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Abstract: Rough set theory provides a useful tool for data analysis, data mining and decision making.
For multi-criteria decision making (MCDM), rough sets are used to obtain decision rules by reducing
attributes and objects. However, different reduction methods correspond to different rules, which
will influence the decision result. To solve this problem, we propose a novel method for MCDM based
on rough sets and a fuzzy measure in this paper. Firstly, a type of non-additive measure of attributes
is presented by the importance degree in rough sets, which is a fuzzy measure and called an attribute
measure. Secondly, for a decision information system, the notion of the matching degree between two
objects is presented under an attribute. Thirdly, based on the notions of the attribute measure and
matching degree, a Choquet integral is constructed. Moreover, a novel MCDM method is presented
by the Choquet integral. Finally, the presented method is compared with other methods through a
numerical example, which is used to illustrate the feasibility and effectiveness of our method.

Keywords: rough set; fuzzy measure; multi-criteria decision making; Choquet integral; attribute reduction

1. Introduction

In 1982, Pawlak [1,2] proposed rough set theory, as a mathematical tool, to deal
with various kinds of data in data mining. It has been applied in various issues, such
as attribute reduction [3–5], rule extraction [6–8], knowledge discovery [9–11] and fea-
ture selection [12–14]. To broaden the application ability of Pawlak’s rough set theory
in practical problems [11,15], it has been extended by generalized relations [16,17], vari-
ous coverings [18–20] and several types of neighborhoods [4,21]. Moreover, it has been
combined with several theories, including lattice theory [22], matrix theory [23], fuzzy set
theory [24] and others [25,26].

In multi-criteria decision-making (MCDM) problems [27], it is difficult to obtain the
optimal attribute weight. Hence, different attribute weights will influence the decision
results. Pawlak’s rough sets can obtain decision rules to make decisions, which can solve
the issue above. Therefore, the decision-making methods based on Pawlak’s rough sets
have received more and more attention [28,29]. The decision rules are obtained by reduc-
ing attributes and objects in Pawlak’s rough sets. Hence, there are many attribute and
object reduction methods, such as the discernibility matrix method [30,31], positive region
method [32,33], information entropy method [34,35] and other methods [36,37]. Different
reduction methods correspond to different rules, which will influence the decision result.
Hence, for the existing rule extraction algorithms of rough sets, the decision value will
be not unique. For example, we use the hiring dataset taken from Komorowski et al.
in [38], where all the attributes have nominal values. We use two famous rule extraction
algorithms of rough sets, which are the CN2 algorithm [39] and the LEM2 algorithm [40],
to illustrate this statement. We use the R programming language for these two algorithms
(the CN2 algorithm [39] and the LEM2 algorithm [40] are at pages 97 and 105 in the

Axioms 2022, 11, 275. https://doi.org/10.3390/axioms11060275 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11060275
https://doi.org/10.3390/axioms11060275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11060275
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11060275?type=check_update&version=2


Axioms 2022, 11, 275 2 of 15

package ‘RoughSets’, respectively). The package ‘RoughSets’ can be downloaded from
https://CRAN.R-project.org/package=RoughSets accessed on 23 May 2022, and the steps
of them are shown as follows: firstly, we use the first seven records to obtain rules by the
CN2 algorithm [39] and the LEM2 algorithm [40], respectively. Then, we use the obtained
rules to make decisions for the eight records x8. The corresponding results are shown in
Section 5.3, and we find that the predicted decision value of x8 is not unique by using dif-
ferent values in the CN2 algorithm [39] and the LEM2 algorithm [40], respectively. Hence,
for a problem of MCDM, different decision rules will influence the decision results. It is
necessary to seek a new method of decision making by rough sets.

The research motivations of this paper are listed as follows:

1. In rough set theory, the common decision-making method is using decision rules. It is
difficult to find the best decision rules, because different methods can obtain different
rules, which will influence the decision result. Hence, a new decision-making method
based on rough sets should be presented, which will be independent of decision rules.

