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Abstract: To solve the problem of longitudinal cooperative formation driving control of multiple
vehicles, a model-free adaptive control algorithm with constraints (cMFAC) is proposed in this paper.
In the cMFAC algorithm, a dynamic linearization technique with a time-varying parameter pseudo-
gradient (PG) is used to linearize the multivehicle collaborative system. Then, a cMFAC controller
is designed. The algorithm sets the input and output constraints at the same time to prevent the
vehicle speed and other parameters from exceeding the specified range. The main advantage of the
cMFAC algorithm is that the entire control process only needs the input and output data of each
vehicle and can effectively handle the input and output constraints. In addition, the stability of the
cMFAC method is verified through strict mathematical analysis, and its effectiveness is verified with
semi-physical experiments based on a MATLAB/Simulink module and CarSim platform connection
environment. It is worth noting that the proposed cMFAC controller is symmetric because the input
cost function and PG cost function have symmetric and similar structures, and the forms of the two
cost functions are the same.

Keywords: data-driven control; model-free adaptive control algorithm with constraints; longitudinal
cooperative formation driving control

1. Introduction

Longitudinal multivehicle collaborative queue control is one of the important direc-
tions in the field of intelligent networked vehicles [1]. When the vehicles on a road achieve
orderly formation driving, the energy consumption of each vehicle can be reduced by re-
ducing the air resistance [2,3]. Longitudinal multivehicle collaborative queue control refers
to control using wireless communication technology between vehicles. Using individual
own on-board sensors, the driving status information of other vehicles in the queue can
be obtained, corresponding driving decisions can be made, and an ideal distance between
vehicles can be maintained to ensure queue driving stability [4,5].

Many scholars have carried out research on the longitudinal collaborative control
of multivehicle queues. Reference [6] proposed a model predictive control (MPC)-based
scheme to optimize the longitudinal multivehicle collaborative queue control system.
Reference [7] proposed a linear quadratic control framework, established a nonlinear low-
order vehicle dynamics model, and applied it to the longitudinal collaborative control of
a multivehicle queue. In [8], the stability boundary was combined with a multiobjective
clustering (MOF) algorithm to design a controller to achieve a stable and rapid high-speed
vehicle queue. Reference [9] established a switched queue control model reflecting the
influence of the following vehicle connectivity state on the queue controller through the
designed vehicle spacing strategy. Based on this, an effective queue control algorithm
was proposed. In reference [10], a new integral synovial control strategy scheme was
adopted to achieve the longitudinal coordinated control of a multivehicle queue with
uncertain disturbance.

In the process of controller design, the above methods are based on accurate math-
ematical models. However, almost all vehicle formations are difficult to build accurate
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system models. Clearly, it is not appropriate to establish an accurate dynamic model for a
longitudinal multivehicle collaborative queue system to design the control system. To solve
the inaccurate modeling problem of vehicle collaboration, data-driven control (DDC) has
become the first choice.

A series of DDC methods, e.g., synchronous perturbation random approximation [11],
unfalsified control [12], the virtual reference feedback tuning (VRFT) algorithm [13], itera-
tive feedback tuning (IFT) [14], the iterative learning control (ILC) algorithm [15], and the
model-free adaptive control (MFAC) algorithm [16] have been developed. Among the above
DDC techniques, the MFAC algorithm has the advantages of small computation and strong
adaptability. It has an ideal control effect and strong robustness for nonlinear systems.
MFAC has achieved extensive applications in many fields, such as communication net-
work computation [17], AC/DC microgrids [18], freeway ramp metering systems [19],
and network systems [20].

In an actual longitudinal multivehicle cooperative queue system, there will be some
constraints on the vehicle input and output (I/O) data (such as the upper limit of vehicle
speed and acceleration) [21,22], which will affect vehicle control. Therefore, it is of great
practical significance to consider an MFAC method that can handle the constraints.

To solve the multivehicle cooperative control constraints and realize the longitudinal
cooperative control of a multivehicle fleet, a constraint model-free adaptive control algo-
rithm (cMFAC) based on partial form dynamic linearization (PFDL) is proposed. In the
cMFAC algorithm, based on consistency control, the upper and lower limit constraints are
imposed on the input and output, and the cMFAC formation strategy is obtained.

The contributions of this work are as follows: A novel cMFAC method is proposed
to solve the longitudinal multivehicle cooperative queue control problem synchronically
with I/O constraints. The cMFAC scheme is a DDC approach that only requires the I/O
data of the controlled objects, which means that the specific vehicle model is no longer
needed. Therefore, it is very portable and can be used in different vehicles. The cMFAC can
effectively ameliorate the impact of I/O constraints and ensure that the vehicles in the fleet
track the desired trajectory.

The outline of this manuscript is as follows: In Section 2, the longitudinal vehicle
driving dynamic analysis process is studied. Section 3 introduces the cMFAC algorithm.
Section 4 introduces the simulation results of the cMFAC algorithm. Section 5 summarizes
the main conclusions of this manuscript.

2. Vehicle Dynamics and Kinematic Process Analysis

In multivehicle fleet longitudinal collaborative control, as shown in Figure 1, all
vehicles can rely on the technical advantages of workshop communication to obtain the
motion state and changing trend of the front vehicle and the leader vehicle, simultaneously
transmit their own motion state information (speed and acceleration) to other vehicles in
real time, and control the vehicle spacing of each vehicle to improve driving stability.

Follow vehicle 1Follow vehicle 2Follow vehicle 3Follow vehicle 4 Leader vehicle 0  

  Figure 1. Multivehicle queue communication topology.

The stability of a single vehicle is the basis of the formation system stability. It is
necessary to analyze the longitudinal dynamic model of a single vehicle when analyzing
the longitudinal queue system. The overall stress analysis is shown in Figure 2.
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G

 

  Figure 2. Vehicle stress analysis.

First, some vehicle assumptions are made to simplify the vehicle model:

(1) In the process of driving, there is no coupling between the transverse and longitudi-
nal motion;

(2) The mass of the vehicle is fixed during driving;
(3) The sideslip of the tires is ignored.

The output torque of the engine is defined as T (N · m). When the output torque
is obtained, the vehicle converts the output torque to the driving torque through the
transmission system. The driving torque Tq can be obtained using the following formula:

Tq = Ti0igη, (1)

where i0 is the transmission ratio of the rear axle final drive, ig is the transmission ratio,
and η is the transmission efficiency. The relationship between the driving force Ft and the
driving torque Tq can be obtained through the following equation:

Ft = Tq/r, (2)

where r is the rolling radius of the vehicle tires. Combining Equations (1) and (2), Ft can be
expressed as

Ft = Ti0igη/r. (3)

Next, the resistance f is further analyzed and roughly divided into three categories.
The air resistance Fair suffered by the vehicle during driving is the first. It can be expressed
as the following formula:

Fair = Cd Ay pv2/2, (4)

where Cd represents the air resistance coefficient, Ay represents the windward area of the
vehicle (m2), ρ represents the atmospheric density at 25 ◦C, and v = vw + vx, where vw
represents the wind speed, and vx represents the longitudinal speed of the vehicle.

