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A Novel Model-Predictive Cruise Controller for Electric Vehicles and

Energy-Efficient Driving

Tim Schwickart1, Holger Voos1, Jean-Régis Hadji-Minaglou2 and Mohamed Darouach3

Abstract— This paper presents a novel energy-efficient
model-predictive cruise control formulation for electric vehicles.
A predictive eco-cruise controller involves the minimisation of a
compromise between terms related to driving speed and energy
consumption which are in general both described by nonlinear
differential equations. In this work, a coordinate transformation
is used which leads to a linear differential motion equation
without loss of information. The energy consumption is modeled
by the maximum of a set of linear functions which is determined
implicitly by the optimisation problem and thus leads to a
piecewise linear model. The reformulations finally result in a
model-predictive control approach with quadratic cost function,
linear prediction model and linear constraints that corresponds
to a piecewise linear system behaviour and allows a fast
real-time implementation with guaranteed convergence. The
controller and the underlying dynamic model are designed to
meet the properties of a series-production electric vehicle whose
characteristics are identified by measurements. Simulation re-
sults of the MPC controller and the simulation model in closed-
loop operation finally provide a proof of concept.

I. INTRODUCTION

The cruising range is one of the most decisive drawbacks

of electric vehicles and an important problem that needs to

be solved in electric mobility. Since the on board (tank-to-

wheel) efficiency of electric vehicles can hardly be improved,

there are only two possibilities to increase the range. The

first one is the improvement of the battery technology

towards higher capacities and lower weights. However, soon

enhancements here are questionable. The second opportunity

is to address the driving style that has a huge influence on the

energy consumption of a vehicle [1]. Due to possible savings

of 10 to 20 % and the fact that efficiency improvements of

this magnitude cannot be expected by improving the vehicle

technology, it is a promising approach to improve the driving

style in order to save energy.

A sophisticated way to address this problem is controlling

the driving speed automatically by a driver-assistance system

(eco-cruise control). Eco-cruise control can be described

as an optimal control problem [2], [3]. The accelerator

pedal position is the control input of the system while the

driving speed and the energy consumption are given by an

underlying dynamic vehicle model (based on the previous

knowledge of the speed limits and the road slope). The

control inputs are the optimisation variables that minimise
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a cost function containing terms related to driving speed and

energy consumption. As the car is running under changing

traffic and environment conditions, it is hardly possible to

calculate the complete optimal driving strategy in advance.

A suitable approach to overcome this problem is to ap-

ply model-predictive control (MPC) in a receding horizon

fashion, where the optimisation is carried out for a finite

prediction horizon and is repeated at every time step. This

control strategy has been considered as the tool of choice for

the eco-cruise control of fuel-powered cars in several works

[4], [5], [6]. Recently, eco-cruise control for purely electric

vehicles has been considered in [7], [8], [9]. The biggest

challenge in the application of MPC is the requirement of

a fast online-optimisation which is hampering a real-time

implementation. Therefore, the formulation of the optimal

control problem is decisively important in order to achieve

a fast solution. The most desirable formulation comprises

a quadratic cost function and linear constraints including a

linear dynamic plant model, since efficient solvers with guar-

anteed convergence are available for the resulting discretised

quadratic optimisation problem.

However, an overall linearisation of the vehicle dynamics

around one operation point is not satisfactory since the pre-

diction has to be carried out over a wide range of operating

points whereas a linearisation only yields good results in the

area close to the operating point. Previous works use analyti-

cal solutions of the nonlinear optimal control problem based

on Pontryagin’s Maximum Principle (indirect methods) [2],

[3] or alternatively efficient discretisation techniques to solve

the nonlinear optimisation problem directly [5], [10], [11].

Using analytical solutions however, the optimal controller

cannot be designed in a flexible way since it is then difficult

to consider constraints on the states, dynamically changing

weightings or measured disturbances. On the other hand,

the numerical methods for nonlinear optimisation do not

guarantee a (fast) convergence of the optimisation algorithm.