2. In decision-making theory, attribute weights are needed in almost all decision-making
methods, such as the WA, OWA and TOPSIS methods. However, it is difficult to obtain
the optimal weight value, and many weight values are given artificially. To solve this
problem, Choquet integrals can be used to aggregate decision information without
attribute weights.

In this paper, a novel MCDM method based on rough sets and fuzzy measures is
presented. Firstly, to show the correlation between attributes in a decision information
system, a type of non-additive measure of attributes is presented by the importance degree
in rough sets. It is called an attribute measure, and some properties of it are presented.
Secondly, to describe how close any two objects are to each other in a decision information
system, the notion of the matching degree between two objects is presented under an
attribute. Thirdly, a Choquet integral is constructed based on the notions of attribute
measure and matching degree above. Moreover, a novel MCDM method is presented by
the Choquet integral, which can aggregate all information between two objects. Finally, to
illustrate the feasibility and effectiveness of our method above, our method is compared
with other methods through a numerical example. By the corresponding analysis, our
method can address the deficiency of the existing methods well.

The rest of this article is organized as follows: Section 2 recalls several basic notions
about Pawlak’s rough sets, fuzzy measures and Choquet integrals. In Section 3, a type of
non-additive measure of attributes is presented by the importance degree in rough sets.
Moreover, the notion of the matching degree between two objects is presented under an
attribute, as well as corresponding Choquet integrals. In Section 4, a novel MCDM method
is presented by the Choquet integral. In Section 5, we show the effectiveness and the
efficiency of our method by a numerical example. Section 6 concludes this article and
indicates further works.

2. Basic Definitions

In this section, we recall several concepts in Pawlak’s rough sets, fuzzy measures and
Choquet integrals.

2.1. Pawlak’s Rough Sets

We show some notions about Pawlak’s rough sets in [1,41] as follows:
Let S = (U, A) be an information system, where U is a nonempty finite set of objects

and called the universe, and A is a nonempty finite set of attributes such that a : U → Va
for any a ∈ A, where Va is called the value set of a. The indiscernibility relation induced by
A is defined as follows:

IND(A) = {(x, y) ∈ U ×U : ∀a ∈ A, a(x) = a(y)}.

https://CRAN.R-project.org/package=RoughSets
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For every X ⊆ U, a pair of approximations A(X) and A(X) of X are denoted as

A(X) = {x ∈ U : [x]A
⋂

X 6= ∅},
A(X) = {x ∈ U : [x]A ⊆ X},

where [x]A = {y ∈ U : (x, y) ∈ IND(A)} and U/A = {[x]A : x ∈ U}. A and A are called
the upper and lower approximation operators with respect to A, respectively.

Let ∅ be the empty set and −X = U − X. We have the following conclusions about A
and A.

Proposition 1 ([1,41]). Let S = (U, A) be an information system. For any X, Y ⊆ U,

(1L) A(U) = U
(2L) A(φ) = φ
(3L) A(X) ⊆ X
(4L) A(X

⋂
Y) = A(X)

⋂
A(Y)

(5L) A(A(X)) = A(X)
(6L) X ⊆ Y ⇒ A(X) ⊆ A(Y)
(7L) A(−A(X)) = −A(X)
(8LH) A(−X) = −A(X)

(1H) A(U) = U
(2H) A(φ) = φ
(3H) X ⊆ A(X)
(4H) A(X

⋃
Y) = A(X)

⋃
A(Y)

(5H) A(A(X)) = A(X)
(6H) X ⊆ Y ⇒ A(X) ⊆ A(Y)
(7H) A(−A(X)) = −A(X)
(9LH) A(X) ⊆ A(X)

Moreover, Let S = (U, A) be an information system. For any B, C ∈ A and X ∈ U,

B(X)
⋃

C(X) ⊇ B
⋃

C(X),
B(X)

⋂
C(X) ⊆ B

⋂
C(X).

Then, S = (U, A
⋃

D) is called a decision information system, where A is a conditional
attribute set and D is a decision attribute set. The notions of dependency degree and
importance degree in the decision information system are shown in the following definition.

