
Sensors 2009, 9, 8438-8455; doi:10.3390/s91108438 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

A Novel Morphometry-Based Protocol of 
Automated Video-Image Analysis for Species 
Recognition and Activity Rhythms Monitoring in 
Deep-Sea Fauna 
Jacopo Aguzzi 1,*, Corrado Costa 2,*, Yoshihiro Fujiwara 3, Ryoichi Iwase 3,  
Eva Ramirez-Llorda 1 and Paolo Menesatti 2 

1 
Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 

Barcelona, Spain; E-Mail: ezr@cmima.csic.es (E.R.-L.) 
2 

AgritechLab - Agricultural Engineering Research Unit of the Agriculture Research Council, Via 

della Pascolare (CRA-ING), 16, Monterotondo (Rome) Italy;  

E-Mail: paolo.menesatti@entecra.it (P.M.) 
3 

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, 

Yokosuka, Kanagawa 237-0061 Japan; E-Mails: fujiwara@jamstec.go.jp (Y.F.); 

iwaser@jamstec.go.jp (R.I.) 

* Authors to whom correspondence should be addressed; E-Mails: jaguzzi@cmima.csic.es (J.A.);  

corrado_costa@libero.it (C.C.); Tel.: +39-069-067-5214; Fax: +39-069-062-5591. 

Received: 25 August 2009; in revised form: 1 October 2009 / Accepted: 13 October 2009 /  

Published: 26 October 2009 

 

Abstract: The understanding of ecosystem dynamics in deep-sea areas is to date limited 

by technical constraints on sampling repetition. We have elaborated a morphometry-based 

protocol for automated video-image analysis where animal movement tracking (by frame 

subtraction) is accompanied by species identification from animals’ outlines by Fourier 

Descriptors and Standard K-Nearest Neighbours methods. One-week footage from a 

permanent video-station located at 1,100 m depth in Sagami Bay (Central Japan) was 

analysed. Out of 150,000 frames (1 per 4 s), a subset of 10.000 was analyzed by a trained 

operator to increase the efficiency of the automated procedure. Error estimation of the 

automated and trained operator procedure was computed as a measure of protocol 

performance. Three displacing species were identified as the most recurrent: Zoarcid fishes 

(eelpouts), red crabs (Paralomis multispina), and snails (Buccinum soyomaruae). Species 
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identification with KNN thresholding produced better results in automated motion 

detection. Results were discussed assuming that the technological bottleneck is to date 

deeply conditioning the exploration of the deep-sea. 

Keywords: automated video-image analysis; deep-sea; behavioural rhythms; mudflows; 

inertial currents; internal tides; cold-seeps; Sagami bay 

 

1. Introduction  
 

The identification of species and their behavioural rhythms in deep-water continental margins and 

deep-sea areas is of actual and elevated importance for fishery management and biodiversity 

estimation [1]. To date, the most widely employed system for the study of communities at these depths 

is bottom trawl surveying (reviewed in [2]). Anyway, species rhythmic movements in relation to 

recognised geophysical cycles such as the fluctuations in light intensity (day-night based) or in 

hydrodynamism (internal-tide based) may bring animals in and out from punctual trawl sampling 

windows [3]. This phenomenon could consistently alter the estimation of species biomasses and areas 

of distribution of their populations [4]. While the effects of these geophysical cycles on costal species 

is to date widely studied and hence recognized, this environmental rhythmic regulation is mostly 

unknown in slope, rises and abyssal plain areas [5].  

The understating of ecosystem dynamics in deep-water continental margin areas and the deep-sea is 

to date still limited by technical and economic constraints that affect sampling repetition [6]. A 

solution is represented by automated collection of data by a wide array of sensors located in permanent 

submarine stations. In the past two decades, the number of these stations bearing video cameras has 

progressively increased along with the socio-economic interest for the exploration of the sea [7]. The use 

of video filming techniques for species recognition and behavioural study was then attempted in 

coastal areas (reviewed in [8]). Anyway, the use of this technique for the study of behavioural rhythms 

remains to date largely underexploited at any depth, especially in the deep-sea. The reasons for this are 

mainly related to the lack of automation in footage analysis. This is chiefly due to added contextual 

difficulties such as the absence of environmental light and the presence of variable fouling [9]. This 

obliges researchers to the manual examination of thousands of images [10,11].  

