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Antenna arrays play an increasingly important role in modern wireless communication systems. However, how to effectively
suppress and optimize the side lobe level (SLL) of antenna arrays is critical for communication performance and
communication capabilities. To solve the antenna array optimization problem, a new intelligent optimization algorithm called
sparrow search algorithm (SSA) and its modification are applied to the electromagnetics and antenna community for the first
time in this paper. Firstly, aimed at the shortcomings of SSA, such as being easy to fall into local optimum and limited
convergence speed, a novel modified algorithm combining a homogeneous chaotic system, adaptive inertia weight, and
improved boundary constraint is proposed. Secondly, three types of benchmark test functions are calculated to verify the
effectiveness of the modified algorithm. Then, the element positions and excitation amplitudes of three different design
examples of the linear antenna array (LAA) are optimized. The numerical results indicate that, compared with the other six
algorithms, the modified algorithm has more advantages in terms of convergence accuracy, convergence speed, and stability,
whether it is calculating the benchmark test functions or reducing the maximum SLL of the LAA. Finally, the electromagnetic
(EM) simulation results obtained by FEKO also show that it can achieve a satisfactory beam pattern performance in practical arrays.

1. Introduction

The latest development trend of wireless communication
systems is to realize the antenna array system with strong
directivity and maneuverability, so that it can radiate and
receive energy to the maximum extent in a specific direction
and reduce the waste of energy by suppressing the SLL in
noninteresting directions [1]. According to the pattern mul-
tiplication theorem, the pattern of an antenna array can be
obtained by multiplying the element pattern by the array fac-
tor. By adjusting the spacing, excitation amplitude, and phase
of array factor, the antenna array can have the characteristics
of high gain, narrow beam, low SLL, and easy electrical scan-
ning [2]. In the field of scientific research and engineering
practice, most of the problems encountered can be attributed
to solving optimization problems, and the design and optimi-
zation of the antenna array are no exception [3]. With the
development of computer technologies and computational
electromagnetics, some intelligent optimization algorithms

that simulate the behavior mechanism of biological groups
or the laws of natural phenomena have begun to appear in
the vision of many scholars. With its unique advantages in
solving large-scale, nonlinear, and other complex optimiza-
tion problems, the design and optimization technology of
antenna arrays based on an intelligent optimization algo-
rithm has always been a research hotspot in the field of EM
optimization [4].

In the past few decades, various intelligent optimization
algorithms have been implemented to optimize and design
antenna arrays, such as genetic algorithm (GA) [5], particle
swarm optimization (PSO) [6], bees algorithm (BA) [7],
biogeography-based optimization (BBO) [8], firefly algo-
rithm (FA) [9], cat swarm optimization (CSO) [10], cuckoo
optimization algorithm (COA) [11], backtracking search
algorithm (BSA) [12], symbiotic organisms search (SOS)
[13], grey wolf optimization (GWO) [14], extended GWO
(GWO-E) [15], spider monkey optimization (SMO) [16],
gravitational search algorithm (GSA) [17], invasive weed
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optimization (IWO) [18], elephant swarm water search
algorithm (ESWSA) [19], grasshopper optimization algo-
rithm (GOA) [20], and equilibrium optimization algorithm
(EOA) [21]. These algorithms have been successfully applied
in this field. However, according to no free lunch (NFL)
theorem, no algorithm can perform best on all kinds of
optimization problems [22]. Therefore, finding and research-
ing more efficient algorithms are still a problem worthy of
attention in the field of EM optimization.

SSA is a new intelligent optimization algorithm proposed
by Xue and Shen in 2020. It is mainly inspired by the foraging
and antipredation behaviors of sparrows. It has the charac-
teristics of simple implementation, few adjustment param-
eters, and high expansibility and has been successfully
applied in many scientific research and engineering prac-
tice fields [23]. For example, [24] proposed an improved
SSA to solve the path planning problem of UAV under
constraint and proved that the route generated by this
method is better than that by the other four algorithms in
the same environment. Wang and Xianyu used SSA to solve
the optimal configuration model of distributed power supply
for the first time and verified the effectiveness and superiority
of this method through the IEEE 33 distribution system [25].
Reference [26] established the SSA model based on empirical
mode decomposition to optimize the parameters of the ker-
nel extreme learning machine (KELM) and achieved higher
prediction accuracy in blood glucose prediction. Kumaravel
and Ponnusamy improved the control parameters of the
power controller based on SSA to optimize the power flow
management of the smart grid system, which realized the
real-time energy management in the microgrid [27]. In
[28], the improved model based on SSA can track the distrib-
uted maximum power point more accurately and quickly and
has good robustness, thus effectively solving the problem of
power mismatch loss in a photovoltaic microgrid system.
Zhu and Yousefi introduced an adaptive strategy on the basis
of SSA and applied it to the optimization of proton exchange
membrane fuel cell (PEMFC) stack model parameters. The
validity of the proposed method in determining the maxi-
mum output power and optimal operating state of the stack
is verified through four cases [29]. With the help of the adap-
tive SSA, Liu and Rodriguez took a residential building as an
example and took the energy load demand and investment
cost as the optimization objectives to get the best combina-
tion scheme of the integrated sustainable energy systems,
which achieved the purpose of reducing energy consumption
and saving economic expenses [30].

LAA is known as the basic and one of the most practical
geometric configurations of antenna array in which all ele-
ments are arranged in a straight line. Aimed at the design
and optimization of LAA, a new modified SSA is proposed
in this paper. The main contributions are briefly highlighted
as follows:

(i) Proposition of the MSSA to further enhance the per-
formance of SSA

(ii) Application of the algorithm to the electromagnetics
and antenna community for the first time

(iii) Design of a few different scenarios of LAA for the
maximum SLL reduction by optimizing the element
spacing and excitation amplitude

(iv) Consideration of an additional constraint on the
total length of the antenna array to preserve the
features of the beam pattern

(v) Comparison of the results with several classical and
well-known algorithms in function optimization
and antenna array design problem

(vi) EM simulation with Altair FEKO 2019 to test the
validity of the experiment results in practical
conditions

The rest of this paper is structured as follows. Section 2
describes the basic principle of SSA, introduces the improve-
ment strategies, and gives the pseudocode of the modified
algorithm. Section 3 verifies its effectiveness and convergence
performance. In Section 4, the mathematical description of
the LAA optimization problem is given, and the simulation
results are discussed and analyzed, and then, the EM verifica-
tion experiment is carried out. Finally, Section 5 draws the
conclusion of this paper.

2. The Sparrow Search Algorithm and
Its Modification

2.1. Standard Sparrow Search Algorithm. A sparrow is an
intelligent social animal, which keeps alert and stays a safe
distance at all times. They also show great unity when
encountering the enemy. According to their different
behavior rules, sparrows can be divided into three roles: pro-
ducers, scroungers, and scouters. Assuming that there are N
sparrows in aD-dimensional search space, the position of the
ith sparrow can be expressed as Xi = ½Xi,1, Xi,2,⋯,Xi,D�, i = 1,

2,⋯,N . The following is an introduction of the three updat-
ing methods.