Definition 1 ([1,41]). Let S = (U, A
⋃

D) be a decision information system. Then, the dependency
degree of D with regard to A in S is

γD(A) = |POSA(D)|
|U| =

∑
X∈U/D

|A(X)|

|U| ,

where POSA(D) =
⋃

X∈U/D
A(X). For any B ∈ A, the importance degree of D with regard to B in

S is

SigD(B) = γD(A)− γD(A− B).

2.2. Fuzzy Measures and Choquet Integrals

Firstly, the definition of the fuzzy measure is shown in Definition 2.

Definition 2 ([42,43]). Given a universe U and a set function m: P(U)→ [0, 1], where P(U) is
the power set of U, m is called a fuzzy measure on U if the following statements hold:

(1) m(∅) = 0, m(U) = 1;
(2) A, B ⊆ U, A ⊆ B, which implies m(A) ≤ m(B).

Inspired by the notion of the fuzzy measure, a type of fuzzy integral is proposed in
Definition 3.

Definition 3 ([44,45]). Given a real-valued function f : U → [0, 1] with U = {x1, x2, · · · , xn},
the Choquet integral of f with respect to the fuzzy measure m is defined as:∫

f dm =
n
∑

i=1
[m(X(i))−m(X(i+1))] f (x(i)),

where {x(1), x(2), · · · , x(n)} is a permutation of {x1, x2, · · · , xn} such that f (x(1)) ≤ f (x(2)) ≤
· · · ≤ f (x(n)), X(i) = {x(i), x(i+1), · · · , x(n)} and X(n+1) = ∅.
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In Definition 3, the real-valued function f : U → [0, 1] is called a measurable function,
which can be seen as a fuzzy set.

3. Fuzzy Rough Measures and Choquet Integrals

In this section, the notions of the attribute measure and matching degree between two
objects are presented in a decision information system. The key work of this section is to
induce the fuzzy measure and the measurable function from a discrete data table. Based on
these new notions, a Choquet integral is constructed.

3.1. Fuzzy Rough Measures Based on Attribute Importance Degrees

In this subsection, a type of non-additive measure of attributes is presented by the
importance degree in rough sets, which is a fuzzy measure and called an attribute measure.
Moreover, several properties of the attribute measure are proposed. Firstly, the notion of
the attribute measure is proposed.

Definition 4. Let S = (U, A
⋃

D) be a decision information system. For any B ⊆ A, we call
µ(B) an attribute measure of B in S, where

µ(B) =
SigD(B)
SigD(A)

.

By Definition 4, the notion of the attribute measure reflects the degree of correlation
between attribute subset B and attribute set A. It will be a useful tool for describing
relational data in rough set theory.

Example 1. Let S = (U, A
⋃

D) be a decision information system that provides 7 days’ meteoro-
logical observation data, as shown in Table 1, where A is the set of four attributes of weather, and D
denotes whether to hold a meeting. The detailed description of each attribute is as follows:

• The conditional attribute ‘a1 = Weatherprediction’ has values: “Clear = 1”, “Cloudy = 2”,
“Rain = 3”.

• The conditional attribute ‘a2 = Airtemperature’ has values: “Hot = 1”, “Warm = 2”,
“Cool = 3”.

• The conditional attribute ‘a3 = Windiness’ has values: “Yes = 0”, “No = 1”.
• The conditional attribute ‘a4 = Humidity’ has values: “Wet = 1”, “Normal = 2”, “Dry = 3”.
• The conditional attribute ‘D’ has values: “Yes = 1”, “No = 0”.

Table 1. Weather observation data.

U a1 a2 a3 a4 D

x1 1 1 1 1 1
x2 2 2 1 2 1
x3 2 2 1 1 1
x4 1 2 0 3 1
x5 1 3 1 2 0
x6 3 3 1 3 0
x7 2 1 1 2 0

Then, U/D = {X1, X2}, where X1 = {x1, x2, x3, x4}, X2 = {x5, x6, x7}. Hence,
A(X1) = {x1, x2, x3, x4} and A(X2) = {x5, x6, x7}.

