
1SCIENTIFIC REPORTS |          (2019) 9:3319  | https://doi.org/10.1038/s41598-019-39955-z

www.nature.com/scientificreports

A novel model for photothermal 
excitation of variable thermal 
conductivity semiconductor elastic 
medium subjected to mechanical 
ramp type with two-temperature 
theory and magnetic field
Kh. Lotfy  

This article focuses on studying the dependence of the thermal conductivity of a semiconducting 

medium on temperature in context of photothermal transport process and variable thermal 

conductivity, chosen to be linear function in temperature. The effect of the initial magnetic field is 
introduced in the problem governing equations with the two-temperature theory. The complete 

solution in one dimension is obtained using Laplace transform technique. The thermal heating ramp 

type and mechanical load throughout the elastic-photothermal excitation are considered in the 

problem boundary conditions. Some physical fields are obtained by using numerical inversion of the 
Laplace transform and Riemann-sum approximation method. The thermo-dynamical temperature, 

conductive temperature, displacement, strain, normal stress and carrier density are discussed and 

shown graphically with some comparisons.

In material science the variable thermal conductivity which depends on temperature is very important and has 
many applications in the nature. �e recent studies of semiconductors thermal conductivity dependence on tem-
perature showed that, the physical properties especial the deformation and the thermo-mechanical behavior are 
strongly e�ected by any changes in the materiel temperature. �ermal conductivity of materials such as silicon 
nitride reduced by half for temperatures between 1.0 °C and 400.0 °C. In general, semiconductor materials are 
very sensitive with temperature changes. When the semiconductor surface is exposed to weak beam of laser, 
free carriers (free charge) are generated. When studying thermal stress problem, the dependence of the material 
on the temperature should be taken in consideration especially when the thermal conductivity of the material is 
under investigation.

In the early years of the last century, Suhara studied the e�ect of temperature on a hollow cylinder. Many 
elastic and inelastic media problems take into consideration the dependence of the physical properties on tem-
perature1. Youssef2 used the state-space approach to solve the generalized thermoelasticity problem for elastic 
medium with spherical cavity when the thermal conductivity depends on temperature with ramp-type heating. 
Also variable thermal conductivity is applied on the generalized thermoelasticity layered with thermal shock by 
Youssef and El-Bary3. �e solution of the generalized thermoelasticity problem with variable thermal conductiv-
ity for in�nite long annular cylinder is discussed by Youssef and Abbas4. Many applications in oil extraction that 
depends on variation of pressure and temperature are taken from the study of the generalized thermoelasticity.

When a beam of laser falls on the external surface of semiconductor material, the excited electrons gen-
erate the carrier free charge intensity and plasma waves. �at is the main reason for the governing equations 
of the thermoelasticity problems observe the thermal-elastic waves. Most of the previous studies ignored the 
interaction between thermal, elastic and plasma waves. Recently the interplay between these waves is con�rmed 
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experimentally and theoretically. �e electronic deformation mechanism is studied by Photoacoustic frequency 
transmission technique5. �e photoacoustic spectroscopy analysis is used to obtain the photothermal method 
when a beam falls from a laser on a semiconductor elastic material6,7. �e photothermal method is used to deter-
mine the values of some physical variables of certain materials5,8–11. Opsal and Rosencwaig12 studied the plasma 
-thermal-elastic waves are in elastic silicon. Song et al.13 used the optically excited semiconductor to study the 
vibration of thermoelastic medium. Lotfy et al.14–19 used the thermal memory to discuss the overlap between the 
Photothermal and the generalized thermoelasticty theories in semiconductor materials with di�erent external 
�elds. Hobiny and Abbas20,21 studied the non-homogenous semiconductor materials with cylindrical cavity by 
Photothermal theory. Abo-Dahab and Lotfy22 used the two-temperature theory to explain the photo-excitation 
of a semiconductor medium.

�e �rst to know the theory of two temperatures were Chen and Gurtin23 and Chen et al.24. �ey have cor-
rected a heat conduction theory for deformable bodies, which be based on two di�erent distinct temperatures, 
which called the thermodynamic temperature T and the conductive temperature ϕ. In cases of time independent, 
the variation between these two temperatures is proportional to supply of heat, when the heat supply is absence 
the two temperatures are equal. However, especially in case of the problems of wave propagation, the two tem-
peratures are in general di�erent, regardless of the presence of a heat supply25. Youssef26 used the model of two 
temperature theory in generalized thermoelasticity which show that the two temperature theory can di�erentiates 
between the wave propagation of the temperature, that comes from heat conduction temperature (thermal pro-
cess) and that which comes from the thermodynamics temperature (mechanical process).

In this article we study the dependence of the variable thermal conductivity on temperature. Based on the 
material properties, the variable thermal conductivity is taken linear function in temperature. More attention 
is given to study the interaction between elastic-thermal-plasma waves through Photothermal process under 
the e�ect of magnetic �eld. �e one dimensional two-temperature theory is used to determine the problem 
state variables of the semiconductor medium subjected to mechanical ramp type and thermal shock problem. 
According to the Riemann-sum approximation method, the Laplace transform and the inversion Laplace method 
are used to transform the governing equations and obtaining the results. �e solutions are shown graphically with 
discussions.