The second type of resistance is the friction between the vehicle and the ground and
the energy generated by the deformation of the vehicle tire and the ground when it leaves
the current contact surface, namely, the rolling resistance. Therefore, the second type of
resistance can be expressed as the following formula:

Fµ = fgmg cos ϑ, (5)

where fg is the rolling resistance coefficient, and ϑ is the gradient of the road.
The third type of resistance refers to the resistance caused by the gradient of the vehicle

due to the existence of an incline, that is, the resistance caused by the component force of
the vehicle’s own gravity when driving on an incline, namely,

Fgravity = mg sin ϑ, (6)

where m is the vehicle mass (kg), and g is the gravitational acceleration (m/s2 ).
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To complete the vehicle longitudinal dynamic analysis, the longitudinal dynamic
process can be described by the following equation:

ma(k) = Ft − f = Ft − Fair − Fgravity − Fµ, (7)

where a(k) represents the acceleration of the vehicle at time k. Equations (3)–(6) can be
combined and substituted into Equation (7) to obtain

ma(k) =
Ti0igη

r
− 1

2
Cd Ay pv2 −mg sin ϑ− fgmg cos ϑ. (8)

The vehicle longitudinal dynamic analysis is thus completed.
In longitudinal multivehicle cooperative driving, the input is the real-time acceleration

of each vehicle, that is, the torque of the vehicle, and the output is the distance between
vehicles. Since the vehicle acceleration is not constant, and there are many uncontrollable
factors in the actual control process, the relationship among them is actually nonlinear.
To facilitate the description, considering other external factors, the distance and vehicle
output torque can be converted into a typical nonlinear single input–single output (SISO)
system, as shown below.

di(k + 1)=Wi(di(k), . . . di(k− nd), Ti(k), . . .Ti(k−nT)), (9)

where W(. . .) : Rnd+nT+2 7→ R is an unknown nonlinear function; di(k)∈R is the control
output, that is, the distance between the ith vehicle at time k and the leader vehicle;
and Ti ∈ R is the control input, that is, the engine output torque T(N ·m). nd ∈ z+ and
nT ∈ z+ are unknown. System (9) is the general model of most existing multiagent systems.

3. cMFAC Controller Design

A multivehicle cooperative formation system is essentially a typical multiagent system
(MAS). To solve the problem of longitudinal multivehicle cooperative control, in this
section, a cMFAC algorithm is proposed based on a PFDL data model. In Section 3.1,
some preliminary knowledge is introduced. In Section 3.2, the longitudinal vehicle queue
dynamic system is dynamically linearized. In Section 3.3, the controller is designed, and the
stability of the cMFAC algorithm is considered.

3.1. Background Information

(1) Graph theory

In MAS research, graph theory is an important analysis tool that can simulate the
information exchange between agents. Here, we briefly introduce some basic concepts
related to graphs and some basic properties of related matrices.

Consider that there are N agents in a network, and use node i to represent the ith
agent, where i ∈ {1, 2, . . . , N}. If agent j can receive information from agent i at the current
time, it is said that the edge from node i to node j is connected; otherwise, it is said that
there is no connected edge between node i and node j. The connection topology is formed
when agents exchange information with each other.

The symbol G = (V , E ,A) in graph theory represents a topology, where V = {1, 2, . . . N}
represents a set of N system nodes, ε ⊆ v × v denotes an edge set G, and A = [aij] is the
weighted adjacency matrix. If agent i can receive information from agent j, aij = 1; otherwise,
aij = 0. Ni = {j ∈ V|(j, i) ∈ E} represents the neighbor set of agent i.

The Laplacian matrix L = D−A of graphs is an important research object in algebraic
graph theory. It is not only an important tool for characterizing graphs but also the basis
for proving whether a MAS converges. Suppose G is an undirected graph, and the indegree
D matrix is defined as D = diag(λ1, λ2, . . . , λN) with diagonal entries λi = ∑N

j=1 aij.
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If there is a vertex that has no parent node but has a directed path to any other node,
then G has a spanning tree. Additionally, a directed graph is said to be strongly connected
if there is a directed path from any vertex of the graph to a different vertex.

Assumption 1. There must be one or more follower agents who can receive a message from the
leader, and the topology G is a fixed strong connection.

Lemma 1 ([23]). Let Q(k) ∈ RN×N be an irreducible subrandom matrix, and let Q represent
the set of all possible Q(k). There is a constant ω, (0 < ω < 1) that makes the product of n
matrices satisfy:

‖Q(1)Q(2) . . . .Q(J)‖ ≤ ω, (10)

where ‖X‖ is the Euclidean norm, and Q(1), Q(2), . . . .Q(k), k = 1, 2 . . . J are J matrices arbitrarily
selected from Q.

(2) Notation

The specific meanings of some symbols in this manuscript are explained as follows: R
represents a real number, Rn represents n-dimensional real vectors, and Rn×m represents
n×m real matrices. I denotes the identity matrix, and diag(A) denotes the diagonal matrix.
aij in matrix A = [aij] ∈ Rn×m represents the elements of row i and column j.

3.2. Dynamic Linearization

Regarding system (9), the following assumptions are made:

Assumption 2. The partial derivative of the output yi(k) in Equation (9) is continuous.

Assumption 3. System (9) satisfies the general Lipschitz, which means, for any k > 0,

∆di(k + 1) ≤ Υ‖∆Ti(k)‖, (11)

where Υ > 0 is the Lipschitz constant, ∆Ti(k) = [∆Ti(k), . . . , ∆Ti(k−Z + 1)]T , and Z ∈
Z+ is the control input linearization length constant (LLC). ∆Ti(k + 1) = Ti(k + 1) − Ti(k),
∆di(k + 1) = di(k + 1)− di(k).

Remark 1. From a practical application perspective, Assumptions 2 and 3 are sensible. Assumption 2
is a typical term for a system that is generalized nonlinearly. Assumption 3 restricts the system
output change rate. During actual movement, the speed of the manipulator cannot be unlimited,
and the braking torque cannot be infinite.

Theorem 1. When system (9) satisfies Assumptions 2 and 3 with ‖∆Ti(k)‖ 6= 0, there must be a
pseudo-gradient (PG) Φi(k) = [φi,1(k), φi,2(k) . . . , φi,Z (k)]T ∈ RZ , such that system (9) can be
converted with the following equivalent dynamic linearization data model:

∆di(k + 1) = Φi
T(k)∆Ti(k), (12)

where Φi(k) is bounded to any k.

Proof. See reference [24].

Remark 2. When Z is selected, the PG in the PFDL data model of the system (12) is not unique,
but there must be a bounded PG Φi(k) that makes this dynamic linearized data model available at any
time. On the other hand, different PFDL data models can be obtained by selecting different control
input linearization length constants H. In other words, the flexibility of dynamic linearized data
models in the equivalent description of original nonlinear systems can be improved by reasonably
selecting PG and Z .
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Remark 3. At present, there are many methods to linearize nonlinear systems. References [16,25]
study online adaptive optimal control system design for a class of nonlinear systems. However, some
local models use structural information to solve optimal control problems. The system parameters
need to meet certain equations, and the coefficient matrix also has certain requirements.

3.3. Design of cMFAC Controller

(1) Controller design

In the vehicle queue system, information interaction can be formed between vehicles.
The communication between such vehicles is represented by graph theory:

aij(k) =
{

0,
1,

i f i cannot receive messages f rom j
i f i can receive messages f rom j

, (13)

similarly, the data transmission between the follower and the leader bi0 can also be shown
as above, that is,

bi0(k) =
{

0,
1,

i f i can receive messages f rom leader
i f i cannot receive messages f rom leader

. (14)

The deviation between considered agents is defined as follows:

ei(k) = d∗(k)− di(k), (15)

where d∗ is the desired trajectory, and di is the actual output of agent i. The ultimate control
goal is to make all agents achieve formation control based on the expected deviation from
the leader and other followers according to the locally distributed information.

