-free:
Scripture (’10), TRIP (’12), Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 12

GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them

I we look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (almost all of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 12

GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them
I we look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (almost all of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 12

GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them
I we look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (almost all of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 12

GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them
I we look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (almost all of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages

I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 12

GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them
I we look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (almost all of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 12

A UNIFIED PROBLEM FORMULATION

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and

I cost functions fv(·) and fuv(·)
FIND:

I a tuple P of paths from the sources of G to the sinks of G,
I with an estimated expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣

For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 12

A UNIFIED PROBLEM FORMULATION

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I cost functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,
I with an estimated expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣

For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 12

A UNIFIED PROBLEM FORMULATION

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I cost functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,

I with an estimated expression level e(P) for each path P ∈ P ,
which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣

For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 12

A UNIFIED PROBLEM FORMULATION

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I cost functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,
I with an estimated expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣

For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 12

A UNIFIED PROBLEM FORMULATION

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I cost functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,
I with an estimated expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣

For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 12

A UNIFIED PROBLEM FORMULATION

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I cost functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,
I with an estimated expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣

For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 12

EXAMPLE fv(x) = x2 , fuv(x) = x2

∑
v∈V

cov(v) −
∑

P∈P: v∈P
e(P)

2

+
∑

(u,v)∈E

cov(u, v) −
∑

P∈P: (u,v)∈P
e(P)

2

a
8

b
6

e
3

c
5

f
3

d
8

5

3

3
4

5
5

3
4

a
5+3

b
5

e
3

c
5

f
3

d
5+3

5

3

3
4

5
5

3
3

a
5+3

b
5+3

e
3

c
5

f
3

d
5+3

5

3

3
3

5
5

3
3

I [Left] A non-optimal tuple of paths with cost 1 + 1 + 33 + 42 = 27,
from b, (f , d), (e, b), (b, f)

I [Right] The optimal tuple of paths with cost 22 + 1 + 1 + 32 = 15,
from b, and (b, f), (f , d), (e, f)

6 / 12

EXAMPLE fv(x) = x2 , fuv(x) = x2

∑
v∈V

cov(v) −
∑

P∈P: v∈P
e(P)

2

+
∑

(u,v)∈E

cov(u, v) −
∑

P∈P: (u,v)∈P
e(P)

2

a
8

b
6

e
3

c
5

f
3

d
8

5

3

3
4

5
5

3
4

a
5+3

b
5

e
3

c
5

f
3

d
5+3

5

3

3
4

5
5

3
3

a
5+3

b
5+3

e
3

c
5

f
3

d
5+3

5

3

3
3

5
5

3
3

I [Left] A non-optimal tuple of paths with cost 1 + 1 + 33 + 42 = 27,
from b, (f , d), (e, b), (b, f)

I [Right] The optimal tuple of paths with cost 22 + 1 + 1 + 32 = 15,
from b, and (b, f), (f , d), (e, f)

6 / 12

EXAMPLE fv(x) = x2 , fuv(x) = x2

∑
v∈V

cov(v) −
∑

P∈P: v∈P
e(P)

2

+
∑

(u,v)∈E

cov(u, v) −
∑

P∈P: (u,v)∈P
e(P)

2

a
8

b
6

e
3

c
5

f
3

d
8

5

3

3
4

5
5

3
4

a
5+3

b
5

e
3

c
5

f
3

d
5+3

5

3

3
4

5
5

3
3

a
5+3

b
5+3

e
3

c
5

f
3

d
5+3

5

3

3
3

5
5

3
3

I [Left] A non-optimal tuple of paths with cost 1 + 1 + 33 + 42 = 27,
from b, (f , d), (e, b), (b, f)

I [Right] The optimal tuple of paths with cost 22 + 1 + 1 + 32 = 15,
from b, and (b, f), (f , d), (e, f)

6 / 12

SOLUTION: REDUCTION TO NETWORK FLOWS

I A flow over a flow network N = (V,E, b) is a function x assigning to every
arc (u, v) ∈ E a number xuv ∈ N such that

1. 0 ≤ xuv ≤ buv, for every (u, v) ∈ E,
2.