Basic Equations
Considering a semiconductor elastic medium under the influence of constant initial magnetic field, 

=H H(0, , 0)0


. �e Maxwell’s equations with linearized electromagnetism slowly moving medium are:

=J curl h , (1) 


µ

→
= − curl E H , (2)0

µ= − ×E u H( ), (3)0

  

Figure 1. Variation of temperature distribution with di�erent values of ζ in magnetic �eld at K1 = −0.1.
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 =div h 0, (4)

where, µ0 is the vacuum magnetic permeability and u is the particle velocity in the medium (the dote denotes 

di�erentiation with respect to time). �e current density 

J  and the electric �eld 


E  have the same the direction.

Assume that, the induced magnetic �eld h


 in y-direction and the induced electric �eld E


 in z-direction, i. e., 
 =h h(0, , 0) and 

 =E E(0, 0, ). Also de�ne the displacement vector as → =u u( , 0, 0), and the strain tensor as 

= = ∂
∂

e ux
u

x
, u is a function of x and t only.

Hence, the only one component current density for slowly moving medium is:

Figure 2. Variation of conductive heat distribution with di�erent values of ζ in magnetic �eld at K1 = −0.1.

Figure 3. Variation of displacement distribution with di�erent values of ζ in magnetic �eld at K1 = −0.1.
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=
∂
∂
.J

h

x (5)z

�e electric and magnetic �eld components expressed in terms of displacement component are:

µ= − E H u, (6)z 0 0

= − .h H e (7)0

When a beam of laser with energy E incident on a semiconductor elastic surface with gap energy Eg (E > Eg). 
�e optical energy absorbed in an elastic semiconductor medium causes a change in the thermo-elastic and 

Figure 4. Variation of strain distribution with di�erent values of ζ in magnetic �eld at K1 = −0.1.

Figure 5. Variation of normal stress distribution with di�erent values of ζ in magnetic �eld at K1 = −0.1.
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electronic deformation. �ese deformations are the mechanisms used to control the curvature of the microstruc-
ture. �e photo-generated (heat) plasma can produce elastic vibrations (local strain), these vibrations cause the 
deformation in the semiconductor elastic sample27. �e general equations of the coupled thermo-elastic waves 
and plasma waves depend on three principal variable N (→r , t), T (→r , t) and u (→r , t), where N(→r , t) is the carrier 
density (plasma wave), T (→r , t) is the temperature distribution (thermal wave), and u (→r , t) is the displacement 
distribution (elastic wave), →r  is the position vector.

Through the excitation transient process, the coupled plasma-thermal-elastic transport equations in 
two-temperature �eld take the general (vector form in the time-space coordinates) form28:

 (I) �e plasma and thermal distribution coupled equation takes the form:

Figure 6. Variation of carrier density distribution with di�erent values of ζ in magnetic �eld at K1 = −0.1.

Figure 7. Variation of temperature distribution with di�erent values of K1 in magnetic �eld at ζ = 1.
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τ
κ

∂
∂

= ∇ − + .
N r t

t
D N r t

N r t
T r t

( , )
( , )

( , )
( , )

(8)E
2

   

 (II) �e equation of motion, which describes the relation between the elastic-thermal distribution and the 
magnetic �eld is:

ρ µ µ λ γ δ µ
∂ →

∂
= ∇ → + + ∇ ∇. → − ∇ − ∇ + ×

u r t

t
u r t u r t r t N r t J H

( , )
( , ) ( ) ( ( , )) T( , ) ( , ) ( ),

(9)n

2

2
2

0

      

 (III) �e coupled equation between plasma and thermo-dynamical distribution in two-temperature theory 
(energy balance equation) is:

Figure 8. Variation of conductive heat distribution with di�erent values of K1 in magnetic �eld at ζ = 1.

Figure 9. Variation of displacement distribution with di�erent values of K1 in magnetic �eld at ζ = 1.
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ϕ
τ

γ
∂
∂

= ∇. ∇ − + ∇.
∂→

∂
.

K

k

r t

t
K r t

E
N r t T

u r t

t

T( , )
( ( , )) ( , )

( , )

(10)
g

0

   

where κ =
τ

∂
∂

q

T

T  is the thermal activation coupling parameter and at temperature T the concentration of the 
equilibrium carrier is de�ned as q29,30, DE and τ are the di�usion coe�cient of the carrier and photogen-

erated carrier lifetime respectively. �e energy gap of the material is Eg (the term 
τ

N
Eg  represent the 

in�uence of heat production by recombining the carriers free charge in the semiconductor sample volume). 
�e constants µ and λ are Lame’s constants of, ρ is the density and the absolute thermo-dynamic tempera-
ture is T0, γ is the volume thermal expansion, αT (γ = (3λ + 2 µ)αT) is the coe�cient of the linear thermal 
expansion, the speci�c heat of the elastic material is Ce, δn = (2 µ + 3λ)dn is the deformation potential 
di�erence, =

ρ
k

K

Ce

 is the di�usivity, K represents the thermal conductivity in general case and dn is the 

Figure 10. Variation of strain distribution with di�erent values of K1 in magnetic �eld at ζ = 1.