By Definition 1,

POSA(D) = A(X1)
⋃

A(X2)) = U, i.e., γD(A) = |POSA(D)|
|U| = 1.

Thus,

SigD(A) = γD(A)− γD(∅) = 1− 0 = 1.
Suppose B = {a1, a2}. We have
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A− B(X1) = {x1, x3, x4} and A− B(X2) = {x6}.
By Definition 1,

POSA−B(D) = A− B(X1)
⋃

A− B(X2) = {x1, x3, x4, x6}, i.e.,
γD(A) =

|POSA−B(D)|
|U| = 4

7 = 0.5714.

Hence,

SigD(B) = γD(A)− γD(A− B) = 1− 0.5714 = 0.4286.

Therefore, by Definition 4, we have

µ(B) =
SigD(B)
SigD(A)

=
0.4286

1
= 0.4286.

Several properties of the attribute measure in Definition 4 are proposed below.

Proposition 2. Let S = (U, A
⋃

D) be a decision information system, and µ(B) be a attribute
measure for any B ⊆ A. Then,

(1) µ(∅) = 0 and µ(A) = 1;
(2) For any B, C ⊆ A, B ⊆ C implies µ(B) ≤ µ(C).

Proof. (1) By Definition 1 and Proposition 1, we have that γD(∅) = 0 and γD(A) 6= 0.
Hence,

µ(∅) =
SigD(∅)

SigD(A)
=

γD(A)− γD(A)

γD(A)− γD(∅)
= 0, µ(A) =

SigD(A)

SigD(A)
=

γD(A)− γD(∅)

γD(A)− γD(∅)
= 1.

(2) For any B, C ⊆ A and X ∈ U, if B ⊆ C, then A− C(X) ⊆ A− B(X) by Proposition 1.
Hence, γD(A− C) ≤ γD(A− B), i.e., SigD(B) ≤ SigD(C). Therefore,

µ(B) =
SigD(B)
SigD(A)

≤ SigD(C)
SigD(A)

= µ(C), i.e., µ(B) ≤ µ(C).

Example 2 (Continued from Example 1). Let C = {a1, a2, a3}. A− C(X1) = {x1, x3} and
A− C(X2) = ∅. By Definition 1, POSA−C(D) = A− C(X1)

⋃
A− C(X2) = {x1, x3}, i.e.,

γD(C) =
|POSA−C(D)|

|U| = 2
7 = 0.2857. SigD(C) = γD(A) − γD(A − C) = 1− 0.2857 =

0.7143. Hence,

µ(C) =
SigD(C)
SigD(A)

= 0.7143/1 = 0.7143.

Therefore, B ⊆ C implies µ(B) ≤ µ(C).

Proposition 3. Let S = (U, A
⋃

D) be a decision information system, and µ(B) be a attribute
measure for any B ⊆ A. Then, 0 ≤ µ(B) ≤ 1.

Proof. By Proposition 1 and the statement (2) in Proposition 2, µ(∅) ≤ µ(B) ≤ µ(A).
According to (1) in Proposition 2, 0 ≤ µ(B) ≤ 1.

Example 3 (Continued from Example 1). In Examples 1 and 2, µ(B) = 0.4286 and
µ(C) = 0.7143. Hence, 0 ≤ µ(B), µ(C) ≤ 1.

Proposition 4. Let S = (U, A
⋃

D) be a decision information system, and µ(B) and µ(C) be two
attribute measures for any B, C ⊆ A. Then, µ(B) + µ(C) ≥ 2µ(B

⋂
C).

Proof. By the statement (2) in Proposition 2, µ(B) ≥ µ(B
⋂

C) and µ(C) ≥ µ(B
⋂

C).
Hence, µ(B) + µ(C) ≥ 2µ(B

⋂
C).
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Example 4 (Continued from Example 1). In Examples 1 and 2, µ(B) = 0.4286 and
µ(C) = 0.7143. Since µ(B

⋂
C) = 0.4286, µ(B) + µ(C) ≥ 2µ(B

⋂
C).

