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Abstract In this paper, a novel model for the mechanism

of dipteran flight motor is proposed and a flight dynamics

is explored by nonlinear dynamics techniques. This model

comprises a lumped mass, a pair of inclined rigid bars and

a pair of horizontal springs. Even the springs are linear, this

system is irrationally nonlinear which causes difficulty for

classical nonlinear analysis. We investigate the original irra-

tional equation by direct numerical simulation avoiding Tay-

lor’s expansion to retain the intrinsic character of dipteran

flight. This enables us to reveal the bounded characteristics of

depteran flight including “click”, bursting and the “complex”

flight patterns. Equilibrium analysis demonstrates the “click”

mechanism and the “non-click” condition for the unperturbed

system. While for the perturbed system, Poincaré section

and basin analysis are carried out to demonstrate the burst-

ing behaviour, transitions between different flight modes and

their coexistence. The results obtained herein reveal that the

complex bifurcations of equilibria, periodic behaviours and

the chaotic motions of the presented system associate respec-

tively with “resting”, “calm” and “complex” flight. All the

results related to the perturbed system are obtained by the

fourth order Runge–Kutta method which ensures the accu-

racy of the computation. This study provides an additional
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insight into the understanding of various flight dynamics of

insects and bridges a gap between the nonlinear dynamics

and the biology.
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1 Introduction

Much attention has been paid on the mechanism of the

dipteran flight motor to explorer the complex insect manoeu-

vres, see [1–4] for example. Majority of investigations are

focussed on the mechanism of “click” which has been stud-

ied extensively over 50 years [5–8], while some others inter-

ested in the “complex” flight patterns incorporated with

insect flight manoeuvres or the flight patterns [9]. The early

investigations on the flight motor [10] was based upon the

observation of the insect flight in the laboratory and also

the examination of their anatomy. The sinusoidal input force

may result in non-sinusoidal stroke and then the peak veloc-

ity on the downward merged in the stroke could be gained to

achieve a greater lift. A topological model to understand the

mechanism of the dipteran flight was proposed in [11,12].

Later studies has been attempted to develop mathematical

tool for the qualitative analysis of insect flight. A math-

ematical model, ǫ ẋ = −(x3 − 3x + b) was introduced

in [13] to study this mechanism based on the catastrophe

theory to illustrate this sudden change. However, the ini-

tial effects was not considered. Miyan gave a mechanical

model for the flight mechanism [14] and contended that

the “click” had been caused by anaesthetic administered

to a dipteran in laboratory studies but this did not contain

“click” mechanism [15]. Other researchers, seen [16,17],
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2 Q. Cao et al.

conjectured that the flight mechanism is a resonant system

without being identified theoretically. Recently, a dynamic

analysis for the “click” mechanism of motor dipteran flight

was given in [8], in which a simplified mathematical model,

u′′ + γ u′ − 1
2

u(1 − u2) = F cos �τ, is developed based

upon the work in [13] to investigate the “click” mechanism.

However, all the studies reviewed above were based upon the

standard Duffing equation [18–21] truncated from the Taylor

series to the third order, which may not reflect the real charac-

teristics of the flight behaviours due to the limitations using

the conventional mathematical approach where the bounded

characteristic was lost.

The motivations and the contributions of this paper are

(i) to provide a new and more effective mathematical model

for flight mechanism of dipteran flight motor with irrational

nonlinearity which currently attracted much attention, see

[22–30] for example, (ii) to develop the nonlinear analysis

techniques to remove the barrier raised from the irrationality

avoiding Taylor expansion to a truncated Duffing system, and

(iii) to bridge the gap between the nonlinear dynamics and

the biology through the detailed analysis of the novel system

to gain a deeper understanding of dipteran flight mechanism.

This paper is organised as follows. In Sect. 2, the mathe-

matical model for the bio-inspired system is developed. The

governing equation is derived, which is an irrational non-

linear dynamic system due to the geometrical configuration.

In the following section, Sect. 3, the irrational equation is

directly analysed without using Taylor expansion and the

“click” mechanism is revealed from the viewpoint of non-

linear dynamics and the “non-click” switch off condition

is provided. While in Sect. 4, the “complex” flight behav-

iour of bursting and various flight patterns including “clam”,

“resting” and also the hybrid “complex” flights are observed

through the analysis of nonlinear characteristics. Finally we

summarise the conclusions and provide the further challenge

researches.