Figure 11. Variation of normal stress distribution with di�erent values of K1 in magnetic �eld at ζ = 1.
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coe�cient of electronic deformation. In the present study we consider the general case in which thermal 
activation coupling parameter is non-zero and the medium is linear with homogeneous properties.

 (IV) �e equation of the heat conduction and the dynamical heat (thermo-dynamical) in two temperatures 
theory takes the form

ϕ ϕ= − ∇T a , (11)2

where a > 0 is the two-temperature parameter describes temperature discrepancy
 (V) �e stress–strain–temperature-plasma equation in 1D represent is:

Figure 12. Variation of carrier density distribution with di�erent values of K1 in magnetic �eld at ζ = 1.

Figure 13. Variation of temperature distribution with di�erent values of magnetic �eld at ζ = 1 and K1 = −0.1.
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σ µ λ λ µ α= σ = +
∂

∂
+ + + .

u

x
T d N(2 ) (3 2 )( )

(12)T nxx

In semiconductor material, the thermal conductivity parameter is the important one because it determines 
the thermoelectric energy conversion. �e heat conduction a�ect on electrical resistivity of semiconductors31,32.

Considering the thermal conductivity of the semiconductor elastic material K can be expressed in a linear 
form of thermo-dynamical temperature as:

= +K T K K T( ) (1 ), (13)0 1

where K0 is a constant which, in the case of the material, is independent of temperature and equal to the thermal 
conductivity (K1 = 0). K1 is a small non-positive parameter.

From Eqs (11) and (13) we can write:

ϕ ϕ= + − ∇ .K T K K a( ) (1 ( ))0 1
2

Neglecting the value of K1a∇2ϕ (very small value) we can write:

ϕ= + .K T K K( ) (1 ) (14)0 1

or

ϕ ϕ= + .K K K( ) (1 ) (15)0 1

Introduce the mappings33:

∫ϕ = Ω Ω
ϕ

ˆ
K

K d
1

( ) ,
(16)0 0

λ = 3.64 × 1010 N/m2 µ = 5.46 × 1010 N/m2 ρ = 2330 kg/m3 τ = 5 × 10−5 s

T0 = 800 K dn = −9 × 10−31 m3 DE = 2.5 × 10−3 m2/s Eg = 1.11 eV

Ce = 695 J/(kg K) αT = 3 × 10−6 K−1 s = 2 m/s t = 8 × 10−8 s

µ0 = 4π × 10−7 H/m K0 = 386 N/K sec λ = 2 m/s q = 1020 m−3

Table 1. �e physical constants of silicon semiconductor materiel.

Figure 14. Variation of conductive heat distribution with di�erent values of magnetic �eld at ζ = 1 and 
K1 = −0.1.
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∫= Ω ΩT̂
K

K d
1

( ) ,
(17)

T

0 0

Operating by ∂
∂xi

 on the both sides of Eq. (16), yields

ϕ
ϕ
ϕ

ϕ ϕ ϕ
∂
∂
=

∂
∂

⇐⇒ = .
ˆ

ˆK
x

K
x

K K( ) ( )
(18)i i

or in tensor form

i i0 0 , ,

Again, di�erentiating Eqs (17) and (18) with respect to xi:

Figure 15. Variation of displacement distribution with di�erent values of magnetic �eld at ζ = 1 and K1 = −0.1.

Figure 16. Variation of strain distribution with di�erent values of magnetic �eld at ζ = 1 and K1 = −0.1.
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ϕ
ϕ
ϕ∂

∂
=
∂
∂






∂
∂






⇐⇒ = .
ˆ ˆK

x x
K

x
K T K T T( ) ( )

(19)i i i

or in tensor form

i i0

2

2 0 , ,

∂
∂
=

∂
∂

⇐⇒ = .
ˆ

ˆK
T

x
K T

T

x
K T K T T( ) ( )

(20)i i

or in tensor form

i i0 0 , ,

On the other hand, di�erentiating Eq. (17) with respect to time we obtain

∂
∂
=

∂
∂
.

ˆ
K

T

t
K T

T

t
( )

(21)0

Using Eqs (19), (20) and (21) into Eqs (9) and (10) we obtain:

ρ µ µ λ
γ

δ µ
∂ →

∂
= ∇ → + + ∇ ∇. → −

∂
∂
− ∇ + ×

ˆu

t
u u

K

K T

T

x
N J H( ) ( )

( )
( ),

(22)i
n

2

2
2 0

0

 

ϕ
τ

γ∂
∂
= + + ∇.

∂→

∂
.