Proposition 5. Let S = (U, A
⋃

D) be a decision information system, and µ(B) and µ(C) be two
attribute measures for any B, C ⊆ A. Then, µ(B) + µ(C) ≤ 2µ(A

⋃
B).

Proof. By the statement (2) in Proposition 2, µ(B) ≤ µ(B
⋃

C) and µ(C) ≤ µ(B
⋃

C).
Hence, µ(B) + µ(C) ≤ 2µ(B

⋃
C).

Example 5 (Continued from Example 1). In Examples 1 and 2, µ(B) = 0.4286 and
µ(C) = 0.7143. Since µ(B

⋃
C) = 0.7143, µ(B) + µ(C) ≤ 2µ(B

⋃
C).

Theorem 1. Let S = (U, A
⋃

D) be a decision information system, and µ(B) be a attribute
measure for any B ⊆ A. Then, µ is a fuzzy measure on A.

Proof. By Proposition 3, we find that µ is a set function where µ : P(A)→ [0, 1]. According
to Proposition 2, the statements (1) and (2) in Definition 4 hold for µ. Hence, µ is a fuzzy
measure on A.

Inspired by Theorem 1, we also call µ a fuzzy rough measure in a decision information
system S = (U, A

⋃
D). In Example 5, we find that µ(B) + µ(C) 6= µ(B

⋃
C). Hence, µ is a

non-additive measure, which shows that attributes are related in the decision information
system S = (U, A

⋃
D).

3.2. Choquet Integrals under Fuzzy Rough Measures

In this subsection, for a decision information system, the notion of the matching degree
between two objects is presented under an attribute. Based on the notions of attribute
measure and matching degree, a Choquet integral is constructed.

Definition 5. Let S = (U, A
⋃

D) be a decision information system. For any x, y ∈ U and a ∈ A,
we call f(x,y)(a) the matching degree between x and y with respect to a, where

f(x,y)(a) =
1

1 + |a(x)− a(y)| .

Example 6 (Continued from Example 1). By Definition 5, we have

f(x1,x2)
(a1) =

1
1 + |a1(x1)− a1(x2)|

= 0.5.

f(x1,x2)
(a2) =

1
1 + |a2(x1)− a2(x2)|

= 0.5.

f(x1,x2)
(a3) =

1
1 + |a3(x1)− a3(x2)|

= 1.0.

f(x1,x2)
(a4) =

1
1 + |a4(x1)− a4(x2)|

= 0.5.

Theorem 2. Let S = (U, A
⋃

D) be a decision information system with A = {a1, a2, · · · , an},
and µ be a fuzzy rough measure in S = (U, A

⋃
D). Then, for any x, y ∈ U,∫

f(x,y)dµ =
n
∑

i=1
[µ(A(i))− µ(A(i+1))] f(x,y)(a(i)),

is a Choquet integral of f(x,y) with respect to the fuzzy rough measure µ on A, where
{a(1), a(2), · · · , a(n)} is a permutation of {a1, a2, · · · , an} such that f(x,y)(a(1)) ≤ f(x,y)(a(2)) ≤
· · · ≤ f(x,y)(a(n)), A(i) = {a(i), a(i+1), · · · , a(n)} and A(n+1) = ∅.

Proof. By Theorem 1, we know that the fuzzy rough measure µ is a fuzzy measure. Hence,
it is immediate by Definition 3.
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Remark 1. In Theorem 2, we find that µ(A(i)), µ(A(i+1)) and a(i) are related to f(x,y). Therefore,

we denote µ(A(i)), µ(A(i+1)) and a(i) by µ(A
f(x,y)
(i) ), µ(A

f(x,y)
(i+1)) and a

f(x,y)
(i) in the following discussion.

Example 7 (Continued from Example 1). By Example 6, we have

f(x1,x2)
(a1) ≤ f(x1,x2)

(a2) ≤ f(x1,x2)
(a4) ≤ f(x1,x2)

(a3).