Consider the following cost function of input:

J(Ti(k)) =

∣∣∣∣∣∣ ∑
j∈Ni

ai,j(k)(dj(k + 1)− di(k + 1)) + bi(d∗(k + 1)− di(k + 1))

∣∣∣∣∣∣
2

+ λ|∆Ti(k)|2 (16)

where λ > 0 is a weighting factor.
The input cost function (16) consists of two parts. In the first part, ∑j∈Ni

aij(k)(dj(k)
−di(k + 1)) represents the local deviation between follower agent i and agents in other
fields; bi(k)(d∗(k + 1)− di(k + 1)) represents the expected deviation between agent i and
virtual navigator 0, which together constitute the expected trajectory deviation. The second
part is a penalty item that the control input item cannot change frequently.

To express the subsequent formula succinctly, the following definitions are given:

ζi(k) = ∑
j∈Ni

aij(k)
(
dj(k + 1)− di(k)

)
+bi0(k)(d∗(k + 1)− di(k)). (17)

Equation (18) can be obtained from di(k + 1) = d(k) + ∆d(k + 1) and Equation (12).

J(Ti(k)) =

∣∣∣∣∣ ∑j∈Ni

ai,j (k)(dj(k + 1)− di(k)) + bi(d∗(k + 1)− di(k)) + ∑
j∈Ni

ai,j(k)∆di(k+1)

+ bi∆di(k+1)
∣∣∣∣2 + λ|∆Ti(k)|2

=

∣∣∣∣∣ ∑j∈Ni

ai,j (k)(dj(k + 1)− di(k)) + bi(d∗(k + 1)− di(k)) + ∑
j∈Ni

ai,j(k)Φ(k)∆Ti(k)

+ biΦ(k)∆Ti(k)
∣∣∣∣2 + λ|∆Ti(k)|2.

(18)
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Let ∂J(Ti(k))/∂Ti(k) = 0, the following equation can be obtained:

∂(J(Ti(k)))/(Ti(k)) =2 ∑
j∈Ni

(ai,j(k) + bi(k))φi1(k)·∣∣∣∣∣ ∑j∈Ni

ai,j (k)(dj(k + 1)− di(k)) + bi(k)(d∗(k + 1)− di(k))

− ∑
j∈Ni

(ai,j(k) + bi(k))Φ(k)∆Ti(k)
∣∣∣∣− 2λ∆Ti(k) = 0.

(19)

By substituting Equation (17) into Equation (19), we can obtain the following equation:

∑
j∈Ni

(ai,j(k) + bi(k))φi1(k) · ζi(k)− ( ∑
j∈Ni

(ai,j(k) + bi(k)))2φi1(k)Φi(k)∆Ti(k)

= ∑
j∈Ni

(ai,j(k) + bi(k))φi1(k) · ζi(k)− ( ∑
j∈Ni

(ai,j(k) + bi(k)))2φi1(k)φi1(k)∆Ti(k)

− ∑
j∈Ni

(ai,j(k) + bi(k))φi1(k)
Z
∑
h=2

φ̂i,h(k)∆Ti(k− h + 1 = λ∆Ti(k)

, (20)

after sorting out Equation (20), Equation (21) can be obtained.
Substituting Equation (17) into Equation (16), through the optimality condition

∂J(Ti(k))/∂Ti(k) = 0, the following controller can be obtained from Equation (16):

∆Ti(k) =
ρ1φ̂i,1(k)ζi(k)(∑j∈Ni

ai,j + bi)

λ +
(
(∑j∈Ni

ai,j + bi)
)2

φ̂i,1(k)2
−

φ̂i,1(k)(∑j∈Ni
ai,j + bi)∑Zh=2 ρi,hφ̂i,h(k)∆Ti(k− h + 1)

λ +
(
(∑j∈Ni

ai,j + bi)
)2

φ̂i,1(k)2
, (21)

note that the output di(k) cannot be greater than dmax, i.e.,

0 < di(k) < dmax, (22)

meanwhile, the control input is under the following constraint:

Tmin < Ti(k) < Tmax. (23)

After combining (20), (19) and (12), ∆T(k) is subject to the following constraints:
R
R

I
I




∆Ti(k)
∆Ti(k)
∆Ti(k)
∆Ti(k)

 ≤


[dmax − di(k), . . . , dmax − di(k)]T1×Z
[di(k), . . . , di(k)]T1×Z

[Tmax − Ti(k), . . . , Tmax − Ti(k)]T1×Z
[Ti(k)− Tmin, . . . , Ti(k)− Tmin]

T
1×Z

. (24)

R =

 ΦT
c(k)
...

ΦT
c(k)


Z×Z

. (25)

Since Φi(k) in (18) is unknown, it should be evaluated to implement the controller.

Remark 4. ρ1, ρ2, . . . ρZ ∈ (0, 1] is the step-size factor, which is added to make the input smoother.
The selection of λ has an important impact on the control stability, enabling it to be stable, fast, and
without overshoot. Subsequent experiments will prove that the selection of λ affects the controller.

(2) Pseudo-partial derivative estimation
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Theorem 1 certifies the existence of Φi(k). Since it is unknown, an estimated value
is needed to replace the true value. In this study, a parameter estimation method with a
symmetric control algorithm is applied to evaluate the PG value. First, the cost function for
unknown Φi(k) estimation is defined as

J(Φi(k)) =
∥∥∥di(k)− di(k− 1)−Φi

T(k)∆T(k− 1)
∥∥∥2

+ µ
∥∥∥Φi

T(k)−Φi
T(k− 1)

∥∥∥2
, (26)

where µ > 0 ensures the smoothness of the algorithm.

Lemma 2 ([26] (Matrix inversion lemma)). A, B, C, and D are matrices of the appropriate
dimensions. If the inverse of A and C and DA−1B + C exists, then

[A + BCD]−1 = A−1 − A−1B
[

DA−1B + C−1
]−1

DA−1. (27)

The optimal condition ∂J(Φi(k))/∂Φi(k) = 0 is taken, and the matrix inverse lemma [26]
is used to obtain the following results:

Φ̂i(k) =Φ̂i(k− 1) +
η∆Ti(k− 1)

µ + ‖∆Ti(k− 1)‖2

× (∆di(k)− Φ̂T
i (k− 1)∆Ti(k− 1)),

(28)

where η ∈ (0, 1] is a step-size constant, and Φ̂i(k) is the estimated value of Φi(k).

Remark 5. The cost function of input Ti(k) and the cost function of parameter Φi(k) have sym-
metrical and similar structures. It can be seen that if the control input signal in the cost function
(16) and the parameter Φi(k) estimation cost function (23) are interchanged, the positions of the
current control input variables and parameter variables are also interchanged, and the forms of the
two cost functions are identical.