2.1.1. Producers. Producers are sparrows with better fitness
values in the population. They have a wide search range
and are responsible for searching and providing foraging
directions for the whole population. The mathematical
expression of producers is described as follows:

Xt+1
i,j =

Xt
i,j ⋅ exp −

i

α ⋅ tmax

� �

, R2 < ST,

Xt
i,j +Q ⋅ L, R2 ≥ ST,

8

>

<

>

:

ð1Þ

where t represents the current iteration number and tmax

represents the maximum number of iterations. Xi,j denotes

the position of the ith sparrow in the jth dimension. α is a
uniform random number in the range ð0, 1�, and R2 and ST
represent the alarm value and the safety threshold respec-
tively, where R2 ∈ ½0, 1� and ST ∈ ½0, 1�.Q is a random number
with normal distribution. L is a one-dimensional matrix with
all elements of 1. When R2 < ST, it means that the surround-
ing environment is safe and they can search for food
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extensively. When R2 ≧ ST, it means that there is danger at
this time, and all sparrows have to fly to other safe areas
quickly.

2.1.2. Scroungers. Scroungers are sparrows except all the pro-
ducers and keep an eye on the producers. If they find that the
producers have found better food, they will immediately
leave their present position to fight for food and make them-
selves the producers. The position of the scroungers is
updated as follows:

Xt+1
i,j =

Q ⋅ exp
Xworst − Xt

i,j

i2

 !

, i >
N

2
,

Xt+1
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>

>

>
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>

>

>

:

ð2Þ

where Xworst represents the global worst position of the cur-
rent population and Xp represents the best position occupied

by the producers in the current iteration process. A is a one-

dimensional matrix with elements of 1 or -1, and A+ =

ðAATÞ−1. If i >N/2, it indicates that the ith scrounger with
low fitness value is in an unfavorable position and needs to
expand his flight range to obtain food; if i ≤N/2, the ith
scrounger will find a random place near the optimal location
and perform local search.

2.1.3. Scouters. The scouters are randomly generated between
the producers and the scroungers and can perceive whether
there is danger in the foraging area. The model of scouters
can be formulated as follows:

Xt+1
i,j =

Xt
best + β ⋅ Xt

i,j − Xt
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where Xbest represents the global optimal position of the
current population, and it is also the safest location. As a step
size control parameter, β is a random number subject to stan-
dard normal distribution. K ∈ ½−1, 1� indicates the direction
of movement of the sparrows. Fi, Fg, and Fw represent the

fitness value of the ith sparrow, the global optimal, and the
worst fitness value of the current population, respectively.
ε is a minimal constant that avoids zero division error.
Fi > Fg indicates that the sparrow is at the edge of the

population, vulnerable to predators, and needs to move
to a safe area. Fi = Fg indicates that the sparrow is in

the middle of the population, but it is aware of the danger
and needs to be close to other sparrows to reduce the risk
of predation.

2.2. Modified Sparrow Search Algorithm. Compared with
other representative intelligent optimization algorithms in
recent years, although SSA has strong competitiveness in
convergence speed, accuracy, and stability [31], it is still inev-
itable to fall into local optimum at the later stage of iterations,

resulting in insufficient convergence accuracy [32]. In order
to further improve the performance of the algorithm, this
paper proposes a new modified algorithm based on chaotic
adaptive inertia weight and improved boundary constraint.

2.2.1. Homogeneous Chaotic System. The quality of initial
solution directly affects whether the algorithm can find the
optimal solution. Chaos is a kind of random phenomenon
with ergodicity, inherent regularity, and long-term unpre-
dictability [33]. Within the search range of feasible solutions,
chaotic sequences are widely used in population initialization
of optimization algorithms; this is because they can traverse
all states without repetition [34]. The research in Reference
[35] shows that the homogeneous chaotic system has better
random effect in variable initialization. Its function is
expressed as

μ t + 1ð Þ = 3:5μ tð Þ2 + 3:3μ tð Þ − 0:265,

�X t + 1ð Þ = 1

π
arcsin −

7

4
μ t + 1ð Þ − 33

40

� �

,

8

>

<

>

:

ð4Þ

where μ ∈ ½−73/70, 1/10� is the initialization sequence and
�X is completely chaotic in ½−1/2, 1/2�. The formula for
transforming chaotic sequence �X into the solution space
is as follows:

X =
Ub + Lb

2
+ �X Ub − Lbð Þ, ð5Þ

where Ub and Lb, respectively, represent the upper and
lower boundary values of the optimized variables.

The statistical histogram obtained from the numerical
statistics of ordinary random sequences and sequences gen-
erated by the homogeneous chaotic system is shown in
Figure 1. It can be seen from the figure that the chaotic sys-
tem has better homogenization, that is, better randomness.
Hence, when the diversity of the sparrows increases, the
quality of initial solution can be improved.
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Figure 1: Statistical histogram of an ordinary random sequence and
chaotic sequence.
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2.2.2. Adaptive Inertia Weight. All intelligent optimization
algorithms include two processes of global exploration and
local exploitation. An efficient algorithm needs to balance
the global exploration capability and the local exploitation
capability [36]. From the basic principle of SSA in Section
2.1, it is not difficult to find that the producer’s search ability
plays a vital role in whether the algorithm can find the opti-
mal solution. Therefore, inertia weight w is introduced to
adjust it adaptively. The mathematical expression is shown in

w =wmin + wmax −wminð Þ ⋅ rand 1ð Þ ⋅ exp −
t

tmax

� �

: ð6Þ

Take wmax = 0:1 and wmin = 0:01. The schematic diagram
is illustrated in Figure 2.

As can be noticed, as the number of iterations increases,
the inertia weight decreases adaptively. The update formula
of the producers’ position is modified as follows:

Xt+1
i,j =

Xt
i,j ⋅ exp −

i

w ⋅ α ⋅ tmax

� �

, R2 < ST,

Xt
i,j +Q ⋅ L, R2 ≥ ST:

8

>

<

>

:

ð7Þ

By introducing the adaptive inertia weight, sparrow indi-
viduals can search favorable regions in the global range with a
larger step size in the early stage of search and strengthen the
ability of global exploration; in the later stage of the search, a
smaller weight w can ensure sparrows to do fine search near
the extreme points and strengthen the ability of local exploi-
tation, so that the algorithm has a greater probability of con-
verging to the global optimal value.

2.2.3. Improved Boundary Constraint. In the standard SSA,
the processing strategy for sparrows overstepping the bound-
ary is generally given by

Xt+1
i,j =

Ub, Xt+1
i,j > Ub,

Lb, Xt+1
i,j < Lb:

8

<

:

ð8Þ

In this method, the individual that oversteps the bound-
ary is simply assigned to the boundary value of the search
range, which is equivalent to giving up the individual’s search
information. In the iterative process, if more individuals
overstep the boundary, the positions of sparrows will accu-
mulate more boundary values, resulting in the decrease in
population diversity, which directly affects the convergence
accuracy of the algorithm [37]. The strategy of improved
boundary constraint handling is shown in Algorithm 1. Spar-
rows that overstep the boundary will randomly determine a
position near the optimal position of the population, which
enhances the diversity of the population and improves the
global optimization ability of the algorithm to a certain
extent.

The SSA modified by the above strategies is named
MSSA, and the pseudocode outlining the steps of its imple-
mentation is shown in Algorithm 2.

3. Performance Analysis

In this section, MATLAB is used to verify and analyze the
computational performance of MSSA on benchmark test
functions. In order to verify the effectiveness and superiority
of the modified algorithm, classical PSO and representative
algorithms in recent years, including PSOGSA, WOA,
GOA, and MTDE, are adopted for comparative experiments.
All the parameters of these algorithms are in accordance with
the original papers, as shown in Table 1.