ˆ
ˆ

k t

E

K
N r t

T

K

u

t

1 T
( , )

(23)
ii

g
,

0

0

0

Using the mappings Eqs (16) and (17) into the two-temperature Eq. (11), a�er working the following steps:

 (1) In�uencing on Eq. (11) by the operator ∂
∂xi

 and multiplying both sides by K we get:

ϕ
ϕ

ϕ
ϕ∂

∂
=

∂
∂
−

∂
∂
∂
∂

=K T
T

x
K

x
aK

x x
i m( ) ( ) ( ) , , 1, 2, 3,

(24)i i i m

2

2

 (2) Using Eqs (18) and (20) into Eq. (24), we obtain

ϕ
ϕ

ϕ∂
∂
=

∂
∂
−

∂
∂
∂
∂

= .
ˆ ˆ

K
T

x
K

x
aK

x x
i m( ) , , 1, 2, 3

(25)i i i m
0 0

2

2

 (3) Eq. (19) can be rewritten in the form:

ϕ
ϕ
ϕ

ϕ
ϕ∂

∂
=
∂
∂






∂
∂





=
∂
∂






+
∂
∂





.

ˆ
K

x x
K

x x
K K

x
( ) (1 )

(26)m m m m m
0

2

2 0 1

Figure 17. Variation of normal stress distribution with di�erent values of magnetic �eld at ζ = 1 and K1 = −0.1.
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Di�erentiating both sides of the above equation with respect to xi, gives

ϕ
ϕ
ϕ ϕ ϕ

ϕ
ϕ∂

∂
∂
∂

=
∂
∂









∂
∂






+
∂
∂













=

∂
∂
∂
∂

+
∂
∂
∂
∂
.

ˆ
K

x x x x
K K

x
K K

x x
K

x x
(1 ) 3 ( )

(27)i m i m m i m i m
0

2

2 0 1 0 1

2

2

2

2

Neglecting the non-linear term of Eq. (27) we get:

ϕ
ϕ ϕ

ϕ ϕ ϕ
∂
∂
∂
∂

=
∂
∂
∂
∂

⇐⇒ = .
ˆ

ˆK
x x

K
x x

K K( ) ( )
(28)i m i m

or in tensor form

mmi mmi

2

2 0

2

2 0 , ,

�en Eq. (25) becomes

ϕ ϕ
ϕ ϕ

∂
∂
=
∂
∂
−
∂
∂
∂
∂

⇐⇒ = − .
ˆ ˆ ˆ ˆ ˆ ˆ

T

x x
a

x x
T a

(29)i i i m

or in tensor form

i i mmi

2

2 , , ,

Integrating the above equation,

ϕ
ϕ

ϕ ϕ= −
∂
∂

⇐⇒ = − .ˆ ˆ
ˆ ˆ ˆ ˆT a

x
T a

(30)m

or in tensor form

mm

2

2 ,

Similarly, di�erentiating Eq. (8) with respect to xi, and using (20), we get

τ
κ

∂
∂
∂
∂
=

∂
∂
∂
∂

−
∂
∂
+
∂
∂t

N

x
D

x

N

x

N

x

T

x

1
,

(31)i
E

i m i i

2

2

τ

κ∂
∂
∂
∂
=

∂
∂
∂
∂

−
∂
∂
+

∂
∂
.

ˆ

t

N

x
D

x

N

x

N

x

K

K

T

x

1

(32)i
E

i m i i

2

2
0

Neglecting the non-linear terms, we can write:

κ
κ κ

κ κ κ κ

+
∂
∂

= +
∂
∂
= − + − …….

∂
∂

=
∂
∂
−

∂
∂
+

∂
∂
− … =

∂
∂
.

−
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

K

K K T

T

x
K T

T

x
K T K T

T

x

T

x
K T

T

x
K T

T

x

T

x

(1 )
(1 ) (1 ( ) )

( )
(33)

i i i

i i i i

0

0 1
1

1
1 1

2

1 1
2

Substituting from Eq. (33) into Eq. (32), we get

τ
κ

∂
∂
∂
∂
=

∂
∂
∂
∂

−
∂
∂
+
∂
∂
.

ˆ

t

N

x
D

x

N

x

N

x

T

x

1

(34)i
E

i m i i

2

2

Integrating Eq. (34) with respect to xi we obtain:

τ
κ

∂
∂
=

∂
∂

− + .ˆ
N

t
D

N

x

N
T

(35)
E

m

2

2

Taking in consideration the linearity of the problem and following the same manner Eqs (22) and (23) can be 
written in the following approximate form:

ρ µ µ λ γ δ µ
∂
∂
=
∂
∂

+ +
∂
∂

−
∂
∂
−
∂
∂
+

∂
∂

ˆu

t

u

x

u

x

T

x

N

x
H

u

x
( ) ,

(36)

i i

m

m

i i
n

i

i

i

2

2

2

2

2

2 0 0
2

2

2

ϕ

τ

γ∂
∂
=
∂
∂

− +
∂
∂
∂
∂
.