2 Proposed model and the governing equation

We propose a novel model comprising a lump mass m, a

pair of rigid bars of length l and a pair of springs of stiffness

k, as shown in Fig. 1a for the depteran flight mechanism,

which is evolved from the model given in [13] shown in

Fig. 2a–c. The mechanism of the flight motor is described

by the deformations of the simple triangle ABC shown in

Fig. 2a1–c1 corresponding to the three successive positions

illustrated in Fig. 2a–c, respectively. In this model, Fig. 1a,

the mass m represents hinge lumped at A corresponding to

the first axillary sclerite (ax1 in Fig. 2c), to which the driven

force is applied; the pair of bars (AB = AC = l) represent

the wing articulating at AB and AC and the pair of springs

model the pleurosternal muscle stiffness added to B and C,

respectively.

Based upon the physical model described above, the gov-

erning equation of free vibration is derived as

mY ′′ − 2kY

(

1 −
B

√
l2 − Y 2

)

= 0, B > 0, |Y | < l, (1)

where Y is the instantaneous vertical displacement of the

mass and B is the half length between the ends of the springs

at their equilibrium positions with B ≥ 0. Different combi-

nations of the parameters l, B and k can represent a variety

of depteran insects.

Now supposing the system (1) is perturbed by a viscous

damping and an external harmonic excitation of amplitude

F0 and frequency �, this leads to the following equation,

mY ′′ + δY ′ − 2kY

(

1 −
B

√
l2 − Y 2

)

= F0 cos �t. (2)

System (1) can be made dimensionless to the following

form by re-scaling y = lY, b = B
l

and letting ω2
0 = 2k

m
.

ÿ − ω2
0 y

(

1 −
b

√

1 − y2

)

= 0, b > 0, |y| < 1, (3)

and similarly, system (2) can be written in a dimensionless

form by letting τ = ω0t, f0 = F0
2mk

, ξ = δ
2mω0

and ω = �
ω0

,

ÿ + 2ξ ẏ − ω2
0 y

(

1 −
b

√

1 − y2

)

= f0 cos ωτ, (4)

where “·” denotes differentiation with respect to τ.

It is worth noting that although the springs themselves

are linear, this system is strongly nonlinear having irrational

restoring force due to the geometrical configuration, i.e. the

nonlinear restoring force F(y) = ω2
0 y

(

1 − b√
1−y2

)

with

the definition of y bounded within |y| < 1. The nonlinear

forces and the corresponding potentials are plotted in Fig. 3a

and b, respectively, for different value of parameter b.

In the following analysis, we will analyse the irrational

equation directly avoiding Taylor expansion to reflect the

truth flight dynamics, which is one of the distinguished

characteristic of this research in comparison with the pre-

vious studies. In addition, various flight mechanism will be

revealed from the viewpoint of nonlinear dynamics.

3 Unperturbed system and “click” mechanism

In this section, the unperturbed dynamics are analyzed

directly for the original equation with irrational nonlinearity,

rather than truncating to the conventional Duffing system,

to examine the “click” mechanism, “resting” flight and the

“non-click” condition.

123



A novel model of dipteran flight mechanism 3

Fig. 1 a The proposed model

of mass–bar–spring system for

the depteran flight motor,

b equilibrium bifurcation

diagram of system (3)
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Fig. 2 a–c Adopted from [13],

three successive positions of the

wing articulation in the course of

a beat, from the up position (al)

to the down position (cl). The

key to the anatomy is as follows:

a × 1, a × 2-axillary sclerites 1

and 2; n notum; p parascutum;

pm pleurosternal muscle; pn

anterior notal process; pw wing

process; rv base of radial vein;

sl section through tip of

scutellar level, and (a1)–(c1) the

corresponding simplifications to

the “click” mechanism

(a)
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(c1)(c)

(b)
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Fig. 3 a Nonlinear irrational

restoring forces, and b the

corresponding potentials (the

solid curves indicate the case for

b = 0.01, the dotted for b = 1
3
,

the dashed for b = 2
3

and the

thick solid for b = 1,

respectively)
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Fig. 4 “Click” mechanism

demonstrated by phase portraits:

a bistable and “click” status

exhibited by the double-well

dynamics for b = 0.75: E = 0

represents the homoclinic orbit,

E < 0 a pair family of periodic

orbits and E > 0 the periodic

orbits; b the “non-click”

condition associated with the

bounded single well dynamics

for b = 1.0

3.1 The equilibria and the “resting”

The unperturbed system (3) can be written as a two-

dimensional one
⎧

⎪

⎨

⎪

⎩

ẏ = u,

u̇ = y

(

1 −
b

√

1 − y2

)

, b > 0, |y| < 1.
(5)

here and thereafter ω2
0 = 1 is always assumed without loss

of the generality.