This paper contributes a model-predictive eco-cruise con-

troller especially for an electric car using a quadratic cost

function and linear constraints (Section III). The linear dy-

namical model is obtained by reformulations of the equations

and an exploitation of the optimisation problem setup instead

of an overall linearisation. Thus, the nonlinearities are con-

sidered implicitly by the control system while the results are

equivalent to a nonlinear approach. The proposed controller

is simulated in closed-loop operation with a simulation model

of a series electric vehicle - a Smart Electric Drive (ED) to

investigate the closed-loop performance (Section IV). This

is followed by the conclusions in Section V.



II. OVERALL SYSTEM SETUP

The proposed MPC controller is part of an experimental

cruise-control system that will be tested in a real electric

vehicle (Smart ED). The system is planned to work as a

driver-assistance system that controls the speed automati-

cally depending on predictive information about the road

curvature, the road slope angle, the speed limits (from the

digital maps of a navigation system) and the distance to the

preceding vehicle (measured by an automotive radar).

A reference generator (not considered in this work) gen-

erates a safe speed set-point trajectory based on this in-

formation. Given the speed reference, the model-predictive

cruise controller aims at finding a traction force trajectory

leading to an optimal compromise between speed reference

tracking and minimisation of the energy consumption. Since

the traction force cannot serve directly as control input to the

vehicle, a subsidiary controller regulates the traction force

by actuating the accelerator pedal. The brake pedal is not

planned to be actuated in this setup. This paper focuses on

the design of the MPC controller. The subsidiary traction

force controller is assumed to work ideally, here.

III. CONTROLLER DESIGN

The synthesis of the energy-efficient model-predictive

cruise controller comprises the underlying dynamical model

as well as the constraints and the cost function.

A. Underlying Dynamic Model for the Controller Design

A suitable model needs to meet the dynamic behaviour

of the Smart ED whose centre-piece is a permanent-magnet

synchronous machine. This three-phase AC machine is able

to work as motor or generator allowing energy recovery when

decelerating. A lithium-ion battery serves as accumulator and

supplies the synchronous machine via a DC/AC converter.

The rear wheels are driven by the motor through a gear box

with one fixed transmission ratio.

The model is subdivided into a model of the driving speed

v (Section III-A.1) and a model of the energy consumption

Eel of the vehicle (Section III-A.2). The model input (and

control input) is the traction force at the wheels Ftrac.

1) Model of the Longitudinal Motion Dynamics: The

common approach to model the longitudinal dynamics of

a vehicle is to consider the car as a point mass and describe

a one-dimensional motion based on Newton’s second law
∑

F = m · dv
dt

. The main forces acting on the vehicle in

longitudinal direction are the traction force Ftrac as well as

the driving resistance forces [12].

The rolling resistance force Fr is a function of the road

slope angle αsl. The parameters are the vehicle kerb weight

mv , the payload ml, the gravitational constant g and the

rolling resistance coefficient of the tyres cr [12]. In curves,

cr increases slightly but this effect is neglected here.

Fr = (mv +ml) · g · cr · cos
(

αsl(t)
)

(1)

The grade resistance force Fgr depends on road slope

angle as well [12].

Fig. 1. Forces acting on the vehicle in longitudinal direction.

Fgr = (mv +ml) · g · sin
(

αsl(t)
)

(2)

The air drag resistance force Fd is a function of the square

of the driving speed v. The coefficients are related to the

shape of the vehicle (projected front surface area Av , air

drag coefficient cd) and the air density ρa [12].

Fd =
1

2
· ρa · cd ·Av · v(t)

2 (3)

A diagram of the forces acting in longitudinal direction is

given in Fig. 1.

Given these forces, the acceleration of the vehicle in

longitudinal direction can be computed from the difference

between the traction force and the driving resistance forces

divided by the equivalent mass of the vehicle meq .

dv(t)

dt
=

(

Ftrac(t)− Fr(αsl(t))

−Fgr(αsl(t))− Fd

(

v(t))
)

/meq

(4)

The equivalent mass meq is given by the relation meq =
(mv +ml) · ei which takes the rotational inertia of the drive

train components into account by augmenting the vehicle

mass (mv +ml) by a constant factor that is assumed to be

ei = 1.01.