In this context, the development of adequate analytic protocols based on automated video-image 

analysis may represent an important and challenging step toward the study of species presence (by 

recognition), as well as their rhythmic behaviour in the deep-sea. This is particularly important for 

benthic (i.e., demersal) communities in poorly accessible environments of elevated ecological and 

geological interest such as those of cold-seeps and hydrothermal vents [12]. Accordingly with this 

scenario, we elaborated a novel morphometry-based protocol of automated video-image analysis to 

identify the benthic fauna and their associated behavioural rhythms in the cold-seep clam field of 

Sagami Bay (1,100 m depth). That protocol was customized to track animal movement by frame 

subtraction and to perform species recognition by Fourier Descriptors analysis on different animals’ 

profiles. We analysed the one-week footage taken by a video camera of the local permanent 

observatory. Outputs of video-image analysis as time series of visual counts were treated with the 
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protocols of biomedical chronobiology in order to validate the feasibility of the method for the study of  

behavioural rhythms.  

 

2. Materials and Methods 
 

2.1. The Footage 

 

One-week footage lasting from 09-04-99 to 16-04-99 was taken by a submarine infrared 3CCD 

video-camera mounted on the “Real-Time Deep-Sea Floor Permanent Observatory” [13]. That 

permanent station is located in a cold seep clam field (i.e., Calyptogena soyoae) at 1,100 m depth off 

Hatsushima Island, in Sagami Bay (34º59.97’N, 139º13.69’E; central Japan). The video-camera was 

continuously acquiring images in a time-lapse mode (i.e., a frame each 4 s) under a constant source of 

illumination (i.e., six white-light lamps). Videos were stored on VH-S videotapes and their processing 

in relation to behavioural rhythms was never attempted before. We selected long lasting continuous  

10 years-old footage for the technological challenge of performing automated video-image analysis on 

videos lacking digital standards. The footage was digitized and partitioned into frames at a rate 

equivalent to the frequency of video recording. Footage processing and video-image analysis were 

both carried out with MatLab 7.1. 

 

2.2. Video-image Analysis  

 

Motion detection procedure identified animals based on their displacement through consecutive 

frames [14-17]. In this process, the quality of extracted information depends upon several contingent 

factors typical of the deep-sea context [9]. Firstly, the detection of movement depends upon the rate of 

image acquisition in comparison to the speed of animals’ motion. Secondly, a source of continuous 

white illumination, gradually decreasing over the distance (i.e., within 3−4 m) is always present during 

filming operations. This may impair animal detection depending on its positioning within the camera 

field. Thirdly, consistent water turbidity is often present (i.e., high-contrast organic debris as “marine 

snow”), creating difficulties in the automated identification of moving animals. Fourthly, different 

species possess different shapes that are also variables according to animal displacement within the 

camera filed.  

In spite of all these considerations, an automated video-image analysis protocol was developed 

according to two major steps: (1) animals’ motion detection, by means of image extraction;  

(2) animals’ recognition within different species categories, by multivariate morphometric techniques 

such as Fourier Descriptors (FD) and the Supervised Standard K-Nearest Neighbours (KNN) analyses. 

A flow chart specifying the different steps involved in the automated procedure is illustrated in 

Figure 1. 
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Figure 1. Flow chart representing the different steps involved in the automated procedure. 
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2.3. Animals’ Motion Detection 

 

Automated video-image analysis for the tracking of movement was based on combined frame 

subtraction and a multiple filtering procedure (Figure 2).  

 
Figure 2.  The consecutive stages of automated video-image analysis for the tracking of 

movement. A frame is firstly subtracted by its consecutive (A). The image without sensible 

objects is used for background subtraction (B), which occurs within a region of interest 

(ROI) that delimits the sensible field of view for the motion analysis. The GT and AT 

thresholding is then performed (see explanations in the text). At this stage, biological 

objects (i.e., animals) which moved in comparison to the precedent frame (within the 

circle), are identified (C). Resulting binary image is obtained after GT and AT 

application (D). The original greyscale image with identified objects in overlay is then 

saved for later comparisons (E). 
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We applied a simple algorithm in order to subtract the current image for a background image of 

reference. That reference was constructed by averaging 100 images before it, in order to eliminate the 

excessive noise [18]. Then, for each frame (Figure 2A) a specific region of interest (ROI) was 

identified as the central area within the camera field (Figure 2B) in order to exclude all display scripts 

appearing within the video-corners. Then, the resulting image was filtered for: the area (AT, Area 

Thresholding), by eliminating objects with sizes outside 150-1,000 pixels range (Figure 2C); the  

grey-level scale (GT, Grey Thresholding), by applying a single threshold value of 10 (i.e., 8 bit-

greyscale level); and finally, the red colour (i.e., according to the Red-Green-Blue, RGB, scale of 

reference) (Figure 2D). Identified object profiles were then superimposed to the original frame in order 

to show the correct image extraction (Figure 2E). 