The equilibria of system (5) can be obtained as

(y0, u0) = (0, 0), (y1,2, u1,2) = (±
√

1 − b2, 0), b > 0,

whose Jacobian matrix of the unperturbed system (5) at (0, 0)

can be derived as

J

(

y

u

)

(0,0)

=
(

0 1

1 − b 0

)

,

whose eigenvalues are λ1,2 = ±
√

1 − b. Thus the equilib-

rium (0, 0) is a saddle point for 0 ≤ b < 1 and a centre point

for b > 1; while for b = 1 it is a bifurcation point.

Similarly, the Jacobian matrix of the unperturbed system

at (±
√

1 − b2, 0) can be obtained as

J

(

y

u

)

(±
√

1−b2,0)

=
(

0 1

− 1
b2 (1 − b2) 0

)

,

whose eigenvalues λ1,2 = ±i 1
b

√
1 − b2 for 0 < b < 1 and

the equilibria (±
√

1 − b2, 0) are centre points and for the

case of b ≥ 1 these equilibria merge into (0, 0), which has

been discussed previously.

Equilibria bifurcation diagram of system (3) is plotted for

y versus parameter b in Fig. 1b. When 0 < b < 1, the dashed

line denotes the unstable one which implies the “click”

behaviour and the solid curves mark two stable branches,

which indicates two possible “resting” status of the dipteran

flight. While b > 1 there exists “no-click”, but a unique “rest-

ing” phenomenon occurs. Therefore the “non-click” condi-

tion is found when b = 1.

3.2 Hamiltonian function

Following the above discussions from the equilibrium sta-

tus to “click” mechanism, we then analyse the mechanism

from energy view point by employing one of the nonlin-

ear techniques through Hamiltonian. Therefore, multiplying

both sides of the second equation by the first in (5) leads to

uu̇ = y

(

1 −
b

√

1 − y2

)

ẏ. (6)

Integrating both sides of (6) yields the Hamiltonian function

as follows,

H(y, u) =
1

2
u2 −

1

2
y2 + b

(

1 −
√

1 − y2

)

. (7)

With the help of the Hamiltonian (7), the phase structure

of system (5) can be sketched and analysed for different val-

ues of the Hamiltonian H(y, u) = E, as shown in Fig. 4, to

reveal the multiple flight modes. When 0 < b < 1, as shown

in Fig. 4a (b = 0.75), E = 0 represents the homoclinic

orbit, which contains the saddle point (0, 0) implying “click”

and separates the periodic status (“clam” flight, as described

in [9] at different energy levels. Both cases of 1
2
(b − 1) <

E < 0 and E > 0 denote the periodic status which corre-

sponds to the “clam” flights at different energy levels. While

E = 1
2
(b − 1) indicates the pair of centres around which

bistable flight statu sustains. Similarly for b ≥ 1, as shown

in Fig. 4b (b = 1.0), the phase structure comprises a family

of periodic orbits for E > 0 centred at the unique equilib-

rium (0, 0) for E = 0. Accordingly, there exists “no-click”

but “resting” and “clam” flights.

More importantly, this analysis reveals correctly the char-

acteristics of the bounded (|y| < 1) flight mechanism

attributed by the irrational nonlinearity in the proposed

model. This existing phenomenon could not be explained by

the previous simplified models, such as the standard Duffing

system used by many [8,11,13].
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A novel model of dipteran flight mechanism 5

Fig. 5 Damping effect on flight

behaviour for ξ = 0.2 and

f0 = 0.0: a the basins of

attractions are shown in yellow

for the point (
√

1 − b2, 0) and

in blue for (−
√

1 − b2, 0), b the

separatrix on the border of the

basin of attractions is the stable

manifold tending to saddle point

(0,0) as time t → ∞. (Color

figure online)

4 Perturbed dynamics and multiple flight patterns

In this section, numerical analysis is carried out to further

investigate the nonlinear dynamics and to explore the mul-

tiple flight patterns of the perturbed system subjected to

both damping and the external harmonic excitations. All the

numerical results in the following sections are given by the

fourth order Runge–Kutta method which can ensure the accu-

racy of computation for the perturbed system.