The population size of all algorithms is set to 30, and the
number of iterations is 500, for fairness. All numerical exper-
iments are implemented on Intel(R) Core(TM) i5-9400U
CPU with 2.90GHz and 8GB RAM.

3.1. Benchmark Test Functions. In order to comprehensively
evaluate the global and local optimization ability of the algo-
rithm, the experiment uses three types of benchmark test
functions, in which the unimodal function has only a global
optimal value but no local optimal value, so it can better test
the local exploitation ability of the algorithm; the multimodal
function has many local optimal values, so it can test the abil-
ity of the algorithm to jump out of the local extreme value
and the global exploration ability. Table 2 shows the bench-
mark test functions for the experiment.

3.2. Experimental Results and Analysis. Considering the ran-
domness of algorithm operation, 50 tests were run indepen-
dently in order to make the results more convincing and
universal. The best value and the worst value can show the
exploration ability of the algorithm, and the mean value
and standard deviation can show the accuracy and stability
of the algorithm. Therefore, the best value, the worst value,
and the mean value of 50 experimental results were statisti-
cally analyzed, and the standard deviation was calculated.
The numerical results are shown in Table 3, where the opti-
mal value is expressed in bold.

As can be seen from the results in Table 3, for unimodal
functions F1~F3, the accuracy and stability of MSSA are
greatly improved as compared to the other six algorithms,
and the results of multiple optimizations can converge to
the optimal value of the functions with the smallest standard
deviation. For multimodal functions F4~F6, MSSA as well as
SSA has excellent performance, and their ability to escape
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Figure 2: Schematic diagram of inertia weight.

4 Wireless Communications and Mobile Computing



local optimal solutions and robustness are obviously better
than those of the remaining algorithms. For fixed-
dimensional multimodal functions F7~F9, all algorithms
can find the optimal value of the functions. MSSA’s perfor-
mance is inferior to that of MTDE for function F7, but better
than that of PSOGSA, GOA, and SSA. For function F8,
the standard deviation of MSSA is the smallest, and MSSA
performs best for function F9.

In order to directly reflect the convergence characteristics
of the modified algorithm on the benchmark test functions,
the average convergence curves of the seven algorithms are
presented in Figure 3. The logarithmic axis is adopted for
the y-axis to make data fluctuation much clearer. It can be
seen from Figure 3 that MSSA not only has higher calculation
accuracy but also significantly improves the convergence
speed.

Input: X∗
i,j (Position that overstep the boundary), Ub (Upper boundary), Lb (Lower boundary),

Xbest (Global optimal position), Xgood (Current optimal position)
Output: X∗

i,j (The new position)

1: if X∗
i,j < Lb || X i,j > Ub then

2: temp = Xbest + | Xbest - Xgood |·rand(1);
3: if Lb ≤ temp ≤ Ub then
4: X∗

i, j = temp;

5: else
6: X∗

i, j = Xgood;

7: end if
8: end if

9: return X∗
i, j

Algorithm 1: Improved boundary constraint.

Input: N (Population size), D (Dimension size), PNum (Producers size), SNum (Scouters size), ST
(Safety threshold), t (Initial iteration), tmax (Maximum iterations)

Output: Xbest (Global optimal position), Fbest (Fitness of global optimal position)
1: /∗Initializing∗/
2: Randomly generate the positions of N sparrows Xi,j by homogeneous chaotic system

(i=1,2,…,N, j=1,2,…,D);
3: Calculate the fitness of each sparrow Fi;
4: Find Xbest and Fbest;
5: /∗Iterating∗/
6: while t < tmax do
7: Sort the Fi and find global worst position Xworst;
8: R2 = rand(1);
9: for i = 1 : PNum
10: Evaluate and calculate the adaptive weight w;
11: Update the position Xi,j by (7);
12: Check and adjust position that overstep the boundary by Algorithm 1;
13: end for

14: Sort the Fi and find the best position of producers Xp;
15: for i = (PNum + 1) : N
16: Update the position Xi,j by (2);
17: Check and adjust position that overstep the boundary by Algorithm 1;
18: end for

19: for i = 1 : SNum
20: Update the position Xi,j by (3);
21: Check and adjust position that overstep the boundary by Algorithm 1;
22: end for
23: Evaluate and update Xbest and Fbest;
24: t = t + 1;
25: end while
26: return Xbest and Fbest;

Algorithm 2: Modified sparrow search algorithm.
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Aimed at observing the search process more intuitively,
Figure 4 shows the search trajectories of sparrows on the
three types of benchmark test functions of the MSSA. It can
be seen that in the early iterations, sparrows are scattered
over a large search space. As the number of iterations
increases, the adaptive weight factor improves the local opti-
mization ability of the algorithm, and precocity is avoided in
the end. Consequently, most sparrows are able to gather in
the optimal solution and its nearby area (red box in Figure 4).

3.3. Comparison of the Improved Factors. Tests are conducted
to observe the performance of the three introduced improved
factors. The standard SSA with the modifications of the
homogeneous chaotic system function and the improved
boundary constraint is named CSSA, while the SSA with
the modifications of adaptive inertia weight and the
improved boundary constraint is named ASSA. Figure 5
shows the convergence curves of the improved factors on
the three types of benchmark test functions. It can be found
from the figure that MSSA has better performance by com-
bining those improved factors. The reason may be attributed

to the fact that the adaptive inertia weight can speed up the
local convergence rate. Chaos initialization and the improved
boundary constraint can increase the diversity of population
to a certain extent, which lays a good foundation for the
improvement of the convergence accuracy.

3.4. Statistical Testing. The Wilcoxon rank sum test is per-
formed to statistically identify significant differences between
the two algorithms. The best values, worst values, mean
values, and standard deviations of all benchmark test func-
tions in Table 3 are adopted as test samples. A nonparametric
test is done by comparing MSSA with PSO, PSOGSA, WOA,
GOA,MTDE, and SSA respectively. It is generally considered
that the algorithm is significantly different from others if the
p value is less than 0.05. The results from Table 4 show that
all the p values are less than 0.05, except for the result of MSSA
versus SSA. This indicates that there are significant differences
between MSSA and most algorithms at the 5% significance
level. In the calculation of the above benchmark test functions,
although the performance of MSSA is better than that of SSA,
there is no significant difference between them.

3.5. Algorithm Complexity. The computational cost of the
intelligent optimization algorithm is mainly determined by
the evaluation of fitness function. Assuming that the maxi-
mum iteration is T , the complexity of MSSA can be written
as OðNTÞ since there is only one inner loop in the algorithm,
where N is the population size. It can be seen that the compu-
tational complexity is linear with N and T. According to the
above modifications, MSSA does not change the algorithm
framework of SSA, so they have the same complexity, and the
proposed algorithm does not reduce the solution efficiency.