ˆ ˆ

k t x

E

K
N

T

K x

u

t

1 T

(37)i

g

i

i
2

2
0

0

0

Mathematical Formulation of the Problem
Considering the e�ect of the external magnetic �eld in slowly moving with variable thermal conductivity without 
body force and no heat source, the one dimension form of Eqs (35), (36), (37) and (30) is:

τ
κ

∂
∂
=

∂
∂

− + ˆN

t
D

N

x

N
T ,

(38)E

2

2

ρ µ λ γ δ
∂
∂
= + +

∂
∂
−
∂
∂
−
∂
∂

ˆ
ˆu

t
R

u

x x

N

x
(2 )(1 )

T
,

(39)H n

2

2

2

2
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ϕ

τ

γ∂
∂
=
∂
∂
− +

∂
∂

ˆ ˆ

k t x

E

K
N

T

K

e

t

1 T
,

(40)

g
2

2
0

0

0

ϕ
ϕ

= −
∂
∂
.ˆ ˆ

ˆ
T a

x (41)

2

2

Where the magnetic pressure number is = =
µ

ρ

α

ˆ
RH

H

C CT T

0 0
2

2
0
2

2
, which it represent the in�uence of the magnetic �eld 

on plasma-thermal-elastic medium and α =
µ

ρ
H0 0

0  is the wave velocity of the semiconductor elastic medium.

For convenience, introduce the dimensionless variables in the above equations as following:

γ

µ λ

ϕ
γ ϕ

µ λ

δ

µ λ
σ

σ

µ

′ ′ = ′ = ′ =
+

′ ′ =
+

′ =
+

′ = .ˆ ˆ
ˆ ˆ

⁎ ⁎
x u

x u

C t
t

t

t
T

T

T
T

N
N

( , )
( , )

, ,
2

,

( , )
( , )

2
,

2
,

(42)

T

n
ij

ij

Substituting from Eq. (42) into Eqs (38–41), we obtain (the prime is removed for more convenient):
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where,
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In the expressions (48) ε1 and ε2 are the thermoelastic coupling and the thermoenergy coupling parameters 
respectively.

In order to solve the problem, the initial conditions can be taken as:
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Method of Solution
To obtain the complete solutions of the considered problem, we use the Laplace transform de�ned for Ψ(x, t) as:
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∫Ψ = Ψ = Ψ − .
∞

L x t x s x t st dt( ( , )) ( , ) ( , ) exp( )
(50)0

�erefore, Eqs (43)–(47) becomes:

ε− + =ˆID N T( ) 0, (51)
2

3

α α− − + =ˆD e D T N( ) ( ) 0, (52)
2

1 2
2

ϕ ε ε− + − =ˆ ˆD q sT se N 0, (53)
2

3 1 2

ζ ϕ ζ− + =ˆ ˆD T( ) 0, (54)
2

βσ = − +e T N( ( )), (55)
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1 2
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To obtain non-trivial solution for the system (51)–(54) we should have:
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Using the elimination method technique in the coupled system of Eqs (51)–(54), we obtain the following sixth 

order di�erential equation in the variables T̂ , e , N  and ϕ̂ x( ):

ϕ− + − =ˆ ˆD ED FD G e T N x s[ ] { , , , }( , ) 0 (57)6 4 2

where

α ε ζ= − −A q s( ) , (58)2 2 1 3

ε ε α ζ α ε α ε ε= − − + + − +I IE q s s A( )( ) )]/ , (59)2 3 1 2 1 3 2 1 3 2

Figure 18. Variation of carrier density distribution with di�erent values of magnetic �eld at ζ = 1 and 
K1 = −0.1.
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α ε ε α ζ ζα ε ε ζ= − − + − − + +I I IF s q s A[ ( ) ( ) ( ) )]/ , (60)1 2 3 1 2 1 3 3 2

ζα ε ε= + .IG q s A[ ( )]/ (61)1 2 3 3 2

Factorizing Eq. (56) as:

ϕ− − − =ˆ ˆD k D k D k e T N x s( )( ) ( ){ , , , }( , ) 0, (62)
2

1
2 2

2
2 2

3
2

where, =k n( 1 , 2, 3)n
2  are the roots of the characteristic equation:

− + − = .k Ek Fk G 0 (63)6 4 2

Because of linearity, the bounded solutions of Eq. (56) are:

∑ϕ ϕ= .
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i i i i
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Eq. (63) we can be written as:
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where the coupling constants ai, bi and ci(i = 1, 2, 3) are de�ned as:
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�e displacement distribution can be determined from the equation

= = Γ + Γ + Γ .− − −du

dx
e x b e b e b e( )

(72)
k x k x k x

1 1 2 2 3 3
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Finally, from Eq. (55) we obtain the stress distribution:

∑βσ = Γ − − = .
=

−b a e i( 1) , 1, 2, 3
(74)i

i i i
k x

1

3
i

Applications
Since the medium is homogeneous and initially at rest loaded by mechanical forces (ramp type load force) on its 
surface. To determine the value of the parameters Γi, i = 1, 2, 3, we consider the following boundary conditions 
at x = 0:

 (I) �e thermal boundary in non-dimensional, as thermal shock boundary, form is:

ϕ ϕ=t H t(0, ) ( ) (75)1

Eq. (74) in Laplace transform domain take the form
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ϕ
ϕ
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Using Eq. (17), we get

ϕ =
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ˆ s
s
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(77)

where, ϕ ϕΛ = + K
1 2 1

21 , hence
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 (II) �e normal stress subjected to ramp type load:
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Applying Laplace transform on both sides of (78) we obtain:
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 (III) �e transport and recombination processes of the photogenerated carrier boundary condition in Laplace 
domain transform is:

=


N s
D

R s(0, ) ( ),
(82)e

where R(s), H(t) are the Heaviside unit step function and  is an arbitrary constant. Hence Eq. (81) take the fol-
lowing form:

ε
Γ + Γ + Γ = .


a a a

s D (83)e
1 1 2 2 3 3

3

�e unknown variables Γi can be obtained from Eqs (77), (80) and (82).
Using the mapping Eqs (16) and (17), and the liner form of the thermo-dynamical temperature (13) with the 

heat conduction (15) equations, we obtain
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In Laplace transform domain Eq. (84) takes the form:

=





+ −







ˆT
K

K T
1

1 2 1 ,
(86)1

1

and the heat conduction temperature takes the form:

ϕ ϕ= + − .ˆ
K

K
1

[ 1 2 1]
(87)1

1

Numerical Inversion of the Laplace Transform
To obtain the non-dimensional numerical results of the thermo-dynamical temperature, heat conduction tem-
perature, displacement, strain, stress, and carrier density in the time domain, we use the inverse Laplace transfor-
mation according to Riemann-sum approximation method.
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Any function f(x, t′) can be inverted in Laplace domain, as

∫π′ = = ′ .−

− ∞

+ ∞
f y t L f y s

i
st f y s ds( , ) { ( , )}

1

2
exp( ) ( , )

(88)n i

n i
1

Introducing s = n + iΜ(n, Μ ∈ R), in Eq. (87) we obtain:

∫π
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+ .
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∞
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2
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(89)

Using Fourier series expansion, the function f(y, t′) can be expanded in the interval [0, 2t′] and take the fol-
lowing form:

∑ π
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e
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f y n Re f y n
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t
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(90)

nt

k
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1

where Re represent the real part, = −i 1 , provided that nt′ ≈ 4.7.

Numerical Results and Discussions
For numerical evaluations we chose silicon (Si) as semiconductor elastic crystal material. �e constants (param-
eters in SI unit) of the problem as silicon are listed in Table 120,34:

Because of the short time duration and non-dimensional forms of the problem, the imaginary parts of the 
physical quantities distributions are neglected.

The influence of the two-temperature parameter. In the �rst category of Figs (1–6), we established the 
e�ect of the two-temperature parameters, ζ = {0, 1}, on the behavior of the thermodynamical and conductive temper-
atures, displacement, strain, stress and the carrier density with the distance x (the initial boundary conditions are same 
for all physical quantitates), the results are shown graphically in Figs (1–6). �is study is considered in the presence 
of the magnetic �eld and the thermal conductivity (K1 = −0.1). Also ζ = 0 represents the one temperature case while 
ζ = 1 represents the two temperature one. Figure 1 shows the e�ect of photo-thermal beam light on temperature 
distribution, the results show that the temperature gets its maximum value near the surface, then begins to decrease 
gradually and vanishes away of the surface. �e same behavior is noticed for the conductive heat distribution as shown 
in Fig. 2. �is behavior agrees with the exponential form of the wave propagation. Also, as shown in Fig. 3, the dis-
placement distribution, when ζ = 0 and ζ = 1, approximately behave the same. As shown in Fig. 4, due to the thermal 
pressure the strain tensor starts from positive value at the beginning and increases until it reach the maximum value 
near the surface. As the distance increases, the strain decreases gradually to reach its minimum value.

�e normal stress force starts from a positive value near the surface and then begins to decrease gradually 
until it reaches the minimum value away from the surface as shown in Fig. 5. Due to the photons stress e�ect, the 
carrier density behavior (free charges distribution) starts from positive value and decreases sharply. A�erward it 
increases gradually to reach the maximum value in the �rst interval near the surface while in the second interval it 
decreases smoothly to arrive the minimum value as it moves far from the surface as shown Fig. 6. As the distance 
increase, same behavior is repeated periodically until it approaches the zero value. �is behavior characterizes 
the semiconductors materials. �e di�erence between the two temperatures theory and one temperature theory 
is that this theorem di�erentiates between the wave propagation of the temperature that comes from the thermal 
process (heat conduction) and that which comes from the mechanical process (thermodynamics temperature).