The vehicle specific parameters in (1) to (4) are accessible

from data sheets [13]. The rolling resistance coefficient cr
is assumed to be 0.013. The gravitational acceleration is

assumed to be g = 9.81m
s2

and the density of surrounding air

to be ρa = 1.2 kg
m3 . All parameters are summarised in Tab. I.

For the application of a predictive cruise controller how-

ever, it is useful to describe the model (4) as a function of

the position instead of time, since the inputs related to the

road ahead (slope angle and speed limits) are also given as

functions of the position. The model can be reformulated by

applying the following transformation:

d

ds
=

d

dt
·
dt

ds
=

d

dt
·
1

v
(5)

The reformulation (5) consequently leads to a motion equa-

tion depending on the inverse of a state variable (the velocity

v). This is disadvantageous for a fast solution of the opti-

misation problem. Following the idea in related works ([11],

[14]), a coordinate transformation is applied to calculate the

kinetic energy

ekin =
1

2
·meq · v(t)

2 (6)



Fig. 2. Measured traction force of the Smart ED at full-load (100 %
accelerator position, black line) and coasting (pedals released, pink line).
The linear approximation is given in blue. The hatched area is the feasible
region of the traction force Ftrac.

of the moving vehicle instead of the driving speed. Since

only positive speed values are considered, the speed can be

calculated from the kinetic energy values at a given vehicle

mass after the optimisation. Derivation of (6) with respect to

the position s yields

dekin
ds

= meq ·
dv

dt
(7)

By applying the coordinate transformation (7) to the mo-

tion equation (4), the following linear differential equation

is obtained. The values of the sine and cosine functions

of the slope angle αsl(s) are considered as a measurable

disturbance and assumed to be known predictively.

dekin
ds

= Ftrac(s)−Fr

(

αsl(s)
)

−Fgr

(

αsl(s)
)

−Fd

(

ekin(s)
)

(8)

Herein, Fd is rewritten in terms of kinetic energy:

Fd(ekin) =
1

meq

· ρa · cd ·Av · ekin(s)

Since (8) is only valid for positive kinetic energy values, the

inequality constraint

ekin ≥ 0 (9)

must be imposed on the optimisation problem.

To stay within the limitations of the vehicle, the traction

force needs to be limited. The measured full-load curve as

well as the traction force at coasting (giving the maximum

and minimum possible traction force depending on the

kinetic energy of the moving vehicle) of the Smart Electric

Drive are given in Fig. 2. The full-load curve has been

measured at fully pushing the accelerator pedal but without

pressing the ”boost” switch below the accelerator pedal of the

Smart ED. The traction force at coasting has been measured

with released pedals (slight energy recovery).

However, since only linear constraints should be consid-

ered here, the measured curves are linearised using a least-

squares approximation, resulting in the hatched polygon in

Fig. 2 and represented by the following linear inequality:

Fig. 3. Electrical battery power consumption of the electric vehicle as a
function of the driving speed v and the traction force Ftrac

Ftrac,min ≤ Ftrac ≤ c1 · ekin + c2; ekin ≥ 0 (10)

For coasting (driving with accelerator and brake pedal

released), a constant minimum brake force Ftrac,min is

considered.

2) Dynamic Model of the Energy Consumption: In order

to relate the electrical input of the drive train with the

mechanical power output, the drive train and motor charac-

teristics must be modeled. A detailed model of all physical

processes in these components is not suitable here due to its

complexity.

Here, measurements of the overall drive train character-

istics are available in the form of a characteristic map. The

battery power Pbatt is considered as a function of the traction

force at the wheels Ftrac and the driving speed v. The data to

set up this relation has been extracted from measurements in

static operating points on a dynamometer test bench. Since

the battery power is measured, all drive train and ancillary

losses are included. The resulting characteristics are depicted

in Fig. 3. It is assumed that these characteristics measured in

quasi-static operation also hold in dynamic operation since

the electrical time constants are much faster than the ones

related to the mechanics. Quasi-static drive train models are

widely used in applications with accurate results [12].