To adapt the PG estimation algorithm to an actual vehicle queue and have a better
capacity for tracking time-varying parameters, a reset algorithm is defined as follows:

Φ̂i(k) = Φi(1), i f
∣∣Φ̂i(k)

∣∣ ≤ ε, or ∆Ui(k− 1) ≤ ε, (29)

where ε>0 is a sufficiently small number.
Therefore, the cMFAC control scheme is obtained as follows:

∆Ti(k) =
ρ1φ̂i,1(k)εi(k)(∑j∈Ni

ai,j + bi)

λ +
(
(∑j∈Ni

ai,j + di)
)2

φ̂i,1(k)2
−

φ̂i,1(k)(∑j∈Ni
ai,j + bi)∑Zh=2 ρi,Z φ̂i,Z (k)∆Ti(k− h + 1)

λ +
(
(∑j∈Ni

ai,j + di)
)2

φ̂i,1(k)2
,

Ti(k) = Ti(k− 1) + ∆Ti,

ζi(k) = ∑
j∈Ni

aij(k)
(
dj(k + 1)− di(k)

)
+bi0(k)(d∗(k + 1)− di(k)),

Φ̂i(k) = Φ̂i(k− 1) +
η∆Ti(k− 1)

µ + ‖∆Ti(k− 1)‖2 × (∆di(k)− Φ̂T
i (k− 1)∆Ti(k− 1)),

R
−R

I
I




∆Ti(k)
∆Ti(k)
∆Ti(k)
∆Ti(k)

 ≤


[dmax, . . . , dmax]T1×Z
[0, . . . , 0]T1×Z

[Tmax − Ti(k), . . . , Tmax − Ti(k)]T1×Z
[Ti(k)− Tmin, . . . , Ti(k)− Tmin]

T
1×Z

,

R =

 ΦT
c(k)
...

ΦT
c(k)


Z×Z

(30a)
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Φ̂i(k) = Φi(1), i f

∣∣Φ̂i(k)
∣∣ ≤ ε, or|∆Ui(k− 1)| ≤ ε,

Φi(k) = [φi,1(k), φi,2(k) . . . , φi,Z (k)]T ,

∆Ti(k) = [∆Ti(k), . . . , ∆Ti(k−Z + 1)]T .

(30b)

Through the output values and communication topology of the virtual navigator
and other followers, the agents can travel according to the given formation and complete
the required formation control. Corresponding to the fleet, vehicle queue control can be
achieved by controlling the throttle/brake opening and giving the expected deviation from
the pilot. The overall control system structure block diagram is shown in Figure 3, and the
pseudo-code of the control flow is shown in Algorithm 1.

Figure 3. cMFAC structure block diagram.

Algorithm 1: Pseudocode of the cMFAC Algorithm.
While k<max_execution time do

Calculate the distance difference e(k) between the follow vehicle and the leader vehicle
Calculate the next time input T(k) according (21)
if T(k)< Tmax (k)

Perform constraint processing
End if
Input the T(k) at this time into the following vehicle to obtain the output d(k + 1)
Calculate the ∆d(k + 1)
Estimate the pseudo derivative Φ(k + 1) according(28)
Storage the Φ(k + 1), T(k) and d(k + 1)

End

Lemma 3 ([27]). Let

X =


x1 x2 . . . xZ−1 xZ
1 0 . . . 0 0
0 1 . . . 0 0
...
0

...
0

...
. . .

...
...

1 0

,

if ∑Zh=1|xi| < 1, s(X) < 1. where s(·) is the spectral radius.
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Theorem 2. A class of multiagent systems with data compensation is considered. When
Assumptions 1–3 are met, the input and output of the system do not exceed the upper and lower
limits. An appropriate ρ1 is selected to meet the following conditions:

ρ1 <
1

maxi=1...,N ∑N
j=1 aij + bi

(31)

Then, there must be a suitable λ so that when λ > λmin, the expected trajectory
deviation e(k) = [e1(k) e2(k) . . . eN(k)]

T meets the following conditions:

lim
k→∞
‖∆T(k + 1)‖ ≤ p (32)

lim
k→∞
‖e(k + 1)‖ ≤ υ (33)

where p and υ are small positive numbers.

Proof. See Appendix A.

4. Experimental Simulation

This section consists of two parts. Section 4.1 discusses numerical simulations using
MATLAB 2020b to certify the effectiveness of the cMFAC algorithm for MAS control. In
Section 4.2, CarSim is used for semi-physical experiments to certify the effectiveness of the
control strategy for multivehicle collaborative control.

4.1. Numerical Simulation Comparison

To certify the effectiveness of the above cMFAC algorithm on the MAS system, nu-
merical simulations are discussed in this part. Numerical simulations included three
experiments. PID and cMFAC were, respectively, used for comparative tests to prove the
convergence performance of cMFAC; MFAC and cMFAC were used for comparative tests
to prove the constraint performance; and cMFAC convergence performance under different
λ values was evaluated to investigate the influence of λ on cMFAC. It is worth noting that
the MAS in this part is a SISO system, and the given agent dynamics were only used to
generate I/O data, and the design of the controller was not considered.

(1) Square wave trajectory tracking

The first experiment considered the ability to track the desired value in the case of
a square wave, and the cMFAC and PID effects for MAS control were tested. The PID
algorithm is as follows:

di(k) = KpT(k) + Ki∑k
0e(k) + Kd(e(k)− e(k− 1)) (34)

where Kp is the proportional coefficient, Ki is the integral coefficient, and Kd is the differen-
tial coefficient.

The data transmission between multiple agents is shown in Figure 4.

Follow vehicle 1Follow vehicle 2Follow vehicle 3Follow vehicle 4 Leader vehicle 0  

  Figure 4. Data transmission between multiple agents.
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As shown in Figure 4, vehicle 0 was the lead vehicle, and only vehicle 1 could receive a
message from vehicle 0. The nonlinear discrete MAS was composed of successively follow-
ing agents, and the topology shows that the structure is strongly connected. The weighted
adjacency matrix A can be written as

A =


0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

. (35)

Consider the following constant expectations:

d∗(k) =


30
60
40
50

0 < k ≤ 250
250 < k ≤ 500
500 ≤ k < 750

750 ≤ k < 1000

. (36)

A group of discrete SISO MASs with heterogeneous nonaffine nonlinearity can be
described as follows:

Agent1 : y1(k + 1) = 0.003u1(k) + 0.003u1(k− 1)
+ 1.95y1(k)− 0.951y1(k− 1)

Agent2 : y2(k + 1) = 0.0046u2(k) + 0.0045u2(k− 1)
+ 1.935y2(k)− 0.936y2(k− 1)

Agent3 : y3(k + 1) = 0.0124u3(k) + 0.01107u3(k− 1)
+ 1.702y3(k)− 0.704y3(k− 1)

Agent4 : y4(k + 1) = 0.0056u4(k) + 0.0055u4(k− 1)
+ 1.935y4(k)− 0.936y4(k− 1).

(37)

The main parameters and initial values of the PID and cMFAC controllers are shown
in Table 1. The cMFAC parameters were selected according to the characteristics of the
MFAC controller parameters and a large number of experiments. The PID parameters
were estimated by using the gray wolf optimization (GWO) algorithm and Z–N turning,
respectively. [28]. The simulation time was set to 1000 steps, and the simulation results are
shown in Figures 5–7.

Table 1. Parameter settings of the two control methods.