The influence of the variable thermal conductivity. �e second category of Figs (7–12), shows the 
variations of the thermodynamical temperature, the conductive temperature, displacement, strain, stress and 
carrier density, respectively, as functions of x, for di�erent values of the thermal conductivity. All the calculations 
are obtained presence of both the two-temperature and the magnetic �eld. �e classical case (K1 = 0.0) is de�ned 
when the thermal conductivity is independent of the temperature. While the non-classical case (K1 = −0.1) can 
be obtained when the thermal conductivity depends on the temperature. It is clear that the boundary conditions 
are satis�ed for all �elds. Also the variations of all �elds, approximately, behave the same with respect to the varia-
tion in the thermal conductivity magnitude. It is observed that any small changes in the thermal conductivity lead 
to a signi�cant change in the propagation of wave behavior. Moreover the characteristic curves of the physical 
quantities start from maximum values then begin to intersect and coincide, �nally approach zero value for large 
distance x, which conform the physical equilibrium of the semiconductors elastic solid.

Effect of the magnetic field. �e third category of Figs (13–18) explains the e�ect of the initial magnetic 
�eld H0 on the physical �elds with respect to the x in two cases without magnetic �eld WNMF (solid line) and 
with magnetic �eld WMF (dashed line). �e calculations are carried out for K1 = −0.1 and ζ = 1. In this case, 
the behavior of the physical �elds is deferent because the in�uence of the initial magnetic �eld rearranges the 
particles in the elastic medium. �is explains why the curves in the �gures are compact to each other as x tends 
to in�nity. �ese results satisfy the physical fact for the behavior of the semiconductors to reach its equilibrium 
state of particles.
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Conclusion
During this study the effect of two-temperature parameter, the variable thermal conductivity, and mag-
netic �eld in context of the Photothermal and thermoelasticity theories is considered. We concluded that: the 
two-temperature case gave more accurate results than the one-temperature case. �e two- temperature parameter 
has great in�uence on all physical �elds of the problem under investigation. It is necessary to separate between 
the thermodynamic temperature and the heat conductive. Some physical �elds depend on thermal conductivity, 
the thermal conductivity a�ects on the thermo-mechanical behavior of semiconductors. �e variable thermal 
conductivity plays a great rule in our study, which has a signi�cant e�ect on all �elds. �e magnetic �eld has a 
good e�ect on all the physical �elds. It is observed that the carrier density has a deferent oscillatory structure from 
other physical quantities.
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 5. Todorovic,́ D. M., Nikolić, P. M. & Bojičić, A. I. Photoacoustic frequency transmission technique: electronic deformation mechanism 

in semiconductors. J. Appl. Phys. 85, 7716–7726 (1999).
 6. Gordon, J. P. et al. Long-transient e�ects in lasers with inserted liquid samples. J App.l Phys. 36, 3–8 (1965).
 7. Kreuzer, L. B. Ultralow gas concentration infrared absorption spectroscopy. J Appl. Phys. 42, 2934–2943 (1971).
 8. Tam, A. C. Ultrasensitive laser spectroscopy. 1–108 (New York (NY): Academic Press, 1983).
 9. Tam, A. C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381–431 (1986).
 10. Tam, A. C. Photothermal investigations in solids and �uids. 1–33 (Boston (MA): Academic Press, 1989).
 11. Rosencwaig, A., Opsal, J., Smith, W. L. & Willenborg, D. L. Detection of thermal waves through optical re�ectance. Appl. Phys. Lett. 

46, 1013–1018 (1985).
 12. Opsal, J. & Rosencwaig, A. �ermal wave depth pro�ling: �eory. J Appl. Phys. 53, 4240–4248 (1982).
 13. Song, Y. Q. et al. Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. 

Solids Stru. 47, 1871–1875 (2010).
 14. Lotfy, K. The elastic wave motions for a photothermal medium of a dual-phase-lag model with an internal heat source and 

gravitational �eld. Can J. Phys. 94, 400–409 (2016).
 15. Lotfy, K. A. Novel Model of Photothermal Di�usion (PTD) fo Polymer Nano- composite Semiconducting of �in Circular Plate. 

Physica B- Condenced Matter 537, 320–328 (2018).
 16. Lotfy, K., Kumar, R., Hassan, W. & Gabr, M. �ermomagnetic e�ect with microtemperature in a semiconducting Photothermal 

excitation medium. Appl. Math. Mech. Eng. Ed. 39(6), 783–796 (2018).
 17. Lotfy, K. & Gabr, M. Response of a semiconducting in�nite medium under two temperature theory with photothermal excitation 

due to laser pulses. Optics and Laser Tech. 97, 198–208 (2017).
 18. Lotfy, K. Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and 

hydrostatic initial stress. Waves in Random and Complex Media. 27(3), 482–501 (2017).
 19. Lotfy, K., Hassan, W. & Gabr, M. �ermomagnetic e�ect with two temperature theory for Photothermal process under hydrostatic 

initial stress. Results in Phys. 7, 3918–3927 (2017).
 20. Hobiny, A. & Abbas, I. A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity. Mech 