Since the vehicle motion model (8) is formulated with

respect to the position s, the energy consumption must also

be derived in terms of position. Here, it is advantageous

that every operating point in the power consumption map

(Fig. 3) is related to a certain driving speed due to the

fixed transmission ratio. Hence, each point of the power

consumption map (Fig. 3) is divided by its related driving

speed v according to reformulation (5) to obtain the energy

consumption per meter. In addition to this, the x-axis is

rescaled in terms of the kinetic energy of the moving vehicle

in order to fully comply with the reformulated motion

equation (8). The resulting map of the energy consumption

per meter as a function of the kinetic energy and the traction

force is given in Fig. 4a. The objective is to implement

an approximation of these characteristics in the underlying

dynamic model of the controller.



Fig. 4. The figure shows the vehicle energy consumption per meter. The x-
axis has been rescaled in terms of the kinetic energy of the moving vehicle.
a) gives the measured characteristics; b) gives the approximation by six
linear inequalities.

One possible method for the approximation of energy

consumption maps is the use of fitted polynomials [3],

[15]. Nevertheless, a closer look at Fig. 4a shows that the

given characteristics are more suitable for a piecewise linear

approximation since they can hardly be captured by one

single lower order polynomial. The use a piecewise linear

problem formulation would be appropriate but in general

requires the use of different dynamic models in different

regions of the state space (i.e. operating points) which makes

the problem more time-consuming to solve and less suitable

for a real-time implementation. In the following, a problem

formulation is presented that avoids the use of different

dynamic models but still represents a piecewise linear energy

consumption behaviour.

First of all, six linear functions (P1 to P6) that form the

lower boundary of a convex set are introduced. They are

fitted to the different regions of the map in Fig. 4a by a

least-squares regression, see Fig. 4b. The different regions

are chosen manually with respect to the gradient of the map.

The approximations have the form

Pi(ekin, Ftrac) = ai · ekin + bi · Ftrac, i = 1...6 (11)

Secondly, P1 to P6 are transformed into inequality con-

straints on a decision variable ucons that represents the

energy consumption of the vehicle per meter.

Pi : ucons ≥ ai · ekin + bi · Ftrac, i = 1...6 (12)

This step will lead to an approximation of the energy con-

sumption map by the maximum of the set of linear functions

(11) because the minimisation of the energy consumption

will be part of the objective function.

ucons(ekin, Ftrac) = max
(

Pi(ekin, Ftrac)
)

, i = 1...6

(13)

The optimisation problem (as discussed later in Section

III-B) is then set up in a way that this maximum is deter-

mined implicitly in the optimisation and the decision variable

ucons always lies on the boundary of the feasible region and

hence represents the energy consumption per meter of the

vehicle according to the following piecewise linear model:

ucons = ai · ekin + bi · Ftrac if Pi is active

ucons ≥ aj · ekin + bj · Ftrac for j 6= i
(14)

In other words, it can be stated that one of the inequality

constraints (12) is always active. Which one is active depends

on the actual operating point (specified by the kinetic energy

ekin and the traction force Ftrac). Hence, the variable ucons

represents a piecewise linear approximation of the power

consumption per meter without the necessity of defining a

piece-wise changing dynamic model explicitly and using a

solver for piece-wise linear problems.

Given this information, the energy consumption of the

vehicle Eel can simply be modeled by integrating the de-

cision variable ucons (representing the energy consumption

per meter) with respect to the position.

dEel

ds
= ucons (15)

Approximating nonlinear maps by (the maximum of) lin-

ear functions is a known technique in nonlinear optimisation

and called separable programming [16]. However, to the

best of the authors’ knowledge, this method has so far

not been used to model piecewise linear dynamics in MPC

formulations.