3.6. Analysis of Asymptotic Property. For the minimization
optimization problem, the fitness asymptotic property of
MSSA is analyzed in this section. Suppose that the finite non-
empty set S is the solution space and the optimal solution set
Ω = fx∗jx∗ ∈ S, f ðx∗Þ < εg, where f is the objective function
and ε is the acceptable objective function value. Let the
optimal sparrow position obtained by the algorithm in the
tth iteration be x∗t , and fdtjdt = f ðx∗t Þ − f ðx∗Þ, 1 ≤ t ≤ Tg is
the nonnegative random process generated by the algo-
rithm. Since the algorithm gets the optimal sparrow indi-
vidual through the idea of survival of the fittest; hence,
Pð f ðx∗t+1Þ − f ðx∗t Þ > 0Þ = 0. In addition, because the sparrow
population updates its position in three ways randomly,
when f ðx∗t Þ > f ðx∗Þ, Pð f ðx∗t+1Þ = f ðx∗t ÞÞ ≠ 1. Therefore,
Pð f ðx∗t+1Þ − f ðx∗t Þ < 0Þ > 0. Let E½ f ðx∗t+1Þ − f ðx∗t Þ� = −τt+1,
and τt+1 > 0 can be obtained from the above analysis. Hence,

E dt+1 − dt½ � = E f x∗t+1ð Þ − f x∗tð Þð Þ − f x∗tð Þ − f x∗ð Þð Þ½ �
= E f x∗t+1ð Þ − f x∗tð Þ½ � = −τt+1:

ð9Þ

That is, Eðdt+1Þ = EðdtÞ − τt+1.
Let τ =min fτ1, τ2,⋯,τTg, and there is Eðdt+1Þ ≤ EðdtÞ

− τ. Therefore, the fitness asymptotic property of MSSA
can be proven, which means that the algorithm asymptoti-
cally converges to the optimal solution.

Table 1: Parameters of different algorithms.

Algorithm Parameter Value

PSO [38, 39]

Individual learning factor c1 2

Social learning factor c2 2

Inertia weight w 1.05

PSOGSA [40]

Individual learning factor c1 0.5

Social learning factor c2 1.5

Weighting function w 0, 1½ �
Gravitational constant G 1

Alpha α 20

WOA [41]

Variable a 2⟶ 0

Constant defining logarithmic
spiral shape b

1

GOA [42]

Minimum reduction factor cmin 0.00004

Maximum reduction factor cmax 1

Attraction intensity f 0.5

Attractive length scale l 1.5

MTDE [43]

Number of portions divided by
iterations WinIter

20

Gbest-history size H 5

Nonlinear decreased coefficient a2 0:001⟶ 2

Dimension-dependent value Mu log Dð Þ
Mean value of improved scale

factors μf
0.5

Variance of improved scale factors σ 0.2

SSA [23]

Number of producers PNum 20%

Number of scouters SNum 10%

Safety threshold ST 0.8
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4. Experiments on Maximum SLL
Reduction of LAA

In order to test the feasibility of optimizing EM problems
based on the MSSA, this section designed the simulation
experiments of optimizing the element spacings and excita-

tion amplitudes of LAA through MATLAB. Firstly, the
system model is presented and the fitness function is formu-
lated. Secondly, different design scenarios of maximum SLL
reduction are simulated by MSSA, and the obtained results
are compared with those of PSO, PSOGSA, WOA, GOA,
MTDE, and SSA. Then, the stability of the algorithms is

Table 3: Numerical results.

Value PSO PSOGSA WOA GOA MTDE SSA MSSA

F1

Best 5:03e + 03 3:52e − 01 4:42e − 86 6:16e + 00 6:26e − 03 0:00e + 00 0:00e + 00

Worst 9:04e + 03 1:00e + 04 1:18e − 68 1:31e + 02 7:22e − 01 2:60e − 69 0:00e + 00

Mean 7:29e + 03 1:43e + 03 2:37e − 70 3:74e + 01 1:06e − 01 5:40e − 71 0:00e + 00

Std 9:60e + 02 3:49e + 03 1:66e − 69 2:64e + 01 1:31e − 01 3:68e − 70 0:00e + 00

F2

Best 3:40e + 01 1:87e − 08 7:17e − 57 3:82e + 00 2:76e − 03 0:00e + 00 0:00e + 00

Worst 5:83e + 01 8:13e + 01 2:93e − 49 8:62e + 01 3:09e − 01 1:40e − 34 0:00e + 00

Mean 4:31e + 01 1:21e + 01 1:05e − 50 1:41e + 01 4:53e − 02 2:89e − 36 0:00e + 00

Std 5:73e + 00 1:84e + 01 4:75e − 50 1:34e + 01 5:18e − 02 1:98e − 35 0:00e + 00

F3

Best 1:09e + 04 2:94e + 03 7:41e + 03 7:58e + 02 1:06e + 02 0:00e + 00 0:00e + 00

Worst 3:34e + 04 5:34e + 04 8:57e + 04 7:27e + 03 1:07e + 03 2:38e − 51 0:00e + 00

Mean 1:91e + 04 1:48e + 04 4:30e + 04 2:87e + 03 3:89e + 02 4:76e − 53 0:00e + 00

Std 4:80e + 03 8:81e + 03 1:64e + 04 1:39e + 03 2:10e + 02 3:37e − 52 0:00e + 00

F4

Best 2:11e + 02 7:26e + 01 0:00e + 00 4:14e + 01 1:37e + 01 0:00e + 00 0:00e + 00

Worst 2:70e + 02 2:32e + 02 1:13e − 13 1:76e + 02 4:41e + 01 0:00e + 00 0:00e + 00

Mean 2:40e + 02 1:37e + 02 3:41e − 15 9:61e + 01 2:52e + 01 0:00e + 00 0:00e + 00

Std 1:30e + 01 3:39e + 01 1:76e − 14 2:80e + 01 7:14e + 00 0:00e + 00 0:00e + 00

F5

Best 1:28e + 01 7:04e + 00 8:88e − 16 2:99e + 00 5:54e − 02 8:88e − 16 8:88e − 16

Worst 1:51e + 01 1:92e + 01 7:99e − 15 8:99e + 00 2:50e + 00 8:88e − 16 8:88e − 16

Mean 1:43e + 01 1:57e + 01 4:79e − 15 5:33e + 00 1:44e + 00 8:88e − 16 8:88e − 16

Std 4:52e − 01 3:36e + 00 2:48e − 15 1:38e + 00 5:53e − 01 0:00e + 00 0:00e + 00

F6

Best 4:47e + 01 5:66e − 01 0:00e + 00 8:69e − 01 2:26e − 02 0:00e + 00 0:00e + 00

Worst 8:84e + 01 9:19e + 01 1:60e − 01 1:40e + 00 6:12e − 01 0:00e + 00 0:00e + 00

Mean 6:65e + 01 2:13e + 01 7:85e − 03 1:11e + 00 1:27e − 01 0:00e + 00 0:00e + 00

Std 8:99e + 00 3:74e + 01 3:26e − 02 1:01e − 01 1:15e − 01 0:00e + 00 0:00e + 00

F7

Best 3:00e + 00 3:00e + 00 3:00e + 00 3:00e + 00 3:00e + 00 3:00e + 00 3:00e + 00

Worst 3:05e + 00 8:40e + 01 3:00e + 00 8:40e + 01 3:00e + 00 3:00e + 01 3:00e + 01

Mean 3:01e + 00 6:24e + 00 3:54e + 00 7:86e + 00 3:00e + 00 5:16e + 00 4:62e + 00

Std 8:78e − 03 1:60e + 01 3:78e + 00 1:92e + 01 2:29e − 15 7:32e + 00 6:48e + 00

F8

Best −3:86e + 0 −3:86e + 0 −3:86e + 0 −3:86e + 0 −3:86e + 0 −3:86e + 0 −3:86e + 0