 

2.4. Animals’ Recognition  

 

FD analysis is a novel protocol used in ecological morphometry when the variation in the outline of 

different species is studied in relation to differences in their ecology [reviewed by 19]. This analysis is 

based on the scalability of a curve describing the organism shape: varying the number of used Fourier 

coefficients, different levels of approximation of the Fourier function to the object shape (as closed 

contour) can be obtained. FD´s were obtained from the Fourier transformation of a complex function 

representing the object outline in pixel coordinates [20]. The shape of a displacing animal was 

identified and its perimeter coordinates were calculated in relation to xy-ROI field. FD values were 

normalized and transformed to be size, orientation and translation independent. 20 descriptors were 

used corresponding to 38 coefficients. Each targeted shape was acquired by FD analysis as 

implemented by a customized script in MatLab 7.1 (modified from [18]). 

To increase the efficiency of our automated protocol for species identification and animals’ 

movement tracking, we applied a hybrid supervisionate approach: a continuous and limited subset of 

frames (i.e., 10,000 images out of 150,000, equivalent to 6.6 % of the total) was randomly selected and 

analyzed by a trained operator (Figure 3). 

Within each frame, object manual selection was carried out trough an interactive script elaborated 

MatLab 7.1. Moving animals were identified and the software allowed to assigns a membership class 

(i.e., species) to each of them trough a specific widow-tool. After that manual classification, objects 

were saved into a reference library as RGB binary images (the average RGB value for each object was 

used). A training database made by an X-block matrix of FD’s and a Y-block matrix made by each 

corresponding class was created. 164 objects, comprehensively belonging to the three most recurrent 

species as different categories (see later) were used as training dataset. 

KNN is a multivariate clustering method used for classification in morphometry [21-23]. Objects 

are classified within a membership class in relation to their neighbours by a score computed from 

Euclidean Distances. The neighbours were taken from the training set (for which the correct 

classification was proven by the trained operator). For the purposes of the present analysis, a major 

requirement was not only to classify already identified animals but also to reject unknown objects 

(outliers). Standard KNN was modified according to our class-modelling purposes to allow 

classification of unknown objects either into one of the already existing classes or to no classes. A 
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threshold value acting on the Euclidian distance (EDT) was inserted to drive the classification of an 

object to one or no classes (0). Therefore, we named the modified algorithm “KNN0” (Table 1). 

 

Figure 3.  Different steps of species recognition by the attribution of sensible objects (i.e., 

moving animals) to different classes trough the trained operator supervision: identification 

of unknown biological objects (A); class attribution (B); and finally, the saving of newly 

classified objects as single images for their later individual processing by Fourier 

Descriptors analysis (C). In this example, classified objects are the clam, the red crab, and 

the eelpout fish of Figure 2.  
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Each new object of the test set, i.e., the whole video excluding the training frames, was classified 

twice, applying two different KNN0 analyses, one for RGB coordinates and the other for FD 

coefficients. A reiterative procedure was necessary to establish the more efficient Euclidean Distance 
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Thresholding (EDT): 4.5 for RGB coordinates; 0.2 for FD coefficients. Final single class attribution 

was obtained by means of a complex logical function depending for the class type, as reported in  

Table 1. All-TRUE logical conditioning for final class attribution was applied. Any other different 

condition, determined final class attribution as "null" (the 0 category). 

Error estimation on species recognition and sensible object detection (i.e., moving animals) by the 

automated video-image analysis procedure was calculated in comparison with results provided by the 

trained operator. Error typologies by KNN were subdivided into: object identification and object 

classification. The occurrence of two different errors was determined: Type-1 error when an object 

was not detected; Type-2 error when an object was confused with another one. The latter type of error 

is the most dangerous since it creates a double error on different species that are then confused each 

other with a consequent mismatch of their tracked trajectories. 