B. Overall Problem Formulation

Based on the results of the previous sections, the complete

model-predictive eco-cruise control problem is formulated

as a dynamic optimisation problem with quadratic cost and

linear constraints. The cost function consists of the weighted

sum of the squared kinetic energy tracking error at the end

of the prediction horizon

M1(send) = Q1 ·
(

ekin(send)− ekin,ref (send)
)2

(16)

and the squared energy consumption at the end of the

prediction horizon

M2(send) = Q2 · Eel(send)
2 (17)

as well as the accumulated kinetic energy tracking error

throughout the horizon.

L(s) = Q3 ·
(

ekin(s)− ekin,ref (s)
)2

(18)

Including the terminal energy consumption Eel(send) (in-

stead of the accumulated) leads to an ”intelligent” predic-

tive controller behaviour with the freedom to increase the

consumption at any position if there is the benefit to save

more energy later as a result of this anticipatory action. The

squared terminal kinetic energy tracking error (ekin(send)−
ekin,ref (send)

2 is included in the cost function in order to

prevent the controller from planning an undesirable standstill



of the vehicle at each optimisation instant. The accumulated

kinetic energy tracking error finally is a measure for the

deviation from the speed reference trajectory. The initial

value of the energy consumption Eel(s0) is constant (not

updated) throughout the simulation and ensures that Eel can

never be negative throughout the prediction horizon. The

distance to the preceding car is considered in the speed

reference generation to keep the optimisation simple.

The complete optimisation problem is given as follows:

min
Ftrac(s),ucons(s)

M1(send) +M2(send) +

∫ send

s0

L(s) · ds

(19a)

subject to the model of the system dynamics:

dekin
ds

= Ftrac − Fr − Fgr − Fd(ekin)

dEel

ds
= ucons

(19b)

subject to the initial conditions:

Eel(s0) = Eel,0; ekin(s0) = ekin,0 (19c)

subject to the limits on states and inputs:

0 ≤ ekin; Ftrac,min ≤ Ftrac ≤ c1 · ekin + c2 (19d)

subject to the approximations of the power consumption

map:

ucons ≥ ai · ekin + bi · Ftrac, i = 1...6 (19e)

As already mentioned in Section III-A.2, this problem

formulation includes the linear inequality constraints (19e)

on the decision variable ucons. In the cost function, ucons

only affects the energy consumption Eel (see (15), (17)), i.e.

the cost function is separable with regard to this variable.

Since the initial value Eel(s0) (see (19c)) ensures that Eel

can never be negative throughout the prediction horizon,

the optimiser will make the value of Eel(send) as small as

possible. This can only be achieved by making the decision

variable ucons as small as possible at each position step.

Hence, ucons will always lie on the boundary of the feasible

region defined by the inequality constraints (19e). Since dif-

ferent constraints become active in different operating points,

this leads to a problem formulation that is equivalent to the

use of a piecewise linear model of the energy consumption

per meter ucons.

IV. SIMULATION OF THE CLOSED-LOOP CONTROL

For the simulation of the control system, the proposed

MPC controller is simulated in closed loop with the dynamic

motion model formulated in terms of time (4) and the vehicle

energy consumption model using the lookup table according

to Fig. 3. A scenario including down-hill and up-hill driving

is chosen. The speed reference and road slope profile is given

in Fig. 5a+b.

The scenario is simulated twice with the proposed MPC

controller but once with a zero weight on the energy con-

sumption leading to pure kinetic energy reference tracking

TABLE I

PARAMETERS OF THE CONTROLLER SETUP

symbol value symbol value

Av 1.95 m2 meq 1200 kg
cd 0.38 − ml 170 kg
cr 0.013 − mv 975 kg
g 9.81 m/s2 ρa 1.2 kg/m3

a1 -0.0423 1/m b4 0.2876

a2 -0.0034 1/m b5 0.5048

a3 1.266E-4 1/m b6 0.62

a4 -0.0054 1/m c1 -0.0056

a5 -5.91E-4 1/m c2 3505

a6 5.64E-6 1/m Ftrac,min -658 N
b1 1.5274 Q1 5

b2 1.3390 Q2 0.75

b3 1.2307 Q3 0.5

Fig. 5. Simulations results of the vehicle motion and energy consumption
in closed-loop control.

for comparison. The optimisation problem (19) is discretised

and solved consecutively by the MATLAB Model-Predictive

Control Toolbox and the simulation is run within SIMULINK.