Worst −3:85e + 0 −3:86e + 0 −3:09e + 0 −3:03e + 0 −3:86e + 0 −3:08e + 0 −3:86e + 0

Mean −3:86e + 0 −3:86e + 0 −3:83e + 0 −3:73e + 0 −3:86e + 0 −3:85e + 0 −3:86e + 0

Std 1:52e − 03 2:90e − 15 1:09e − 01 2:53e − 01 3:13e − 15 1:08e − 01 2:83e − 15

F9

Best −9:51e + 0 −1:02e + 1 −1:02e + 1 −1:02e + 1 −1:02e + 1 −1:02e + 1 −1:02e + 1

Worst −2:14e + 0 −2:63e + 0 −2:63e + 0 −2:63e + 0 −5:06e + 0 −5:06e + 0 −5:06e + 0

Mean −6:31e + 0 −6:58e + 0 −7:49e + 0 −6:44e + 0 −9:23e + 0 −8:62e + 0 −9:54e + 0

Std 2:32e + 00 3:32e + 00 3:04e + 00 3:29e + 00 1:98e + 00 2:33e + 00 1:67e + 00
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Figure 3: Continued.
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analyzed. Finally, the optimization performance is verified by
FEKO EM simulation under practical conditions.

4.1. Problem Formulation. Considering the symmetry of 2N
isotropic element LAA in Figure 6, the array factor can be
expressed as follows:

AF φð Þ = 2〠
N

n=1

In cos kxn cos φð Þ + ψnð Þ, ð10Þ

where k = 2π/λ is the wave number and In, xn, and ψn,
respectively, represent the excitation amplitude, position,
and phase of the nth element. φ symbolizes the azimuth
angle, which is defined as the angle with the positive x-axis.

In this paper, the element spacing and excitation ampli-
tude are taken as optimization variables, and the optimiza-
tion objective is to suppress the maximum SLL. Therefore,

the fitness function can be formulated as

min fitness = max 20 log10
AF φSLð Þj j
AF φMLð Þj j

� 

, ð11Þ

s:t: φML = arg max AF φð Þj j, φ ∈ 0, π½ �, ð12Þ

φSL ∈ 0, φFN1½ � ∪ φFN2, π½ �, ð13Þ

0 < di < λ, ∀i ∈N , ð14Þ

0 < Ii < 1, ∀i ∈N , ð15Þ

where φSL and φML represent the region of the side lobe and
main lobe, respectively. φFN1 and φFN2 are the first nulls of the
pattern. Constraints (14) and (15) define the range in opti-
mizing the element spacing and excitation amplitude. Based
on the HF vertical antenna array, the number of elements is
chosen as 8, 16, and 24 to test the optimization ability of
the algorithm in different dimensions. In order to maintain
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Figure 3: Convergence curves of the 7 algorithms on the benchmark test functions: (a) F1; (b) F2; (c) F3; (d) F4; (e) F5; (f) F6; (g) F7; (h) F8;
(i) F9.
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the first null beam width to the maximum extent, for LAA
with 2N of 8, 16, and 24, φFN1 is limited to 75°, 82°, and 85°

and φFN2 is 105
°, 98°, and 95°, respectively.

4.2. Experiments on Maximum SLL Reduction with
Optimized Element Spacing. In this section, seven algorithms
are used to optimize the positions of 8-element, 16-element,
and 24-element LAA, respectively. Because the median is
not affected by small or large data, it can better reflect the
average optimization ability of the algorithms. Therefore,
the median value of 25 independent repeated experiments
is presented.

4.2.1. 8-Element LAA. Since this is a symmetric array, the
spatial dimension of solution is 4. Figure 7 shows the 3D
radiation patterns of 8-element LAA before and after MSSA
optimization. It can be seen intuitively from the figure that
MSSA can effectively reduce the maximum SLL.

Figure 8(a) shows the beam patterns obtained by differ-
ent algorithms, and Figure 8(b) shows the convergence
curves of different algorithms, in which conventional LAA
refers to the unoptimized LAA while maintaining uniform

element position distribution and uniform excitation ampli-
tude. It can be seen from the figure that the convergence
speed and convergence accuracy of MSSA have been
improved. The maximum SLL optimized by different algo-
rithms for 8-element LAA is shown in Table 5. As shown,
the maximum SLL obtained by MSSA is -20.2186 dB, which
is the lowermost among all algorithms. There is an improve-
ment of 7.4214 dB using the proposed approach as compared
to the conventional technique. Table 5 also gives the
optimized positions of the elements obtained by different
algorithms.

4.2.2. 16-Element LAA. In order to maintain the main lobe
shape and beam width, it is necessary to impose additional
constraint on the total length of the antenna array, as shown
in the following formula:

x1 = 0:25λ,

xN =
2N − 1ð Þd

2
:

8
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:
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2

1.5

1

0.5

0

0
0

0

0

100

–100 –100

100

100

100–100

–100

50

50

–50

–50
y

y

x

x

×104
F

1 
(x

, y
)

2

1.5

1

0.5

0

0
0

100

–100 –100

100

y
x

×104

F
1 

(x
, y

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
×104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

×104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
×104

0
0

0

0

100

100

100100

–100

50

50

–50

50
y

y

x

2

1.5

1

0.5

0

0
0

100
100

y
x

×104

F
1 

(x
, y

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a)

0

0
–5

–5

5

5

y

x

10

20

30

40

50

60

70

80

100

80

60

40

20

0

0 0

10

–10 –10

10

y
x

F
4 

(x
, y

)

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

80

60

40

20

0

0
0

5

–5 –5

5

y
x

F
4 

(x
, y

)

0

0
–5

5

5

5

y

10

20

30

40

50

60

70

80

100

80

60

40

20

0

0 0

10
10

y
x

F
4 

(x
, y

)

0

10

20

30

40

50

60

70

80

0

5

x

0
y

(b)

6

4

10

1080

0

8

6

2

2

y

x

–10

–1

–2

–3

–4

–5

–6

–7

–8

–9

5
5

10
–12

–10

–8

–6

–4

–2

0

00

10

y
x

F
9 

(x
, y

)

–10

–1

–2

–3

–4

–5

–6

–7

–8

–9
5

5

10
–12

–10

–8

–6

–4

–2

00

10

y
x

F
9 

(x
, y

)

–10

–1

–2

–3

–4

–5

–6

–7

–8

–9

(c)

Figure 4: Iterative trajectories of MSSA on the benchmark test functions: (a) unimodal F1; (b) multimodal F4; (c) fixed-dimension
multimodal F9.
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Figure 5: Convergence curves of the improved factors on the benchmark test functions: (a) unimodal F1; (b) multimodal F4; (c) fixed-
dimension multimodal F9.

Table 4: p value of the nonparametric test between MSSA and other algorithms.

PSO PSOGSA WOA GOA MTDE SSA

p value 1:57e − 06 2:20e − 06 1:90e − 03 4:54e − 06 9:32e − 05 2:38e − 01
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Figure 6: Geometric distribution of 2N-element LAA.
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The spacing between the first two elements on both sides
of the y-axis is fixed at 0:5λ, so as to ensure that one antenna
pair in the antenna array meets Nyquist spatial sampling.
The Nth element is fixed at xn = ð2N − 1Þd/2, where d =
0:5λ represents the default spacing of the uniform LAA,
thereby suppressing the distortion of the main lobe [44].
Since the positions of the first and last elements on both
sides of the antenna array are fixed, the positions of other
elements are variable. Therefore, the optimized dimension
is simplified to 2N − 2.