 

2.5. Behavioural Analysis 

 

Time series of visual counts for 4 s for the most recurrent identified species were binned per 10 min 

interval and a 2-step moving average was conducted in order to reduce high frequency noise. Resulting 

data sets were then represented in the domain of time by double plotted actograms where consecutive 

days are placed in a column. The column is then replicated (by repeating each day twice; double 

plotted) to allow the visual assessment of rhythmicity trough the method of regression line (i.e., eye 

fitted) onto activity onsets over consecutive cycles (e.g., [15]). 

 

Table 1. Logical conditions for the class attribution with the KNN0 classification. 

RGB class FD class 

RGB minimum 
Euclidean 
Distance 

FD minimum 
Euclidean 
Distance 

Final class 
attribution 

Eelpouts Eelpouts < 4.5 < 0.2 Eelpouts 

Crabs  any < 4.5 any Crabs  

Snails  Snails < 4.5 < 0.2 Snails  

 

Lomb–Scargle periodogram analysis allows the robust detection of periods in time series of 

potentially noisy pattern such as those proceeding from field works, when population rhythms are 

under investigation [24]. That method is a powerful way to find, and test significance of, weak 

periodic signals in non-evenly spaced time series. We used it (although our time series had no missing 

values) since it is based on the calculation of the normal Fourier power by spectral decomposition, 

which is sensible to overall fluctuations in data sets of short duration (i.e., up to a week). We 

performed this analysis with the “El Temps” software (Prof. Diez-Noguera, University of Barcelona-

UB, Spain). The time window of screening was comprised between 600 and 1,500 min (10 h and 25 h) 

in order to cover a wide range of diel periodicities encompassing frequencies of inertial (atmospheric 

driven) and tidal (astronomical driven) phenomena (e.g., [3]). In output periodogram plots, the highest 

significant (p < 0.01) peak represented the maximum percentage of total data variance explained by the 

inherent dominant periodicity. Periodicity was indicated by that peak value.  
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The trajectories of displacement of different species were computed to account for ethological 

differences in the way of movement, as well as their reaction to the video-camera light field. The 

trajectory of animals that appeared for more than 20 consecutive frames were selected for the analysis 

of the displacement direction. The borders of illuminated area were graphed onto the ROI  

xy-coordinates plots in order to evidence differences in computed trajectories.  

 

3. Results  
 

In this work, the automated processing of the VH-S footage required its fragmentation in a total of 

151,200 frames. Zoarcid fishes (eelpouts), red crabs (Paralomis multispina) and finally, snails 

(Buccinum soyomaruae), were recognized as the most recurrent species within the Region of  

Interest (ROI).  

 

3.1. Error Estimation of Automated Video-image Analysis 

 

On the training set of 10.000 images, the trained operator identified 2,563 frames (25.6%) with 

moving organisms within the ROI. The object identification by KNN0 without thresholding (i.e., 

without EDT) correctly identified moving animals in 2,087 images (81.4% of frames with organisms). 

Differently, moving animals in 18.6% of frames were not identified and extracted as directly checked 

by the trained operator. Also, 7.0% of frames with no animals within the ROI were considered as 

having moving organisms (i.e., false positive). More than 1,000 images (3.0%) were eliminated 

automatically due to excessive background noise. 

The object classification after KNN thresholding produced better results of automated motion 

detection. The error in the single species classification and null objects (false objects) was reported in 

Table 2. Although the number of images with moving animals not recognized by the tracking analysis 

(Type-1 error) increased, the thresholding drastically reduced the cases of false positive identification 

(Type-2 error). Only the 0.4% of frames without organisms was considered as having moving animals 

in their ROI. The 53.5% of frames with moving animals were identified as not having it. Also, fishes, 

crabs, and snails were never misclassified each other. Fishes presented the highest level of correct 

classification (77.92%). The 42.96% of snails were not classified as null. Only 0.9% of null objects 

were classified as real objects (0.01% for fishes and 0.89% for snails). 

 
Table 2.  Absolute values and percentage of correct classification by tracking analysis of 

displacing organisms for each selected species is reported with the percentage of species 

attribution to the Null category (false object). Type-1 and Type-2 errors are also reported. 