The prediction horizon of the MPC controller comprises 40

steps of 10 m. The results are depicted in Fig. 5.

It should be noted that the simulation model is run with re-

spect to time while the controller computes its predictions as

a function of the position. This is equivalent to the situation

in practical implementation, where the controller sampling

time is constant while the travelled distance between two

time instants depends on the driving speed. However, if the

sampling time is sufficiently small, this will not result in an

error.

The pure kinetic energy reference tracking controller starts

accelerating the car as fast as possible and then keeps the

speed constant despite of the disturbances (road gradient

angle).

The eco-cruise controller accelerates at first with a pul-

sative traction force pattern and keeps the car then at a

constant steady driving speed of 64.9 km/h on the even



Fig. 6. Operating point trajectory (dashed green line) of the system
controlled by the proposed eco-cruise controller.

road segment. Before the down-slope is reached, the vehicle

decelerates. This shows the predictive behaviour of the MPC

controller and serves to save energy since the speed loss

can be recovered with no traction force effort during the

upcoming down-slope. At down-hill driving, the vehicle

accelerates up to a small overshoot over the desired speed of

70 km/h. This kinetic energy reserve allows to save energy

on the following even road segment. In front of the following

up-slope, the driving speed is decreased again down to

62.8 km/h.

To understand the acceleration pattern of the eco-cruise

controller at the beginning of the simulation, a closer look

at the simulated operating point trajectory is taken. Fig. 6

shows the projected top view onto the piecewise-linear

approximation of the power consumption map that has been

presented in Fig. 4.

The system trajectory leaves the magenta coloured plane

(valid for operating points at very low speed) already in the

second position step by reducing the traction force at a now

higher driving speed to avoid driving at this state of high

energy consumption. The simulated vehicle accelerates then

along the borderline of the magenta and orange plane. After

one position step at the maximum traction force limit, the

operating point then moves to the intersection between the

orange and yellow plane. This provides a good compromise

of accelerating at a higher traction force without spending

the progressive energy cost at the orange plane. The system

trajectory shows the desired behaviour of avoiding driving at

low efficiencies and the acceleration from standstill is still

performed reasonably fast.

Since problem (19) only consists of quadratic cost function

terms and linear constraints, the discretised problem can be

written in the standard form of quadratic programming and

turns out to be convex. The proof is omitted here for brevity.

Convex quadratic programs can be solved in polynomial time

which is a good basis for a real-time capable algorithm.

In practical tests, the optimisation shall be solved every

0.1 seconds. The time to solve the optimisation problem

within MATLAB on a desktop PC (Intel Core i7) varies

between 0.3 and 0.6 seconds during the presented simulation.

Solving the same problem with a C-code based quadratic

programming solver, a significantly faster real-time capable

computation can be expected.

V. CONCLUSION

The eco-cruise control problem is converted into the form

of a quadratic optimisation with linear constraints without

applying an overall linearisation. The major nonlinearities are

considered by using reformulations of the original problem.

The motion equation is reformulated to obtain a linear

differential equation. The energy consumption of the vehicle

is modeled by the maximum of several linear functions that

is determined implicitly by the optimisation which makes

the formulation equivalent to the use of a piecewise linear

model. This provides a better fit of the vehicle characteristics

than lower order polynomials. The proposed formulation

guarantees a fast solution of the optimisation problem with

guaranteed convergence and is much more suitable for a real-

time implementation than a nonlinear problem formulation.

The next step will be the practical implementation of the

controller in the real vehicle.
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