Figure 9 depicts 3D radiation patterns of 16-element
LAA before and after optimization by MSSA. Figure 10
depicts the beam patterns and convergence curves of 16-
element LAA optimized by different algorithms. It can be
seen that MSSA outperforms other algorithms. Both the
positions of 16-element LAA optimized by different algo-
rithms and corresponding maximum SLL are listed in
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Figure 7: 3D radiation patterns of 8-element LAA before and after MSSA optimization: (a) before optimization; (b) after optimization.
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Figure 8: Beam patterns and convergence curves of 8-element LAA optimized by different algorithms: (a) beam patterns; (b) convergence
curves.

Table 5: Optimized element positions and maximum SLL of
8-element LAA by different algorithms.

Algorithm Optimized element positions (λ) Maximum SLL (dB)

Conv. 0.2500, 0.7500, 1.2500, 1.7500 -12.7972

PSO 0.1243, 0.6381, 0.9773, 1.6283 -19.1209

PSOGSA 0.1120, 0.6269, 1.0036, 1.6384 -19.5447

WOA 0.1625, 0.6044, 1.0286, 1.6326 -18.8768

GOA 0.1529, 0.6016, 1.0115, 1.6185 -19.1405

MTDE 0.1274, 0.6228, 1.0082, 1.6497 -19.8331

SSA 0.1340, 0.6179, 1.0087, 1.6427 -19.6800

MSSA 0.1067, 0.6216, 0.9832, 1.6298 -20.2186
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Table 6. The maximum SLL obtained by MSSA is 9.5292 dB
lower than that of the conventional array.

4.2.3. 24-Element LAA. The position constraints of the 24-
element LAA are the same as above; that is, the first element
is fixed at 0:25λ and the 12th element is fixed at 5:75λ. There-
fore, the spatial dimension of solution is simplified to 10.

The 3D radiation patterns of 24-element LAA before and
after MSSA optimization are given in Figure 11. Figure 12
shows the beam patterns and convergence curves obtained
by different algorithms. Table 7 displays the optimized results
and the maximum SLL of 24-element LAA with different
algorithms simultaneously. Compared with the conventional
method, PSO, PSOGSA, WOA, GOA, MTDE, and SSA,
MSSA has better optimization effect, and the maximum

SLL is reduced by 10.8158 dB, 3.1391 dB, 1.2248 dB, 6.2655
dB, 5.0487 dB, 0.7132 dB, and 0.8840 dB, respectively.

4.3. Experiments on Maximum SLL Reduction with
Optimized Excitation Amplitude. This section conducts and
analyzes the optimization performance of MSSA on LAA
excitation amplitude. Corresponding to the previous section,
different algorithms are used to optimize the 8-element,
16-element, and 24-element LAA.

4.3.1. 8-Element LAA. It can be seen from the 3D radiation
patterns of the antenna array in Figure 13 that the maximum
SLL of the optimized LAA is significantly reduced. Figure 14
shows the beam patterns and convergence curves of different
algorithms. The element excitation amplitude is normalized,
and the obtained amplitude is the largest at the center of
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Figure 9: 3D radiation patterns of 16-element LAA before and after MSSA optimization: (a) before optimization; (b) after optimization.
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Figure 10: Beam patterns and convergence curves of 16-element LAA optimized by different algorithms: (a) beam pattern; (b) convergence
curves.
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Table 6: Optimized element positions and maximum SLL of 16-element LAA by different algorithms.

Algorithm Optimized element positions (λ) Maximum SLL (dB)

Conv. 0.2500, 0.7500, 1.2500, 1.7500, 2.2500, 2.7500, 3.2500, 3.7500 -13.1476

PSO 0.2500, 0.5311, 1.0128, 1.3930, 1.8738, 2.3329, 2.9893, 3.7500 -21.3693

PSOGSA 0.2500, 0.5495, 1.0230, 1.3560, 1.8561, 2.3358, 2.9783, 3.7500 -21.8484

WOA 0.2500, 0.6485, 1.0456, 1.3751, 1.9467, 2.4634, 3.0076, 3.7500 -19.1546

GOA 0.2500, 0.5802, 1.1274, 1.3493, 1.9119, 2.3129, 3.0208, 3.7500 -19.9808

MTDE 0.2500, 0.5244, 1.0082, 1.3555, 1.8647, 2.3620, 3.0093, 3.7500 -22.1498

SSA 0.2500, 0.5331, 1.0118, 1.3453, 1.8495, 2.3404, 2.9835, 3.7500 -22.0177

MSSA 0.2500, 0.5226, 1.0038, 1.3486, 1.8518, 2.3447, 2.9948, 3.7500 -22.6768
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Figure 11: 3D radiation patterns of 24-element LAA before and after MSSA optimization: (a) before optimization; (b) after optimization.
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Figure 12: Beam patterns and convergence curves of 24-element LAA optimized by different algorithms: (a) beam patterns; (b) convergence
curves.
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Table 7: Optimized element positions and maximum SLL of 24-element LAA by different algorithms.

Algorithm Optimized element positions (λ) Maximum SLL (dB)

Conv. 0.2500, 0.7500, 1.2500, 1.7500, 2.2500, 2.7500, 3.2500, 3.7500, 4.2500, 4.7500, 5.2500, 5.7500 -13.2091

PSO 0.2500, 0.5328, 0.9972, 1.2560, 1.7894, 2.1072, 2.5783, 3.0281, 3.5374, 4.2919, 5.0668, 5.7500 -20.8858

PSOGSA 0.2500, 0.4890, 1.0882, 1.2757, 1.7539, 2.0904, 2.6058, 3.1024, 3.5855, 4.2269, 4.9847, 5.7500 -22.8001

WOA 0.2500, 0.4275, 1.0262, 1.3683, 1.7913, 2.4037, 3.1937, 3.2078, 3.9114, 4.2607, 5.0305, 5.7500 -17.7594

GOA 0.2500, 0.6940, 1.1051, 1.2948, 1.8599, 2.3254, 2.8115, 3.2905, 3.9984, 4.4875, 5.1074, 5.7500 -18.9762

MTDE 0.2500, 0.5035, 0.9885, 1.2737, 1.7304, 2.1064, 2.5789, 3.0315, 3.5594, 4.2334, 4.9549, 5.7500 -23.3117

SSA 0.2500, 0.5314, 0.9701, 1.2658, 1.7411, 2.1524, 2.6184, 3.0450, 3.5985, 4.2726, 4.9465, 5.7500 -23.1409

MSSA 0.2500, 0.4950, 0.9690, 1.2760, 1.7106, 2.1075, 2.5880, 3.0307, 3.5357, 4.2088, 4.9494, 5.7500 -24.0249
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Figure 13: 3D radiation patterns of 8-element LAA before and after MSSA optimization: (a) before optimization; (b) after optimization.
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Figure 14: Beam patterns and convergence curves of 8-element LAA optimized by different algorithms: (a) beam patterns; (b) convergence
curves.
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Table 8: Optimized excitation amplitudes and maximum SLL of 8-element LAA by different algorithms.