 Eelpouts Snails Crabs NULL Type-1  Type-2 
Eelpouts 1320 (77.92%) 0 (0.00%) 0 (0.00%) 374 (22.08%) 22.08% 0.01% 

Snails 0 (0.00%) 174 (42.96%) 0 (0.00%) 231 (57.04%) 57.04% 0.89% 

Crabs 0 (0.00%) 0 (0.00%) 610 (63.02%) 358 (36.98%) 36.98% 0.00% 

Null 1 (0.01%) 66 (0.89%) 0 (0.00%) 7370 (99.10%)   
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We obtained time series of data with no missing values, and with no variations in sampling 

frequency. Figure 4 reports the comparison of time series in visual counts for eelpout fishes, snails, 

and finally crabs during the first 11
th

 hours of video recording, as obtained by direct operator counting 

and automated video-image analysis. Time series are almost similar as a proof of the validity of the 

method. On a total of 9,990 frames (i.e., a frame per 4 s on 11.1 h), automated video-image analysis 

recognized moving eelpouts in 105 frames, while the trained operator identified animals in 118 frames. 

We computed an efficiency index (in %) to evaluate robustness of our method. The matching between 

visual and automatic counts for each species per minute is equal to: 96.4% for eelpouts, 91.9% for 

snails, and 95.8% for crabs. 

 

Figure 4. Time series of visual counts per minute as estimated by automated video-image 

analysis (black line) and by manual classification from the trained operator (grey line) are 

presented in order to account for the reliability of applied methodology.  
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3.2. Rhythmic Behaviour Analysis 

 

Double-plot actograms referring to the number of observed moving eelpouts, crabs, and snails are 

presented in Figure 5. Complex rhythmic patterns appeared with different strengths in the corresponding 

time series, being apparently marked in fishes (Figure 5A). As revealed by the program analysis  

(Figure 5B), eelpouts rhythmic behaviour presented a periodicity of 1,049 min (equal to 17.5 h). Crabs 

and snails did not present any discernible rhythmicity in their temporal plots.  

 

Figure 5. Double-plot actograms (A; vertical dashed line is the 24-h based limit) depicting 

time series of visual counts for eelpout fishes, red crabs, and snails, within the video 

camera region of interest. Observations show rhythmic fluctuations only for fishes, being 

the other two invertebrate species of the cold-seepage community arrhythmic. This is 

confirmed by periodogram analysis (B) identifying a significant periodicity only  

for eelpout. 

Fishes Snails Crabs

09-04

10-04

11-04

12-04

13-04

14-04

15-04

16-04

A

B

Fishes Snails Crabs

09-04

10-04

11-04

12-04

13-04

14-04

15-04

16-04

A

B

 

 



Sensors 2009, 9              

 
8449

During the fourth day of video recording, a sweeping mudflow obscured video recordings from 

approximately 13:35 to 14:21, hence lasting close to one hour (Figure 6). Water turbidity acquired its 

maximum within few minutes form the arrival of the mud front (visible in the camera field as a black 

shadow). Time series of visual counts for the three species showed an amplitude reduction from that 

moment on (the day: 12-04; see Figure 5A). 

 

Figure 6. Consecutive frames portraying the development of a mudflow. Water turbidity 

increased within few minutes after the mudflow front arrivals and a high turbidity 

condition, obscuring video recording, persisted over approximately one hour. After that 

event, a disruption in reported rhythms in eelpout behaviour (as indicated by time series of 

visual counts) occurred. 
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3.3. Displacement Trajectories Analysis and Other Ethological Observations 

 

The tracking analysis evidenced the occurrence of interspecific differences in the displacement 

behaviour of detected species in relation to the xy-ROI coordinates and hence the light field of video-

camera (Figure 7). Eelpout fishes were present at the border of the illuminated area while crabs and 

snails showed a less influenced response. Snails chiefly assumed rectilinear trajectories within the 

video camera light field as well as snails. While crabs presented a zigzag patters of displacement, 

snails displaced in a more rectilinear fashion.  

 

Figure 7.  Different trajectories for eelpout fishes, red crabs and snails as detected within 

the region of interest. The dashed enclosure indicates the bottom area illuminated by video 

camera lamps. 
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4. Discussion  
 

In this study, we have presented a novel protocol of automated video-image analysis for the 

identification of species and the study of their behavioural rhythms. We could successfully identify 

and then track the movement of most abundant elements within the cold deep local community of 

Sagami Bay: Zoarcid fishes (eelpouts), red crabs (Paralomis multispina), and snails (Buccinum 

soyomaruae). We presented data suggesting a potential response of community elements to flow 

changes at inertial periodicity. We also quantified interspecific differences in animal behaviour in 

relation to the video camera light field and unpredictable contingent phenomena such as  

mudflow events.  