Time-Depend Mater. 6, 1–12 (2016).
 21. Hobiny, A. & Abbas, I. Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material. Results 

in Physics. 10, 385–390 (2018).
 22. Abo-dahab, S. & Lotfy, K. Two-temperature plane strain problem in a semiconducting medium under photothermal theory. Waves 

in Random and Complex Media. 27, 67–91 (2017).
 23. Chen, P. J. & Gurtin, M. E. On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968).
 24. Chen, P. J., Gurtin, M. E. & Williams, W. O. A note on non-simple heat conduction. Z. Angew. Math. Phys. 19, 969–970 (1968).
 25. Chen, P. J., Gurtin, M. E. & Williams, W. O. On the thermodynamics of non-simple elastic materials with two temperatures. Z. 

Angew. Math. Phys. 20, 107–112 (1969).
 26. Youssef, H. M. �eory of two-temperature-generalized thermoelasticity. IMA Journal of Applied Mathematics 71, 383–390 (2006).
 27. Mandelis, A., Nestoros, M. & Christo�des, C. �ermoelectronic-wave coupling in laser photothersmal theory of semiconductors at 

elevated temperature. Opt. Eng. 36, 459 (1997).
 28. Todorovic, D. M. Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582 (2003).
 29. Vasil’ev, A. N. & Sandomirskii, V. B. Photoacoustic e�ects in �nite Semiconductors. Sov. Phys. Semicond. 18, 1095 (1984).
 30. Christo�des, C., Othonos, A. & Loizidou, E. In�uence of temperature and modulation frequency on the thermal activation coupling 

term in laser Photothermal theory. J. Appl. Phys. 92, 1280 (2002).
 31. Tritt, T. M. �ermal Conductivity �eory, Properties, and Applications. (Springer, 2004).
 32. Vandersande, J. & Wood, C. �e thermal conductivity of insulators and Semiconductors. Contemporary Physics. 27(2), 117–144 

(1986).
 33. Youssef, H. & El-Bary, A. Two-Temperature Generalized �ermoelasticity with Variable �ermal Conductivity. Journal of �ermal 

Stresses. 33, 187–201 (2010).
 34. Song, Y. Q., Bai, J. T. & Ren, Z. Y. Study on the re�ection of photothermal waves in a semiconducting medium under generalized 

thermoelastic theory. Acta Mech. 223, 1545–1557 (2012).

Additional Information
Competing Interests: �e author declares no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

https://doi.org/10.1038/s41598-019-39955-z


1 9SCIENTIFIC REPORTS |          (2019) 9:3319  | https://doi.org/10.1038/s41598-019-39955-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2019

https://doi.org/10.1038/s41598-019-39955-z
http://creativecommons.org/licenses/by/4.0/

	A novel model for photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechan ...
	Basic Equations
	Mathematical Formulation of the Problem
	Method of Solution
	Applications
	Numerical Inversion of the Laplace Transform
	Numerical Results and Discussions
	The influence of the two-temperature parameter. 
	The influence of the variable thermal conductivity. 
	Effect of the magnetic field. 

	Conclusion
	Figure 1 Variation of temperature distribution with different values of ζ in magnetic field at K1 = −0.
	Figure 2 Variation of conductive heat distribution with different values of ζ in magnetic field at K1 = −0.
	Figure 3 Variation of displacement distribution with different values of ζ in magnetic field at K1 = −0.
	Figure 4 Variation of strain distribution with different values of ζ in magnetic field at K1 = −0.
	Figure 5 Variation of normal stress distribution with different values of ζ in magnetic field at K1 = −0.
	Figure 6 Variation of carrier density distribution with different values of ζ in magnetic field at K1 = −0.
	Figure 7 Variation of temperature distribution with different values of K1 in magnetic field at ζ = 1.
	Figure 8 Variation of conductive heat distribution with different values of K1 in magnetic field at ζ = 1.
	Figure 9 Variation of displacement distribution with different values of K1 in magnetic field at ζ = 1.
	Figure 10 Variation of strain distribution with different values of K1 in magnetic field at ζ = 1.
	Figure 11 Variation of normal stress distribution with different values of K1 in magnetic field at ζ = 1.
	Figure 12 Variation of carrier density distribution with different values of K1 in magnetic field at ζ = 1.
	Figure 13 Variation of temperature distribution with different values of magnetic field at ζ = 1 and K1 = −0.
	Figure 14 Variation of conductive heat distribution with different values of magnetic field at ζ = 1 and K1 = −0.
	Figure 15 Variation of displacement distribution with different values of magnetic field at ζ = 1 and K1 = −0.
	Figure 16 Variation of strain distribution with different values of magnetic field at ζ = 1 and K1 = −0.
	Figure 17 Variation of normal stress distribution with different values of magnetic field at ζ = 1 and K1 = −0.
	Figure 18 Variation of carrier density distribution with different values of magnetic field at ζ = 1 and K1 = −0.
	Table 1 The physical constants of silicon semiconductor materiel.