Algorithm Optimized excitation amplitudes (normalized) Maximum SLL (dB)

Conv. 1.0000, 1.0000, 1.0000, 1.0000 -12.7972

PSO 1.0000, 0.8602, 0.6634, 0.5467 -20.2869

PSOGSA 1.0000, 0.8720, 0.6528, 0.5560 -20.4517

WOA 1.0000, 0.8618, 0.6618, 0.5462 -20.3507

GOA 1.0000, 0.8193, 0.7051, 0.4993 -19.8836

MTDE 1.0000, 0.8584, 0.6735, 0.5349 -20.1902

SSA 1.0000, 0.8702, 0.6544, 0.5542 -20.4375

MSSA 1.0000, 0.8636, 0.6424, 0.5128 -21.2569
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Figure 15: 3D radiation patterns of 16-element LAA before and after MSSA optimization: (a) before optimization; (b) after optimization.
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Figure 16: Beam patterns and convergence curves of 16-element LAA optimized by different algorithms: (a) beam patterns; (b) convergence
curves.
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Figure 17: 3D radiation patterns of 24-element LAA before and after MSSA optimization: (a) before optimization; (b) after optimization.
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Figure 18: Beam patterns and convergence curves of 24-element LAA optimized by different algorithms: (a) beam patterns; (b) convergence
curves.

Table 9: Optimized excitation amplitudes and maximum SLL of 16-element LAA by different algorithms.

Algorithm Optimized excitation amplitudes (normalized) Maximum SLL (dB)

Conv. 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 -13.1476

PSO 1.0000, 1.0000, 0.9285, 0.7355, 0.7425, 0.5670, 0.4059, 0.4509 -23.7487

PSOGSA 1.0000, 0.9999, 0.8741, 0.8064, 0.6889, 0.4930, 0.5033, 0.4395 -24.2080

WOA 1.0000, 0.9809, 0.9023, 0.9761, 0.5847, 0.5656, 0.4604, 0.4002 -22.9487

GOA 1.0000, 0.8419, 0.8619, 0.7136, 0.7013, 0.4207, 0.5957, 0.2324 -22.6180

MTDE 1.0000, 0.9478, 0.9071, 0.7483, 0.7115, 0.4904, 0.4592, 0.4567 -24.4013

SSA 1.0000, 0.9652, 0.8346, 0.8395, 0.6237, 0.5275, 0.4877, 0.4115 -23.9233

MSSA 1.0000, 0.9711, 0.8581, 0.7839, 0.6875, 0.4687, 0.4784, 0.3895 -24.8687
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array and decreases successively to both sides. Such an ampli-
tude distribution is feasible to the use of power dividers [14].
As can be observed in Table 8, the maximum SLL of conven-
tional LAA is -12.7972 dB, and PSO, PSOGSA, WOA, GOA,
MTDE, SSA, and MSSA are -20.2869 dB, -20.4517 dB,
-20.3507 dB, -19.8836 dB, -20.1902 dB, -20.4375 dB, and

-21.2569 dB, respectively. MSSA achieves the lowest SLL
among these seven algorithms. The corresponding excitation
amplitudes are also shown in Table 8.

4.3.2. 16-Element LAA. Figure 15 shows the 3D radiation
patterns of 16-element LAA before and after MSSA

Table 11: Statistical results of optimizing element position of 8-element LAA by different algorithms.

Maximum SLL (dB) PSO PSOGSA WOA GOA MTDE SSA MSSA

Best -19.7822 -19.5874 -19.6367 -19.8891 -19.8807 -19.8872 -20.2818

Worst -18.1097 -16.6997 -16.4415 -15.4566 -17.2225 -18.1751 -18.4730

Mean -19.0057 -19.4304 -18.6314 -18.4730 -19.6761 -19.5019 -20.0155

Std 0.3162 0.5932 0.8600 1.3805 0.5222 0.5069 0.4640

Table 12: Statistical results of optimizing element position of 16-element LAA by different algorithms.

Maximum SLL (dB) PSO PSOGSA WOA GOA MTDE SSA MSSA

Best -22.4235 -22.1479 -21.0826 -20.9566 -22.6257 -22.7315 -22.9611

Worst -20.5435 -18.1108 -14.7938 -16.4117 -20.0713 -19.5287 -20.9210

Mean -21.3471 -21.9683 -18.9752 -19.3923 -21.9622 -21.7445 -22.4318

Std 0.4310 0.7876 1.4892 1.5365 0.6582 0.8296 0.5563

Table 10: Optimized excitation amplitudes and maximum SLL of 24-element LAA by different algorithms.

Algorithm Optimized excitation amplitudes (normalized) Maximum SLL (dB)

Conv. 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 -13.2091

PSO 1.0000, 1.0000, 1.0000, 0.8662, 0.8594, 0.7821, 0.6890, 0.5893, 0.6749, 0.3137, 0.6220, 0.4351 -23.1375

PSOGSA 1.0000, 0.9935, 0.9955, 0.7775, 0.9685, 0.7646, 0.7109, 0.5132, 0.5868, 0.4886, 0.5056, 0.4786 -23.3338

WOA 1.0000, 0.7820, 0.9905, 0.8429, 0.7500, 0.6529, 0.8972, 0.3259, 0.4892, 0.6179, 0.5064, 0.3145 -22.4755

GOA 1.0000, 1.0000, 0.9309, 0.7734, 0.7215, 0.9042, 0.7314, 0.4799, 0.6497, 0.3279, 0.6973, 0.2235 -22.1484

MTDE 1.0000, 0.8970, 0.8728, 0.8554, 0.7775, 0.7191, 0.7041, 0.6090, 0.4789, 0.4453, 0.3361, 0.6153 -23.7130

SSA 1.0000, 0.9598, 0.8152, 0.8919, 0.8345, 0.6096, 0.7762, 0.6822, 0.3127, 0.6130, 0.4044, 0.4461 -22.9933

MSSA 1.0000, 0.9979, 0.9066, 0.9165, 0.8683, 0.7488, 0.6761, 0.5852, 0.5815, 0.3026, 0.6685, 0.3467 -24.0121

Table 13: Statistical results of optimizing element position of 24-element LAA by different algorithms.

Maximum SLL (dB) PSO PSOGSA WOA GOA MTDE SSA MSSA

Best -22.0353 -22.9531 -19.8425 -22.9147 -24.1282 -24.1570 -24.2459

Worst -19.6358 -20.4674 -15.9886 -16.2440 -21.3044 -21.1238 -22.1925

Mean -20.9536 -22.4317 -17.7858 -19.4895 -23.1922 -22.8371 -23.7757

Std 0.5281 0.7872 1.0889 1.5849 0.8052 0.8865 0.6002

Table 14: Statistical results of optimizing excitation amplitude of 8-element LAA by different algorithms.

Maximum SLL (dB) PSO PSOGSA WOA GOA MTDE SSA MSSA

Best -20.4030 -20.4472 -20.4466 -20.4460 -20.4313 -20.4472 -21.2873

Worst -19.5514 -19.5644 -19.6004 -17.5333 -19.9362 -19.6465 -20.5552

Mean -20.2750 -20.4107 -20.2540 -19.5017 -20.2008 -20.3396 -21.1768

Std 0.1555 0.1729 0.2151 0.8734 0.0974 0.2032 0.1694
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optimization. The beam patterns and convergence curves
obtained by different algorithms are shown in Figure 16. It
can be seen from Table 9 that the maximum SLL of PSO,
PSOGSA, WOA, GOA, MTDE, SSA, and MSSA are reduced
by 10.6011 dB, 11.0604 dB, 9.8011 dB, 9.4704 dB, 11.2537 dB,
10.7757 dB, and 11.7211 dB, respectively. Compared with
conventional LAA, MSSA has the largest reduction. In addi-
tion, Table 9 also gives the optimized excitation amplitudes
obtained by different algorithms.