Algorithm Parameter Settings

cMFAC η = 1.45, µ = 0.8, λ = 1.2, ρ = 1,
φ1(1) = φ2(1) = φ3(1) = 0.1, Z=3

Z-N-PID Kp = 2.2, Ti = 1.2, Td = 0

GWO-PID Kp = 2.194, Ti = 1.181, Td = 0

(b) (c)(a)

Figure 5. Simulation results input: (a) Z-N-PID, (b) GWO-PID, and (c) cMFAC.
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(b) (c)(a)

Figure 6. Simulation results tracking performance: (a) Z-N-PID, (b) GWO-PID, and (c) cMFAC.

(b) (c)(a)

Figure 7. Simulation results error: (a) Z-N-PID, (b) GWO-PID, and (c) cMFAC.

According to Figures 5–7, the PID and cMFAC can both complete the MAS control
task. However, we can see that the cMFAC has a better tracking effect and control speed,
and the convergence speed of the search agent is faster.

To demonstrate the performance of the cMFAC algorithm under constraints, it was
compared with the traditional MFAC algorithm. The controlled object still adopted
Equation (34). The data transmission between multiple agents is shown in Figure 4. The ex-
pected values are as follows:

d∗(k) =


30
70
30
70

0 < k ≤ 250
250 < k ≤ 500
500 ≤ k < 750

750 ≤ k < 1000.

(38)

The conventional MFAC controller is as follows:

Φ̂i(k) = Φ̂i(k− 1) +
η∆Ti(k− 1)

µ + ‖∆Ti(k− 1)‖2 × (∆di(k)− Φ̂T
i (k− 1)∆Ti(k− 1)) (39)

∆Ti(k) =
ρ1φ̂i,1(k)εi(k)(∑j∈Ni

ai,j + di)

λ +
(
(∑j∈Ni

ai,j + di)
)2

φ̂i,1(k)2

−
φ̂i,1(k)(∑j∈Ni

ai,j + di)∑Zh=2 ρi,hφ̂i,h(k)∆Ti(k− h + 1)

λ +
(
(∑j∈Ni

ai,j + di)
)2

φ̂i,1(k)2

(40)

Φ̂i(k) = Φi(1), i f
∣∣Φ̂i(k)

∣∣ ≤ ε, or|∆Ui(k− 1)| ≤ ε (41)

The parameters initial values of the MFAC and cMFAC controllers are shown in Table 2.
The cMFAC and MFAC parameters were selected according to the characteristics of the
MFAC controller parameters and a large number of experiments. The upper limit of the
output was 70, the lower limit was 0, the upper limit of the input was 1600, and the lower
limit was 0. The simulation step was set to 1000 steps, and the simulation results are shown
in Figures 8 and 9.
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Table 2. Parameter settings of the two control methods.

Algorithm Parameter Settings

MFAC η = 1.45, µ = 0.8, λ = 1.2, ρ = 1,
φ1(1) = φ2(1) = φ3(1) = 0.1, Z = 3

cMFAC
η = 1.45, µ = 0.8, λ = 1.2, ρ = 1,

φ1(1) = φ2(1) = φ3(1) = 0.1, Z = 3,
dmax = 70, Tmax = 1600, Tmin = 0

(a) (b)

Figure 8. Simulation results based on input: (a) MFAC and (b) cMFAC.

(a) (b)

Figure 9. Simulation results based on tracking performance: (a) MFAC and (b) cMFAC.

Figures 8 and 9 show that both control algorithms can complete the control task.
However, the input and output of the traditional MFAC obviously exceed the constraint
value, while the proposed cMFAC can effectively constrain the input and output without
interfering with the control effect.

(2) Time-varying trajectory tracking

The second experiment considered the ability to track the desired value under the
time-varying trajectory in the case of packet loss and tested the influence of different λ
values on the control effect. The expected values of the system are as follows:

d∗(k) = 100 + 100 sin(kπ/200− π/4)
+ 50 cos(kπ/200− π/4).

(42)

The data transmission between multiple agents is shown in Figure 10.

Follow vehicle 1Follow vehicle 2Follow vehicle 3Follow vehicle 4 Leader vehicle 0  

  Figure 10. Data transmission between multiple agents.
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As shown in Figure 10, vehicle 0 was the lead vehicle, and only vehicle 1 could receive
a message from vehicle 0. The nonlinear discrete MAS was composed of four agents,
and the topology shows that the structure is strongly connected. The weighted adjacency
matrix A can be written as follows:

A =


0 0 0 1
1 0 1 0
1 0 0 0
0 1 0 0

. (43)

In this experiment, the values of λ were 5, 10, and 20. The initial values of the cMFAC
controller are shown as follows: η = 1, µ = 0.8, ρ = 0.3, φ1(1) = φ2(1) = φ3(1) = 0.5,
Z = 3. The cMFAC parameters were selected according to the characteristics of the MFAC
controller parameters and a large number of experiments. The simulation time was set to
1000 steps, and the simulation results are shown in Figures 11–13.

(a) (b)

(c)

Figure 11. Input with different λ values: (a) λ = 5, (b) λ = 10, and (c) λ = 20.

(a) (b)

(c)

Figure 12. Tracking performance with different λ values: (a) λ = 5, (b) λ = 10, and (c) λ = 20.
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(a) (b)

(c)

Figure 13. Error with different λ values: (a) λ = 5, (b) λ = 10, and (c) λ = 20.

Figures 11–13 show that the value of λ has a great impact on the control effect. If the
value of λ is too small (λ = 5), the system will vibrate. If the value of λ is too large (λ = 20),
the convergence speed of the system will be slower, and the adjustment time will be longer.
Therefore, it is important to reasonably select λ for the proposed algorithm.

4.2. CarSim Simulation

This part discusses using the CarSim platform to verify the control effect of the pro-
posed cMFAC algorithm on multiple vehicles. CarSim is a simulation platform specifically
designed for vehicle dynamics. It has the advantages of multidisciplinary system sim-
ulation. It is mainly used to simulate the dynamic performance, braking performance,
handling stability, and other performance indicators of the whole vehicle. The host is based
on the Windows operating system, equipped with an AMD Ryzen 7 4800H eight-core
processor and 16 GB of memory. In this experiment, the dynamic models of three vehicles
were added as the controlled MASs, and the final control objectives were as follows:

(1). The speed of all vehicles would reach the speed of the leader vehicle to ensure that
the speed difference tends to zero;

(2). The positions of all vehicles would form a fixed vehicle spacing in a given way and
ensure spacing safety.

Three vehicles were selected as experimental objects for simulation, namely, vehicle 1,
vehicle 2, and vehicle 3, as shown in Figure 14. The specific parameters of the three vehicles
are shown in Table 3.

Table 3. Detailed parameters of the three vehicles.

Vehicle 1 2 3

Total mass 1430 kg 1590 kg 1800 kg
Engine power 150 kW 200 kw 150 kW
Brake torque 450 N·m 500 N·m 450 N·m

Length 2650 mm 2950 mm 3000 mm
Windward area 3.06 m2 3.38 m2 3.18 m2

Road resistance
coefficient 0.15 0.15 0.15

Air density 1.29 1.29 1.29
slope - - -
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                                (a)                                         (b)                                       (c) 
 

Fig. 14 Three vehicle models for the experiment: (a) vehicle 1, (b) vehicle 2, (c) vehicle 3 
  

Figure 14. Three vehicle models for the experiment: (a) vehicle 1, (b) vehicle 2, and (c) vehicle 3.