∑
u∈V

xvu =
∑
u∈V

xuv, for every v ∈ V not a source or a sink

3. the flow exiting the sources = the flow entering the sinks (:= value of the flow)

I We first reduce the problem to one having coverages only on edges

v
w

⇒ vin vout
w

I Any collection of weighted paths in a graph induces a flow, and
viceversa, any flow can be split into (linearly many) paths

I We will find an “optimal” flow: the value of the flow on each edge will
be the predicted coverage on that edge

7 / 12

SOLUTION: REDUCTION TO NETWORK FLOWS

I A flow over a flow network N = (V,E, b) is a function x assigning to every
arc (u, v) ∈ E a number xuv ∈ N such that

1. 0 ≤ xuv ≤ buv, for every (u, v) ∈ E,
2.

∑
u∈V

xvu =
∑
u∈V

xuv, for every v ∈ V not a source or a sink

3. the flow exiting the sources = the flow entering the sinks (:= value of the flow)

I We first reduce the problem to one having coverages only on edges

v
w

⇒ vin vout
w

I Any collection of weighted paths in a graph induces a flow, and
viceversa, any flow can be split into (linearly many) paths

I We will find an “optimal” flow: the value of the flow on each edge will
be the predicted coverage on that edge

7 / 12

SOLUTION: REDUCTION TO NETWORK FLOWS

I A flow over a flow network N = (V,E, b) is a function x assigning to every
arc (u, v) ∈ E a number xuv ∈ N such that

1. 0 ≤ xuv ≤ buv, for every (u, v) ∈ E,
2.

∑
u∈V

xvu =
∑
u∈V

xuv, for every v ∈ V not a source or a sink

3. the flow exiting the sources = the flow entering the sinks (:= value of the flow)

I We first reduce the problem to one having coverages only on edges

v
w

⇒ vin vout
w

I Any collection of weighted paths in a graph induces a flow, and
viceversa, any flow can be split into (linearly many) paths

I We will find an “optimal” flow: the value of the flow on each edge will
be the predicted coverage on that edge

7 / 12

SOLUTION: REDUCTION TO NETWORK FLOWS

I A flow over a flow network N = (V,E, b) is a function x assigning to every
arc (u, v) ∈ E a number xuv ∈ N such that

1. 0 ≤ xuv ≤ buv, for every (u, v) ∈ E,
2.

∑
u∈V

xvu =
∑
u∈V

xuv, for every v ∈ V not a source or a sink

3. the flow exiting the sources = the flow entering the sinks (:= value of the flow)

I We first reduce the problem to one having coverages only on edges

v
w

⇒ vin vout
w

I Any collection of weighted paths in a graph induces a flow, and
viceversa, any flow can be split into (linearly many) paths

I We will find an “optimal” flow: the value of the flow on each edge will
be the predicted coverage on that edge

7 / 12

SOLUTION: MIN-COST FLOWS
I In a min-cost flow problem, one is additionally given

I a flow value to be pushed from sources to sinks, and
I flow cost functions cuv(·), for every arc (u, v) ∈ E

and is required to find a flow of given value which minimizes:∑
(u,v)∈E

cuv(xuv)

I If the cost functions are convex, then we can find a min-cost flow in
polynomial time

I We can further polynomially transform the splicing graph to a flow network
modeling the offsets between observed and predicted coverage

THEOREM

Given an input splicing DAG as input for the Problem UTEC, if the cost functions
are convex, we can find the optimal coverage of each node and edge in polynomial
time.

I Splitting a flow into the minimum number of paths is NP-hard
I We currently apply a heuristic iteratively selecting the path of maximum

bandwidth

8 / 12

SOLUTION: MIN-COST FLOWS
I In a min-cost flow problem, one is additionally given

I a flow value to be pushed from sources to sinks, and
I flow cost functions cuv(·), for every arc (u, v) ∈ E

and is required to find a flow of given value which minimizes:∑
(u,v)∈E

cuv(xuv)

I If the cost functions are convex, then we can find a min-cost flow in
polynomial time

I We can further polynomially transform the splicing graph to a flow network
modeling the offsets between observed and predicted coverage

THEOREM

Given an input splicing DAG as input for the Problem UTEC, if the cost functions
are convex, we can find the optimal coverage of each node and edge in polynomial
time.