4.3.3. 24-Element LAA. The 3D radiation patterns of 24-
element LAA before and after MSSA optimization are
depicted in Figure 17. Figure 18 is the beam patterns
and convergence curves of 24-element LAA optimized by
different algorithms. Table 10 shows the optimized ele-
ment excitation amplitudes and maximum SLL. From the
experimental results, the results of MSSA optimization
are obviously better than those of the other six algorithms.
This example further verifies the advantages of the modi-
fied algorithm in convergence speed as well as conver-
gence accuracy.

4.4. Stability Test. Due to the randomness of the intelligent
optimization algorithm, the results of each run are likely to
be different, so it is necessary to discuss and analyze the sta-
bility of the algorithms. Similar to the performance analysis
of the modified algorithm, Tables 11–16, respectively, give
the best value, the worst value, the mean value, and the stan-
dard deviation of the maximum SLL obtained by different
algorithms in optimizing the element position and excitation
amplitude of the 8-element, 16-element, and 24-element
LAA.

In order to visually display the fluctuation of data, the
standard deviation diagrams of the element position and
excitation amplitude optimized by different algorithms are
drawn, as shown in Figure 19. According to the results of
each run, the maximum SLL obtained by different algorithms
are depicted in Figure 20. It is clear that, compared with the
other six algorithms, the mean value of MSSA is the lowest,
which indicates that the proposed algorithm has higher solu-
tion accuracy. The best value and the worst value are smaller
than those of PSO, PSOGSA, WOA, GOA, MTDE, and SSA,
which shows that the algorithm has strong optimization

Table 15: Statistical results of optimizing excitation amplitude of 16-element LAA by different algorithms.

Maximum SLL (dB) PSO PSOGSA WOA GOA MTDE SSA MSSA

Best -24.0247 -24.5171 -23.8726 -24.3514 -24.4831 -24.4016 -25.4034

Worst -23.2618 -23.8922 -21.9349 -21.0661 -23.9823 -22.8781 -24.1036

Mean -23.6772 -24.2185 -23.0579 -22.6194 -24.2072 -23.9039 -24.8280

Std 0.2276 0.2007 0.5489 0.9146 0.1401 0.4476 0.3704

Table 16: Statistical results of optimizing excitation amplitude of 24-element LAA by different algorithms.

Maximum SLL (dB) PSO PSOGSA WOA GOA MTDE SSA MSSA

Best -23.3469 -23.8890 -23.4673 -23.7657 -24.0280 -23.9715 -24.5309

Worst -22.3166 -21.8494 -20.8848 -20.2394 -23.4616 -22.0058 -22.8864

Mean -22.9946 -23.2909 -22.3975 -22.1077 -23.8073 -23.1328 -23.8688

Std 0.2637 0.4853 0.6693 0.8942 0.1337 0.4787 0.4439
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Figure 19: Standard deviation obtained by different algorithms: (a) element position optimization; (b) excitation amplitude optimization.
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Figure 20: Result curves obtained by different algorithms: (a) 8-element position optimization; (b) 16-element position optimization;
(c) 24-element position optimization; (d) 8-element excitation amplitude optimization; (e) 16-element excitation amplitude optimization;
(f) 24-element excitation amplitude optimization.
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Figure 21: Polar coordinate patterns obtained by different algorithms: (a) 8-element position optimization; (b) 16-element position
optimization; (c) 24-element position optimization; (d) 8-element excitation amplitude optimization; (e) 16-element excitation amplitude
optimization; (f) 24-element excitation amplitude optimization.

Table 17: Maximum SLL of EM simulation in different scenarios.

Conv. PSO PSOGSA WOA GOA MTDE SSA MSSA

(a) -13.2094 -20.8365 -20.2227 -20.1765 -20.3820 -20.9978 -20.9050 -21.0660

(b) -13.0542 -21.2888 -21.0354 -18.2653 -20.2464 -21.4397 -21.3786 -21.6052

(c) -12.9059 -18.9502 -20.4974 -15.6828 -18.4361 -22.0438 -21.6763 -22.1540

(d) -13.2094 -20.3256 -20.4676 -20.3610 -19.8126 -20.1549 -20.4489 -21.1083

(e) -13.0542 -23.0645 -22.2065 -22.9711 -20.9268 -22.5175 -21.9086 -23.2999

(f) -12.9059 -21.9991 -22.1827 -20.6191 -21.1633 -22.6291 -21.6314 -22.8699
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ability. Although MSSA stability is slightly inferior to that of
the classical PSO algorithm and MTDE in excitation ampli-
tude optimization, it performs better than the remaining
algorithms.

4.5. EM Simulation. In practical applications, the induced
current between elements will inevitably lead to mutual cou-
pling. Conventional simulation, as a common processing
mode in the most existing works on design of LAA for SLL
reduction, usually assumes that array is in an ideal environ-
ment, and the effects of mutual coupling between the antenna
elements are often ignored. EM simulation is an effective
method to verify and evaluate the performance of different
optimization algorithms in the actual environment [45].
With the help of EM simulation software Altair FEKO
2019, the actual LAA model is constructed firstly, and then,
the 2D beam patterns of different antenna arrays in polar
coordinates are obtained by simulation according to the
above optimized element positions and excitation ampli-
tudes. The beam patterns are shown in Figure 21. The
numerical results of maximum SLL are listed in Table 17. It
can be seen that the results of maximum SLL reduction are
basically consistent with the above simulation results, which
demonstrates that the algorithm is also effective for the prac-
tical conditions.

To sum up, based on the original algorithm, MSSA can
give full play to the advantages of chaotic adaptive inertia
weight and improved boundary constraint and enhance the
global optimization ability. However, more work can be done
to further enhance the stability and robustness of this algo-
rithm. The numerical results of this paper indicate that the
modified algorithm shows promise as an effective method
in solving the global optimization problems.

5. Conclusions

In this paper, it is the first time that SSA and its modification
have been introduced and utilized to the field of EM optimi-
zation according to the existing published literature and
reports. For one thing, in order to improve the shortcomings
of SSA, such as being easy to fall into local optimum and slow
convergence speed, a novel modified SSA combining a
homogeneous chaotic system, adaptive inertia weight, and
improved boundary constraint is proposed. The computa-
tional results of three types of benchmark test functions ver-
ify the effectiveness of the modified algorithm. For the other
thing, with the element positions and excitation amplitude as
optimization variables and the maximum SLL reduction as
optimization objective, a comparison with the classical PSO
and PSOGSA, WOA, GOA, and MTDE through several sce-
narios is conducted. Simulation results show that MSSA
achieved high performance in terms of maximum SLL reduc-
tion with a greater improvement in convergence accuracy,
convergence speed, and stability. Therefore, SSA, as a new
beam pattern optimization method for electromagnetic com-
munity and antenna design, has a large research space. In our
future work, we will continue to study the algorithm and
explore its real-world applications in the field of antenna
array design, such as the multiobjective antenna array design

problem aimed at minimizing at least two conflicting objec-
tives at the same time, placing deep nulls of the beam pattern
in desired directions to avoid the effect of jamming and inter-
ference, and other geometric configurations of the antenna
array that work in different occasions.
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