The running time of the vehicle was set to 120 s. Due to driving in the city, the desired
vehicle speed track was designed as follows:

Vd(k) =


40
50
70

k ≤ 40
40 < k ≤ 80

80 < k ≤ 120.
(44)

The controller parameters were set as shown in Table 4.

Table 4. Related parameters of the IOC cMFAC algorithm under the CarSim semi-physical simula-
tion experiment.

Parameter Value Parameter Value

ρ 0.9 η 0.6
λ 6.5 µ 1

φ1(1)φ2(1)φ3(1) 0.5 Z 3

The input constraint of the vehicle was imposed by driving under the speed constraint,
and the vehicle speed did not exceed 75 km/h. Vehicle 1 was the leader vehicle, vehicle
2 received the information from vehicle 1, and vehicle 3 received the information from
vehicle 2. The simulation scene was a straight road. The simulation results are shown in
Figures 15–17. They are the speed output curve, the output torque, i.e., the control input,
and the driving distance of each vehicle, respectively.

Figures 15 and 16 show that during 0–20 s, 40–50s, and 80–90 s, due to the constant
acceleration process, the output torque increased, and the speed of the following vehicles
had a certain error with the leader, but the following vehicles could keep up with the
leader’s speed and maintain the same speed, and the speed of the last two vehicles did not
exceed the set constraint value. Figure 16 shows that since the vehicle behind accelerated
from 0, the early control input continuously increased to adjust the speed. In the constant
speed stage, due to the resistance factor, the torque did not always remain unchanged but
fluctuated within the controllable range.

Figure 15. Fleet speed tracking curve.
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Figure 16. Fleet torque curve.

D
is

ta
nc

e

Figure 17. Fleet travel distance curve.

As shown in Figure 17, in the fleet system, all three vehicles had consistent positions.
After starting and accelerating, the distance between vehicles was always kept at the set
distance. Therefore, the designed cMFAC controller has good application in longitudinal
multivehicle cooperative control systems.

5. Conclusions

This manuscript presents a new cMFAC algorithm for multivehicle cooperative control.
In the cMFAC method, first, based on a PFDL data model, a new partial form dynamic
linearization technique was used to convert the multivehicle collaborative system into a
virtual data model to estimate the time-varying parameter PG. Then the estimated PG was
used to estimate the output value and set input and output constraints. The estimation
cost function of PG and the estimation cost function of the input value had a symmetric
similar structure. It is worth noting that in the process of using this method to design the
controller, no accurate controlled object model was needed, and only I/O measurements
were required to complete the control task. The convergence and stability of the algorithm
were mathematically proven. In addition, CarSim and MATLAB were used for joint
simulation to verify the applicability of the algorithm in a multivehicle collaborative system.
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Appendix A

The appendix proves the correctness of Theorem 2. It is divided into the following
steps. The first part proves the boundedness of PG Φi(k), and the second step proves the
convergence of the tracking error and the stability of the bounded input and bounded
output (BIBO) of the system.

Part 1:
Let Φ̃i(k) = Φ̂i(k)−Φi(k) be the estimation error. Subtract this from both sides of the

PG estimation algorithm (25) to obtain the following equation:

Φ̃i(k) =

(
I − η∆Ti(k− 1)∆Ti

T(k− 1)

µ + ‖∆Ti(k− 1)‖2

)
Φ̃i(k− 1)

+ Φi(k− 1)−Φi(k).

(A1)

According to Theorem 1, ‖Φi(k)‖ is bounded. Let σ be the upper bound, so that
‖Φi(k)‖ ≤ σ. Then, it can be inferred that

‖Φi(k− 1)−Φi(k)‖ ≤ 2σ, (A2)

norms are taken for both sides of expression (A2):∥∥∥∥∼φi(k)
∥∥∥∥ ≤

∥∥∥∥∥
(

I − η∆Ti(k− 1)∆Ti
T(k− 1)

µ + ‖∆Ti(k− 1)‖2

)
Φ̃i(k− 1)

∥∥∥∥∥+ ‖Φi(k− 1)−Φi(k)‖,

≤
∥∥∥∥∥
(

I − η∆Ti(k− 1)∆Ti
T(k− 1)

µ + ‖∆Ti(k− 1)‖2

)
Φ̃i(k− 1)

∥∥∥∥∥+ 2σ,

(A3)

square the first term on the right side of (A3) to obtain∥∥∥∥∥
(

I − η∆Ti(k− 1)∆Ti
T(k− 1)

µ + ‖∆Ti(k− 1)‖2

)
Φ̃i(k− 1)

∥∥∥∥∥
2

=
∥∥Φ̃i(k−1)

∥∥2
+

(
−2 +

‖η∆Ti(k− 1)‖2

µ + ‖∆Ti(k− 1)‖2

)
η(Φ̃i

T(k−1)∆Ti(k− 1))2

µ + ‖∆Ti(k− 1)‖2 .

(A4)

According to the parameter value range, i.e., µ ≥ 0, 0 < η < 2, the following inequality
is established:

−2 +
‖η∆Ti(k− 1)‖2

µ + ‖∆Ti(k− 1)‖2 < 0. (A5)

In addition, it can be inferred that∥∥∥∥∥
(

I − η∆Ti(k− 1)∆Ti
T(k− 1)

µ + ‖∆Ti(k− 1)‖2

)
Φ̃i(k− 1)

∥∥∥∥∥
2

<
∥∥Φ̃i(k− 1)

∥∥2, (A6)

it can be inferred that there must be ϑi ∈ (0, 1), so that the following inequality is established:∥∥∥∥∥
(

I − η∆Ti(k− 1)∆Ti
T(k− 1)

µ + ‖∆Ti(k− 1)‖2

)
Φ̃i(k− 1)

∥∥∥∥∥ ≤ ϑi
∥∥Φ̃i(k− 1)

∥∥. (A7)
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Replace (A7) with (A3) to obtain

‖Φ̃i(k)‖ ≤ ϑi‖Φ̃i(k−1)‖+ 2σ

≤ ϑi
2∥∥Φ̃i(k−2)

∥∥+ 2ϑiσ + 2σ

≤ . . . ≤ ϑi
k−1∥∥Φ̃i(1)

∥∥+ 2σ(1− ϑi
k−1)

1− ϑi
,

(A8)

from inequality (A8), it can be concluded that Φ̃i(k) is bounded. Because Φi(k) is bounded,
Φ̂i(k) is bounded.