With rapid improvements in underwater video-technology, automation is becoming an important 

bottleneck for analysing data [25]. The use of multivariate morphometry in automated video-image 

analysis targeting species recognition was not often performed. We implemented our automated 

analysis protocol also by an additional step of comparison of automated results with those provided by 

a trained operator [26]. In order to do so, a reference library on observed shapes was created. That 

procedure successfully incremented the efficiency of our technique suggesting that expert supervision 

associated to baseline automation can be an essential step to increase species recognition 

performances. This proposes a future scenario for marine biology research where the increment in 

classification performances of remote video devices is constantly accompanied by the constant tuning 

(by trained operators) of those class categories used for object classification. 

In this study, the analysis of trajectories indicated a different status in the activity of eelpout fishes, 

crabs, and snails within the light field (Figure 7). Deep-sea observations usually employ bright lights 

that can damage the optic apparatuses of local fauna for the action of emitted photons on animals’ too 

sensitive visual systems (reviewed in [27]). Light avoidance of demersal deep-water and deep-sea 

species is then a common phenomenon [9]. Eelpout fishes avoided the light field but our recording 

methodology did not impair the detection of clearer swimming rhythms in relation to the other two 

targeted species. Red crabs and snails showed trajectory fully encompassing the light field as an 

indication that, differently from fishes, these invertebrates are less affected by direct illumination 

exposure. These results are similar to those reported for fishes by [9], where animals’ counts increased 

within the ROI at moments of light off (and infrared on). Unfortunately, infrared technology was not 

installed on the video-camera station of Sagami at its deployment in 1993 [28]. 

The physiological and behavioural response of deep-sea fishes and crustaceans to rhythmic changes 

in bottom currents was already characterized in the Atlantic [5,29-31]. Those studies employed 

different sampling systems but behavioural data were not obtained from automated video-image 

analysis. Also, time series of visual observations were not treated with time series analysis protocols, 

as typical of chronobiological studies. We emended that issue and we reported a weak behavioural 

response of fishes to flow changes at inertial frequency, fitting observational oceanographic data at the 

latitude of Sagami Bay [32].  

Our study focused on the rhythmic behaviour of demersal species with different typologies of 

displacement, a fact of importance for the ecological evaluation of behavioural results. For fishes, 

behavioural observations suggest an alternate pattern of swimming and lying over the bottom in 

association to water speed increases and decreases, which affect the rate of visual counting. 
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The study of behavioural rhythms with underwater permanent stations can be criticized when aimed 

to the description of species activity rhythms based on time series of visual observations. The recorded 

visual count patterns may be globally arrhythmic for the random phase agreement in the activity 

rhythms of different individuals within the local population. Anyway, dominant geophysical cycles 

modulate the rhythmic behaviour of several individuals in a similar fashion and synchronism should be 

than expected at populational level [33]. Unfortunately, with our protocol, we could not distinguish 

different individuals within each species category (eliminating hence the recounting of the same 

individual). We had also the added difficulty of image processing from digitized old VH-S tapes. The 

behavioural rhythm regulation in deep-sea areas will be more feasibly studied by video-filming with 

high density cameras of confined (i.e., within cage) fishes or sessil organisms such as giant tube 

worms (Pogonophora and Vestimentifera). 

 

5. Conclusions  
 

Our data indicate that video technology can be successfully applied to deep-sea studies on species 

identification and behavioural rhythms characterization. Neuroethological research is currently based 

on the assumption that with a better process of behavioural tracking, a deeper understanding of 

neuronal controlling processes can be acquired [34]. In this sense, video-image analysis is already 

replacing telemetry and actography in laboratory studies since it is less expensive, more compact and 

hence, more technologically feasible from the point of view of hardware complexity [16]. The same 

consideration could be applied for field studies. The analytic protocol presented in our work can be 

potentially used with several types of video sources form very different environments, where 

permanent stations are acquiring (or may acquire in the next future) footages of very long duration 

(e.g., months).  
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