4.1 Dissipative flight

In this subsection, the flight behaviour of the dissipative sys-

tem without input is investigated first. For the case when

ξ �= 0 and f0 = 0, Eq. (4) takes form

y′′ + 2ξ y′ − y

(

1 −
b

√

1 − y2

)

= 0, (8)

Damping ratio ξ is always assumed to be small, ξ < 1.

The equilibria of this damped system are the same as that

of the system (5). The equilibria (±
√

1 − b2, 0) of system

(8) are stable with the eigenvalues having negative real parts,

λ1,2 = −ξ ± i 1
b

√
1 − b2. The property of the saddle sin-

gularity (0, 0) remains unchanged as that of system (5). The

basin of attractions of the stable singularities (±
√

1 − b2, 0)

are shown in Fig. 5a and the basin boundary is plotted in

Fig. 5b. The point (0, 0) is located in the basin boundary.

This boundary is the stable manifold for the point (0, 0). It

is the separatrix curve to separate the basin of attractions

of equilibria (±
√

1 − b2, 0). It can be seen that from both

Fig. 5a, b that without external excitation (input), the flights

remains a “resting” stage due to the energy exhausted.

4.2 Low frequency excitation and bursting phenomena

The system responses to external harmonic input to the

flight motor are examined via time history series, as seen in

Fig. 6a–d for ξ = 0.1, f0 = 0.125 and b = 0.85. It is

observed that high frequency bursting phenomena are

detected by applying low frequency excitations. As the exci-

tation frequency decreases, the flight bursting phenomena

becomes more pronounced. Figure 6 also shows the transi-

tion from spiking, as shown in Fig. 6a, at higher frequency

of ω = 0.35 to bursting, as shown in Fig. 6b–d, at lower

exciting frequencies of ω = 0.2, 0.1 and ω = 0.05, respec-

tively. This results are in agreement with both analytical and

experimental results given in [9,31–33].

From the dynamical analyse point of view, the process

of bursting behaviour can also been clearly demonstrated

by phase portrait and the corresponding Poincaré sections

which will be marked by “*” for periodic solutions in the

following discussions without mentioning. Parameters taken

as ξ = 0.1, f0 = 0.125 and b = 0.85 in Fig. 7 to show the

bursting behaviours of the flights. For example, no subhar-

monic response occurs in the phase portrait shown in Fig. 7a

for ω = 0.35, which means no bursting as evidenced in the

time history in Fig. 6a. Higher frequency bursting appears

as the exciting frequency decreases, as seen in Fig. 7b–d

for ω = 0.2, 0.1 and ω = 0.05, respectively. These burst-

ing phenomena correspond to the subharmonic resonances

of (3 : 1), (7 : 1) and higher ones, respectively.

4.3 Multiple flight modes and “complex” flights

In this subsection, we investigate the multiple flight modes

affected by the amplitude of the external excitation from the

nonlinear dynamics point of view. It is found that there coex-

ists period doubling leading to the coexisted of chaos, which

merge into a large chaotic motion as the parameter varies,

which indicate the transition from the co-existing “clam”

modes to “complex” [9] flight patterns. In all Figs. 8, 9 and 10,

the periodic solutions are marked with “*”s and the chaotic

attractors are colored blue.

4.3.1 Complex flight influenced by the amplitude of external

excitation

Bifurcation diagrams are given for displacement y versus

the amplitude f0 of the external excitation with ξ = 0.1,
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6 Q. Cao et al.

Fig. 6 Flight bursting

mechanism described by the

time histories when ξ = 0.1,

f0 = 0.125 and b = 0.85 and

for frequencies: a ω = 0.35,

b ω = 0.2, c ω = 0.1 and

d ω = 0.05
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Fig. 7 Flight bursting

mechanism characterised by

phase portraits for, both

trajectories and the

corresponding Poincaré sections

for the same parameters as in

Fig. 6
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b = 0.85 in Fig. 8a, and corresponding Lyapunov expo-

nent bifurcation is also given in Fig. 8b to reflect the degree

of complexity of the flight behaviour. The bifurcation dia-

grams are plotted from the different initial conditions with

blue and black respectively, from which the existence of a

pair of period doubling series can be seen from the bifurca-

tion diagram, Fig. 8a.