I Splitting a flow into the minimum number of paths is NP-hard
I We currently apply a heuristic iteratively selecting the path of maximum

bandwidth

8 / 12

SOLUTION: MIN-COST FLOWS
I In a min-cost flow problem, one is additionally given

I a flow value to be pushed from sources to sinks, and
I flow cost functions cuv(·), for every arc (u, v) ∈ E

and is required to find a flow of given value which minimizes:∑
(u,v)∈E

cuv(xuv)

I If the cost functions are convex, then we can find a min-cost flow in
polynomial time

I We can further polynomially transform the splicing graph to a flow network
modeling the offsets between observed and predicted coverage

THEOREM

Given an input splicing DAG as input for the Problem UTEC, if the cost functions
are convex, we can find the optimal coverage of each node and edge in polynomial
time.

I Splitting a flow into the minimum number of paths is NP-hard
I We currently apply a heuristic iteratively selecting the path of maximum

bandwidth

8 / 12

SOLUTION: MIN-COST FLOWS
I In a min-cost flow problem, one is additionally given

I a flow value to be pushed from sources to sinks, and
I flow cost functions cuv(·), for every arc (u, v) ∈ E

and is required to find a flow of given value which minimizes:∑
(u,v)∈E

cuv(xuv)

I If the cost functions are convex, then we can find a min-cost flow in
polynomial time

I We can further polynomially transform the splicing graph to a flow network
modeling the offsets between observed and predicted coverage

THEOREM

Given an input splicing DAG as input for the Problem UTEC, if the cost functions
are convex, we can find the optimal coverage of each node and edge in polynomial
time.

I Splitting a flow into the minimum number of paths is NP-hard
I We currently apply a heuristic iteratively selecting the path of maximum

bandwidth

8 / 12

SOLUTION: MIN-COST FLOWS
I In a min-cost flow problem, one is additionally given

I a flow value to be pushed from sources to sinks, and
I flow cost functions cuv(·), for every arc (u, v) ∈ E

and is required to find a flow of given value which minimizes:∑
(u,v)∈E

cuv(xuv)

I If the cost functions are convex, then we can find a min-cost flow in
polynomial time

I We can further polynomially transform the splicing graph to a flow network
modeling the offsets between observed and predicted coverage

THEOREM

Given an input splicing DAG as input for the Problem UTEC, if the cost functions
are convex, we can find the optimal coverage of each node and edge in polynomial
time.

I Splitting a flow into the minimum number of paths is NP-hard
I We currently apply a heuristic iteratively selecting the path of maximum

bandwidth
8 / 12

VALIDATION

I construct a bipartite graph with predicted and true transcripts
predicted:

P1, e(P1) P2, e(P2) P3, e(P3)

true: T1, e(T1) T2, e(T2) T3, e(T3) T4, e(T4)

I the edge weight between Pi, e(Pi) and Tj, e(Tj) is a combined measure
between (cf. Normalized Compression Distance)

I bitscore :=
#bits needed to encode Tj given Pi

#bits needed to encode Tj just by inserts

I relative expression level difference :=
|e(Tj)−e(Pi)|

e(Tj)

I compute minimum weight perfect matching

I a True Positive is a match with bitscore and expression difference under
given thresholds

I other events define False Positives and False Negatives
I compute precision, recall, F-measure

9 / 12

VALIDATION

I construct a bipartite graph with predicted and true transcripts
predicted:

P1, e(P1) P2, e(P2) P3, e(P3)

true: T1, e(T1) T2, e(T2) T3, e(T3) T4, e(T4)

I the edge weight between Pi, e(Pi) and Tj, e(Tj) is a combined measure
between (cf. Normalized Compression Distance)