Part 2:
Since both φi,Z (k) and φ̂i,Z (k) are bounded, there are bounded constants Q1, Q2, Q3,

Q4, and λmin > 0. When λ > λmin, the following conditions are met:∣∣∣∣∣ cφ̂1,1(k)

λ + c2
∣∣φ̂1,1(k)

∣∣2
∣∣∣∣∣γ ≤

∣∣∣∣∣ cφ̂1,1(k)
2c
√

λ
∣∣φ̂1,1(k)

∣∣
∣∣∣∣∣γ <

γ

2
√

λmin

∆
= Q1 <

0.5
σγ

, (A9)

γ = ‖L +D‖ (A10)

0 < Q2 ≤
∣∣∣∣∣ cφ̂1,1(k)φ̂1,Z(k)

λ + c2
∣∣φ̂1,1(k)

∣∣2
∣∣∣∣∣γ ≤ σ

∣∣∣∣∣ cφ̂1,1(k)
2c
√

λ
∣∣φ̂1,1(k)}

∣∣
∣∣∣∣∣γ <

σγ

2
√

λmim
<

0.5σγ

σγ
= 0.5, (A11)

Q1
∥∥Φ̂i(k)

∥∥γ ≤ Q3 < 0.5, (A12)

Q2 + Q3 < 1, (A13)(
Z
∑
h=2

∣∣∣∣∣ cφ̂i,1(k)φ̂i,z(k)γ

λ + c2
∣∣φ̂i,1(k)

∣∣2
∣∣∣∣∣
) 1
Z−1

≤ Q4 (A14)

where D(k) = diag(b1, b2, . . . bN) and L(k) is the Laplacian matrix defined previously.
Select max

h=2,...,Z
ρi,h to make

Z
∑
h=2

ρi,h

∣∣∣∣∣ cφ̂i,1(k)φ̂i,h(k)γ

λ + c2
∣∣φ̂i,1(k)

∣∣2
∣∣∣∣∣ ≤

(
max

h=2,...,Z
ρi,h

) Z
∑
h=2

∣∣∣∣∣ cφ̂i,1(k)φ̂i,h(k)γ

λ + c2
∣∣φ̂i,1(k)

∣∣2
∣∣∣∣∣

≤
(

max
h=2,...,Z

ρi,h

)
QZ−1

4 , Q5 < 1.

(A15)

According to Equations (A15) and (17), the expected deviation of local formation can
be rewritten as

ζi(k) = ∑
j∈Ni

aij(k)
(
ei(k)− ej(k)

)
+ bi0(k)ei(k), (A16)

the following vectors are defined:

d(k) = [d1(k) d2(k) . . . dN(k)]
T

ζ(k) = [ζ1(k) ζ2(k) . . . ζN(k)]
T

Γ(k) =


T1(k) T1(k− 1) · · · T1(k−Z + 1)
T2(k) T2(k− 1) · · · T2(k−Z + 1)

...
...

...
...

TN(k) TN(k− 1) . . . TN(k−Z + 1).


T

.

Now, (17) can be rewritten in the following form:

ζ(k) = (L(k) +D(k))e(k). (A17)
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It can be seen from the previous assumptions that the topology with data loss contains
spanning trees. Therefore, if L(k) +D(k) is a nonsingular matrix, its inverse matrix exists.

Set

ψ(k) = diag

(
cφ̂1,1(k)

λ + c2
∣∣φ̂1,1(k)2

∣∣ , cφ̂2,1(k)
λ + c2

∣∣φ̂2,1(k)2
∣∣ , . . . ,

cφ̂N,1(k)
λ + c2

∣∣φ̂N,1(k)2
∣∣
)

.

Let c(k) = ∑j∈Ni
aij(k) + bi0(k), set

Mi(k) =



− ρi,2cφ̂i,1(k)φ̂i,2(k)

λ+|φ̂i,1(k)|2
− ρi,3cφ̂i,1(k)φ̂i,3(k)

λ+|φ̂i,1(k)|2
. . . − ρi,zcφ̂i,1(k)φ̂i,Z (k)

λ+|φ̂i,1(k)|2
0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
... 0 0

0 0 . . . 1 0


Z×Z

,

M =


M1 0 . . . 0
0 M2 . . . 0
0 0 . . . 0
0 0 . . . MN

,

Bi(k) = [∆Ti(k), ∆Ti(k− 1), . . . , ∆Ti(k−Z + 1)],

then

∆Γ(k) = Γ(k)− Γ(k− 1) =


B1(k)
B2(k)

M
BN(k)


T

, (A18)

rewrite (A18) as the following equation:

∆Γ(k) = M(k)


B1(k− 1)
B2(k− 1)

M
BN(k− 1)


T

+ ρ1ψ(k)(e(k + 1 + τ)

= M(k)∆Γ(k− 1) + ρ1ψ(k)(L + D)e(k).

(A19)

The characteristic equation of Mi in Equation (A19) can be written as

vZ1 +
ρ1,2cφ̂1,1(k)φ̂1,2(k)

λ + c2
∣∣φ̂1,1(k)

∣∣Z
1

Z−1 + · · · ρ1,Z cφ1,1(k)φ̂1,Z (k)

λ + c2
∣∣φ̂1,1(k)

∣∣2 v1 = 0

vZ2 +
ρ2,2cφ2,1(k)φ̂2,2(k)
λ + c2 | φ̂2,1(k)|v2 vZ−1 + · · · ρ2,Z cφ2,1(k)φ̂2,Z (k)

λ + v2
2

∣∣φ̂2,1(k)
∣∣2 = 0

...

vZN +
ρN·.Z cφ̂N,1(k)φ̂N,2(k)

λ + c2
∣∣φ̂N,1(k)

∣∣2 vZ−1
i + · · · ρN,Z cφ̂N,1(k)φ̂N,Z (k)

λ + c2
∣∣φ̂N,1(k)

∣∣2 vi = 0.

(A20)
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According to Lemma 3 and equality (15), vi in Equation (A20) satisfies |vi| < 1.
Therefore, the following inequalities can be satisfied:

|vi|Z−1 ≤
Z
∑
h=2

ρi,z

∣∣∣∣∣ cφ̂i,1(k)φ̂i,h(k)γ

λ + c2
∣∣φ̂i,1(k)

∣∣2
∣∣∣∣∣|vi|Z−1

≤
Z
∑
h=2

ρi,z

∣∣∣∣∣ cφ̂i,1(k)φ̂i,h(k)γ

λ + c2
∣∣φ̂i,1(k)

∣∣2
∣∣∣∣∣ ≤

(
max

h=2,...,Z
ρi,h

)
QZ−1

4 < 1.

(A21)

The above formula means |vi| ≤
(

max
h=2,...,Z

ρi,h

) 1
Z−1

F4 < 1. On this basis, there is

always an arbitrarily small positive number δ1, which satisfies

‖Mi(k)‖v ≤ S(Mi(k)) + δ1 ≤
(

max
h=2,...,Z

ρi,h

) 1
Z−1

Q4 + δ1 < 1. (A22)

According to Theorem 2, if an appropriate ρ1 is selected, then ρ1 is less than the
reciprocal of the largest diagonal term of L(k) +D(k). Moreover, the topology is strongly
connected, and Ai(k) must be an irreducible matrix. Due to the similarity of agents at the
system level, it can be inferred that other agents also meet the above derivation, namely

‖ψ(k)(L(k) +D(k))‖ < γ

2
√

λmin

∆
= Q1. (A23)

Substitute PFDL data models (13) and (A19) into (16):

e(k + 1) = d∗ I − d(k + 1) = d∗ I − d(k)−ΨT(k)∆Γ(k)

= e(k)−ΨT(k)(M(k)∆Γ(k− 1) + ρ1ψ(k)(L + D)e(k))

= (I − ρ1Λ(k)ψ(k)(L + D))e(k)−ΨT(k)(M(k)∆Γ(k− 1)),

(A24)

where
Λ(k) = diag(φ1,1(k), φ2,1(k), . . . , φZ ,1(k)),

according to Equation (A11) and the value of ‖ψ(k)‖, an appropriate ρ1 can be selected so that

‖I − ρ1Λ(k)ψ(k)(L + D)‖ = ‖I − ‖ρ1Λ(k)ψ(k)(L + D)‖‖ ≤ 1− ρ1Q2 < 1, (A25)

because the topology is strongly connected, I − ρ1Λ(k)ψ(k)(L +D) must be an irreducible
matrix. If ρ1 < 1/

(
maxi=1...,N ∑N

j=1 aij + bi

)
, ρ1 will be less than the reciprocal of all

diagonal elements belonging to (L +D).
Let Ξ(k) = Λ(k)ψ(k), Θ(k) = Ξ(k)(L + D); then, Equation (A24) can be rewritten

as follows:
e(k + 1) = (I − ρ1Θ(k))e(k)−Ψ(k)(M(k)∆Γ(k− 1)), (A26)

Ψ(k) =


φ1,1 φ1,2 . . . φ1,Z
φ2,1 φ2,2 . . . φ2,Z

...
...