The series co-existed pair of period doublings, seen in

Fig. 8c for f0 = 0.05, Fig. 8d for f0 = 0.085; Fig. 9a for

f0 = 0.088 and Fig. 9b for f0 = 0.091, lead to the respective
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A novel model of dipteran flight mechanism 7

Fig. 8 Transitions between

different flight modes affected

by the amplitude f0 versus y,

ξ = 0.1, b = 0.85: a bifurcation

diagrams: starting from a pair of

period solutions marked blue

and black respectively.

b Lyapunov exponents;

co-existing period doubling to

chaos and merged to a new

chaotic attractor: c co-existing

period one solutions for

f0 = 0.05, d co-existing period

two solutions for f0 = 0.085.

(Color figure online)

Fig. 9 Continued from

Fig. 8c, d, the co-existing period

doubling for ξ = 0.1 and

b = 0.85: a co-existing period

four solutions for f0 = 0.088,

b co-existing period eight

solutions for f0 = 0.091; which

lead to the co-existing chaotic

solutions and then these

co-existing chaos will be merged

into a new chaotic attractor:

c co-existing chaotic solutions

f0 = 0.1, and d the merged

chaotic motion f0 = 0.15

chaotic attractors, as shown in Fig. 9c when f0 = 0.10, which

then can merge into a single chaotic attractor, as presented

in Fig. 9d when f0 increases to f0 = 0.125. The Poincaré

sections for both periodic and the chaotic solutions are plotted

in the corresponding figures.

Similarly, as f0 further increases, the process of a periodic

three doubling leading to chaos can be observed from Fig. 8a,

as well as from the periodic three solution shown in Fig. 10a

for f0 = 0.15 bifurcating to periodic six in Fig. 10b for

f0 = 0.175 to the corresponding chaotic branches in Fig. 10c
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8 Q. Cao et al.

Fig. 10 Multiple flight modes

with different beating

frequencies demonstrated by the

process from period three

doubling to a chaotic attractor

for ξ = 0.1 and b = 0.85: a a

sudden change at f0 = 0.15

from the merged chaos to period

three motion as f0 increases,

b period doubling to period six

f0 = 0.175, c a three winged

chaotic motion, for f0 = 0.183

and d the chaotic attractors

f0 = 0.19

Fig. 11 Transitions between

different flight modes influenced

by damping ξ demonstrated by

bifurcation diagram, Lyapunov

exponent, trajectories and the

corresponding Poincaré sections

for the responses to the viscous

damping ξ for ω = 1.0,

f0 = 0.125 and b = 0.85:

a bifurcation diagram for ξ

versus u, b the corresponding

Lyapunov exponents, c a period

five solution for ξ = 0.1095 and

d the co-existing periodic

attractors for ξ = 0.057: the pair

of period five, marked with

black and blue, and the larger

amplitude vibration, marked

with red. (Color figure online)

for f0 = 0.183 and finally to the chaotic attractor in Fig. 10d

for f0 = 0.19.

These nonlinear analysis explains the transition mecha-

nism of the depteran flight from simple “calm” flight to “com-

plex” flight patterns when subjected to an increasing external

excitation force. It should be noted that when decreasing exci-

tation forces the “complex” flight mode can also transit back

to a simple “calm” or to another “complex” flight as clearly

demonstrated from bifurcation diagram Fig. 8a.

4.3.2 Multiple flight modes affected by damping

In this subsection, flight patterns affected by viscous damp-

ing are discussed and the “complex” flight modes are also
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A novel model of dipteran flight mechanism 9

Fig. 12 Basin analysis for the

co-existing flight patterns using

Poincré sections for ω = 1.0,

f0 = 0.125, ξ = 0.057:

a for b = 1.25, b for b = 0.85,

c for b = 0.75 and

d for b = 0.5, respectively
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(d)(c)

presented for ω = 1.0, f0 = 0.125 and b = 0.85. Bifurca-

tion diagram and the corresponding Lyapunov exponents to

parameter ξ are plotted in Fig. 11a and b respectively. There

also exits transitions to “complex” flight from the period

doubling when ξ varies from ξ = 0.2–0.11 and the sud-

den change happens as damping ξ decreases to ξ = 0.082,

which leads to a “calm” flight of period three from the “com-

plex” flight mode. Similarly, this flight pattern repeats as ξ

decreases further.