I bitscore :=
#bits needed to encode Tj given Pi

#bits needed to encode Tj just by inserts

I relative expression level difference :=
|e(Tj)−e(Pi)|

e(Tj)

I compute minimum weight perfect matching

I a True Positive is a match with bitscore and expression difference under
given thresholds

I other events define False Positives and False Negatives
I compute precision, recall, F-measure

9 / 12

VALIDATION

I construct a bipartite graph with predicted and true transcripts
predicted:

P1, e(P1) P2, e(P2) P3, e(P3)

true: T1, e(T1) T2, e(T2) T3, e(T3) T4, e(T4)

I the edge weight between Pi, e(Pi) and Tj, e(Tj) is a combined measure
between (cf. Normalized Compression Distance)

I bitscore :=
#bits needed to encode Tj given Pi

#bits needed to encode Tj just by inserts

I relative expression level difference :=
|e(Tj)−e(Pi)|

e(Tj)

I compute minimum weight perfect matching

I a True Positive is a match with bitscore and expression difference under
given thresholds

I other events define False Positives and False Negatives
I compute precision, recall, F-measure

9 / 12

EXPERIMENTAL RESULTS ON SIMULATED DATA
I Simulated paired-end reads from the annotated transcripts of 29 genes
I Reads aligned with TopHat

1. Alignments fed to the tools for each gene independently

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

bitscore

F-
m

ea
su

re

Cufflinks

IsoLasso

SLIDE

Traph

0.1 0.3 0.5 0.7 0.9
0.2

0.3

0.4

0.5

0.6

bitscore

2. Alignments for all genes combined into one file, fed to the tools

0.1 0.3 0.5 0.7 0.9
0

0.05

0.1

bitscore

(c) expr. difference threshold 0.1

0.1 0.3 0.5 0.7 0.9
0.3

0.4

0.5

bitscore

(d) expr. difference threshold 0.9
10 / 12

EXPERIMENTAL RESULTS ON REAL DATA

I 2 406 339 paired-end reads of length 75bp mapping to human
chromosome 2

I 342 genes where all tools made predictions
I 3306 annotated transcripts in total

Tool Total predicted Shared with annotation, bitscore under
0.1 0.2 0.3 0.4 0.5

Cufflinks 933 128 200 267 342 410
IsoLasso 742 132 199 262 310 361
SLIDE 1131 191 281 381 463 552
Traph 961 157 255 330 398 474

11 / 12

CONCLUSIONS CS.HELSINKI.FI/GSA/TRAPH/

I A novel unified problem formulation for transcript identification and
quantification with RNA-Seq

I A polynomial-time solution by a reduction to min-cost network flows
I A general framework applicable to other multi-assembly problems

Future work:
I integrate paired-end information
I integrate annotation information
I procure real ground-truth
I if we limit by k the number of paths in an optimal solution

I the problem becomes NP-hard
I we can write dynamic programming algorithms which work well assuming

k is not too large
I we get better accuracy
I ⇒ see our poster

12 / 12

CONCLUSIONS CS.HELSINKI.FI/GSA/TRAPH/

I A novel unified problem formulation for transcript identification and
quantification with RNA-Seq

I A polynomial-time solution by a reduction to min-cost network flows
I A general framework applicable to other multi-assembly problems

Future work:
I integrate paired-end information
I integrate annotation information
I procure real ground-truth

I if we limit by k the number of paths in an optimal solution
I the problem becomes NP-hard
I we can write dynamic programming algorithms which work well assuming

k is not too large
I we get better accuracy
I ⇒ see our poster

12 / 12

CONCLUSIONS CS.HELSINKI.FI/GSA/TRAPH/

I A novel unified problem formulation for transcript identification and
quantification with RNA-Seq

I A polynomial-time solution by a reduction to min-cost network flows
I A general framework applicable to other multi-assembly problems

Future work:
I integrate paired-end information
I integrate annotation information
I procure real ground-truth
I if we limit by k the number of paths in an optimal solution

I the problem becomes NP-hard
I we can write dynamic programming algorithms which work well assuming

k is not too large
I we get better accuracy
I ⇒ see our poster

12 / 12