...
...

φN,1 φN,2 . . . φN,Z


note that the element in Ξ(k) is smaller than 1, and at least one row in I − ρ1Θ(k) is smaller
than 1. In conclusion, I − ρ1Θ(k) is an irreducible random matrix with positive diagonal
terms. Let ϑ3 = 1− ρ1Q2, and then take the norm on both sides of Equation (A24) to obtain
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‖e(k + 1)‖v ≤ ‖(I − ρ1Λ(k)ψ(k)(L +D))‖v‖e(k)‖v +
∥∥∥ΨT(k)

∥∥∥
v
‖M(k)‖v‖∆Γ(k− 1)‖v

≤ ‖(I − ρ1Θ(k)‖v · · · ‖(I − ρ1Θ(1)‖v‖e(1)‖v+

ϑ2

k−1

∑
l=1
‖
(

I − ρ1Θ(k)‖v . . .‖
(

I − ρ1Θ(1)‖v‖ΨT(l + 1)‖v‖∆Γ(l)‖v

< ω
k
J

⌋
‖e(1)‖v + ϑ2

k−1

∑
l=1

ω

⌊
k−l−1

J

⌋∥∥∥ΨT(l + 1)
∥∥∥

v
‖∆Γ(l)‖v

< ϑk
3‖e(1)‖v + ϑ2

k−1

∑
l=1

ϑk−1−l
3

∥∥∥ΨT(l + 1)
∥∥∥

v
‖∆Γ(l)‖v

< ϑ3
k‖e(1)‖v + ϑ2

k−1

∑
l=1

ϑ3
k−1−l

∥∥∥ΨT(l + 1)
∥∥∥

v
ρ1S1

l

∑
o=1

ϑl−o
2 ‖e(o)‖v

. (A27)

Let ϑ4 = ρ1Q3. From Equations (A26) and (A27), we can infer that
Q1
∥∥ΨT(k)

∥∥
v ≤ Q3 < 0.5 is due to Q1

∥∥Φ̂i(k)
∥∥

V ≤ Q3 < 0.5. Therefore, the following
inequality holds:

‖e(k + 1)‖v < ϑ3
k‖e(1)‖v + ϑ2ϑ4

k−1

∑
l=1

ϑk−1−l
3

l

∑
o=1

ϑ2
l−o‖e(o)‖v, (A28)

it can also be written as follows:

χ(k + 1) = ϑ3
k‖e(1)‖v + ϑ2ϑ4

k−1

∑
l=1

ϑk−1−l
3

l

∑
o=1

ϑ2
l−o‖e(o)‖v, (A29)

the inequality (A28) can be written as follows:

‖e(k + 1)‖v < χ(k + 1), (A30)

where χ(2) = ϑ3‖e(1)‖. Clearly, if χ(k + 1) monotonically converges to 0, ‖e(k + 1)‖v also
converges to 0. Calculate χ(k + 2) to obtain the following inequation:

χ(k + 2) = ϑk+1
3 ‖e(1)‖v + ϑ2ϑ4

k

∑
l=1

ϑ3

l

∑
o=1

ϑl−o
2 ‖e(o)‖v

= ϑ3χ(k + 1) + ϑk
2ϑ4‖e(1)‖v

+ ϑk−1
2 ϑ4‖e(2 + τ)‖v + . . . + ϑ2

2ϑ4‖e(k− 1)‖v + ϑ2ϑ4‖e(k)‖v,

< ϑ3χ(k + 1) + m(k),

(A31)

where m(k) = ϑ2
kϑ4‖e(1)‖v + ϑ2

k−1ϑ4‖e(2)‖v + . . . + ϑ2
2ϑ4‖e(k− 1)‖v + ϑ2ϑ4‖e(k)‖v

Combining (A13), the following can be obtained:

(1− ρ1Q2) = ϑ3 > ρ1(Q2 + Q3)− ρ1Q2 > ρ1Q3 = ϑ4, (A32)

m(k) < ϑkϑ4‖e(1)‖v + ϑ2
k−1ϑ4‖e(2)‖v + . . . + ϑ2

2ϑ4‖e(k− 1)‖v + ϑ2ϑ3‖χ(k)‖v

< ϑ2
kϑ4‖e(1)‖v + . . . + ϑ2

2ϑ4‖e(k− 1)‖v

+ ϑ2ϑ3

(
ϑ3

k−1‖e(1)‖v + ϑ2ϑ4

k−2

∑
l=1

ϑ3
k−2−l

l

∑
o=1

ϑl−o
2 ‖e(o)‖v

)

= ϑ2

(
ϑ3

k‖e(1)‖v + ϑ2ϑ4

k−1

∑
l=1

ϑ3

k−1−l

∑
o=1

ϑl−o
2 ‖e(o)‖v

)
= ϑ2χ(k + 1).

(A33)
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Substituting (A33) into (A31), we can obtain

χ(k + 2) < ϑ3χ(k + 1) + m(k) < (ϑ2 + ϑ3)χ(k + 1). (A34)

If 0 < ρi,z < 1, is selected appropriately and 0 < ϑ2 < ρ1Q2 < 1 is established, then

0 < 1− ρ1Q2 + ϑ2 < 1, (A35)

0 < ϑ2 + ϑ3 < 1. (A36)

SubstitutING Equation (A36) into Equation (A34) to obtain the following inequation:

lim
k→∞

p(k + 2) < (ϑ2 + ϑ3)χ(k + 1)

< . . . < (ϑ2 + ϑ3)
kχ(2) = 0,

(A37)

combining Equations (A37) and (A30), we can obtain lim
k→∞

e(k + 1) = 0. At the same time,

by scaling, it can be inferred that

‖∆Γ(k)‖v ≤ ‖M(k)‖v‖∆Γ(k− 1)‖v + ρ1‖ψ(k)(L +D)e(k)‖v

≤
k

∑
l=1
‖∆Γ(l)‖v < ρ1Q1

k

∑
l=1

l

∑
o=1

ϑ2
l−o‖e(o)‖v

<
ρ1Q1

1− ϑ2
(‖e(1)‖v + . . . ‖e(k)‖v)

<
ρ1Q1

1− ϑ2
(‖e(1)‖v + χ(2) . . . χ(k))

<
ρ1Q1

1− ϑ2

(
‖e(1)‖v +

χ(2)
1− ϑ2 − ϑ3

)
.

(A38)

Therefore, ∆Γ(k) is also bounded, and ∆T(k) is also bounded. Theorem 2 is proved.
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