In addition to complex flight behaviours, periodic win-

dows for “clam” flight can also be found from the bifurcation

diagram, Fig. 11a. A period five window near ξ = 0.1095

and a periodic window for a pair of period five near ξ = 0.057

are clearly displayed in the bifurcation diagram and the cor-

responding the trajectories are also plotted in Fig. 11c and

d respectively. It is found that this pair of period five solu-

tions, marked with blue and black respectively, coexist with

another larger amplitude motion of which the Poincaré sec-

tion is marked with red.

4.3.3 Basin analysis of co-existing flight patterns

In this subsection basin analysis of the co-existing flight

patterns of “calm” flight and “complex” flights are carried

out. Figure 12 shows the Poincaré sections or the strobo-

scopic mappings and the corresponding basins for ω = 1.0,

f0 = 0.125, ξ = 0.057 and different values of b, in which

the area coloured black means undefined.

The analysis shows that for b ≥ 1 there exits a pair of sta-

ble periodic solutions, or two possible “clam” flight modes,

one with a small and the other with a large amplitude, see for

example, for b = 1.25 as shown in Fig. 12a, where the light

grey is the basin of the solution with larger amplitude marked

yellow, while blue is the basin of the smaller one marked red.

Figure 12b for b = 0.85 shows the basins, coloured red,

blue and light grey, of the associated co-existed solutions

or the flight modes of a pair of period five, marked green

and white, and yellow, respectively. A Wada fractal basin

boundary [34–37] can be clearly shown from Fig. 12b that

any point that is on the boundary of the basin for the periodic

one solution is also simultaneously on the boundary of the

basins of the pair of periodic five solutions. If decreasing

b to 0.75, there co-exists a chaotic attractor or “complex”

flight as well as a period one solution or a “clam” flight,

which are plotted blue and yellow, respectively in Fig. 12c

and their basins are colored red and light grey. While further

decreasing b to 0.5, the basin is also reduced and there only

exist two possible “clam” flights corresponding to periodic

one solutions, as marked yellow and grey, and the their basins

are plotted in blue and red, respectively.

It can be seen from the above basin analysis that the “clam”

flight mode with a larger amplitude in Fig. 12a disappears as

parameter b decreases and the other one bifurcates into a pair

of period five type, then a complex mode and finally a pair

of periodic one type as b deceases further.

In general, the basins of the co-existing modes vanish

when parameter b decreases to zero. However, the periodic
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solutions with smaller amplitudes always exist regardless

parameter b changes.

5 Conclusions and discussion

In this paper, a novel model inspired by the mechanism of

dipteran flight motor has been proposed to investigate the

flight mechanism from the nonlinear dynamics point of view.

This evolved model has irrational nonlinear term due to the

geometrical configuration of the inclined bars linked with

springs and mass. The technique of nonlinear dynamical

analysis to the bio-inspired irrational nonlinear system has

been developed, which enables us to reveal correctly the char-

acteristics of the bounded (|y| < 1) flight mechanism and

variety of flight patterns associated with the profound dynam-

ical behaviours of the nonlinear system. The main findings

are surmised as follows:

1. The bounded flight mechanism in depteran flight motor

has been analysed and could not be characterised by the

classical Duffing type systems.

2. “Click” transition behaviour has been clearly modelled

by parameter b termed as a switch value, i.e. the “click”

occurs only when 0 < b < 1, while the “click” switches

off at b = 1.

3. High frequency flight bursting phenomena induced by

low frequency excitation have been found and illustrated

using both phase portraits and time history series.

4. Multiple flight patterns, such as “resting”, “calm” and

“complex” modes have been observed using energy

method analytically as well as nonlinear dynamics

numerically.

5. Complex co-existing flight modes are revealed using

basin analysis and the behaviours demonstrated by the

shrinking of basins as b decreases and will vanish when

parameter b tends to zero. However, the periodic solu-

tions with smaller amplitudes always exist regardless b

changes.

Further researches have been actively undertaken by the

current authors in the following directions: (i) to develop the

methodologies for the irrational nonlinear system to derive

the dynamic responses under perturbations; (ii) to determine

the analytical measures e.g., the construction of Melnikovian

to predict the border of chaos; (iii) to investigate the energy

transmission mechanism [38–40] using power flow approach

for the irrational nonlinear dynamic systems.
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