Hence, for f(x1,x2)
, we obtain

a
f(x1,x2)

(1) = a1, a
f(x1,x2)

(2) = a2, a
f(x1,x2)

(3) = a4 and a
f(x1,x2)

(4) = a3.

Hence,

A
f(x1,x2)

(i) = {a
f(x1,x2)

(i) , a
f(x1,x2)

(i+1) , · · · , a
f(x1,x2)

(4) } (i = 1, 2, 3, 4) and A
f(x1,x2)

(5) = ∅.

Therefore, by Definition 4, we have

µ(A
f(x1,x2)

(1) ) = 1, µ(A
f(x1,x2)

(2) ) = 0.8571, µ(A
f(x1,x2)

(3) ) = 0, µ(A
f(x1,x2)

(4) ) = 0 and µ(A
f(x1,x2)

(5) ) = 0.

By Theorem 2,∫
f(x1,x2)

dµ = (1− 0.8571)× 0.5 + (0.8571− 0)× 0.5 + 0× 0.5 + 0× 1 = 0.5.

In the same way, we have∫
f(x2,x2)

dµ =
4
∑

i=1
[µ(A

f(x2,x2)

(i) )− µ(A
f(x2,x2)

(i+1) )] f(x2,x2)
(a

f(x2,x2)

(i) ) = 1.0,∫
f(x3,x2)

dµ =
4
∑

i=1
[µ(A

f(x3,x2)

(i) )− µ(A
f(x3,x2)

(i+1) )] f(x3,x2)
(a

f(x3,x2)

(i) ) = 0.8571,∫
f(x4,x2)

dµ =
4
∑

i=1
[µ(A

f(x4,x2)

(i) )− µ(A
f(x4,x2)

(i+1) )] f(x4,x2)
(a

f(x4,x2)

(i) ) = 0.6429,∫
f(x5,x2)

dµ =
4
∑

i=1
[µ(A

f(x5,x2)

(i) )− µ(A
f(x5,x2)

(i+1) )] f(x5,x2)
(a

f(x5,x2)

(i) ) = 0.5,∫
f(x6,x2)

dµ =
4
∑

i=1
[µ(A

f(x6,x2)

(i) )− µ(A
f(x6,x2)

(i+1) )] f(x6,x2)
(a

f(x6,x2)

(i) ) = 0.5,∫
f(x7,x2)

dµ =
4
∑

i=1
[µ(A

f(x7,x2)

(i) )− µ(A
f(x7,x2)

(i+1) )] f(x7,x2)
(a

f(x7,x2)

(i) ) = 0.6429.

In Example 7, we have that
∫

f(x2,x2)
dµ = 1.0, which is greater than other values of∫

f(xj ,x2)
dµ (j = 1, 3, 4, 5, 6, 7).

∫
f(x2,x2)

dµ = 1.0 means that x2 is the best match to itself,
which is consistent with actual logic.

4. A Novel Decision-Making Method Based on Fuzzy Rough Measures and
Choquet Integrals

In this section, a novel MCDM method is presented by the Choquet integral, which
can aggregate all information between two objects.

4.1. The Problem of Decision Making

Let S = (U, A
⋃

D) be a decision information system, which is shown in Table 2,
where U = {x1, · · · , xm} is the set of objects, A = {a1, · · · , an} is a conditional attribute
set, D is a decision attribute, xji = ai(xj) is the attribute value of xj under conditional
attribute aj, and dj is the decision value of xj under decision attribute D. For a new object
xm+1, we take the value of each conditional attribute to be (a1(xm+1)), (a2(xm+1)), · · · ,
(an(xm+1)). Then, the decision maker should give the decision value of xm+1 according to
S = (U, A

⋃
D).
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Table 2. A decision-making table.

U a1 a2 · · · an D

x1 x11 x12 · · · x1n d1
x2 x21 x22 · · · x2n d2
...

...
... · · · ...

...
xm xm1 xm2 · · · xmn dm

4.2. The Novel Decision-Making Method

Based on Theorems 1 and 2, we present a novel method to solve the issue of MCDM
by using fuzzy rough measures and Choquet integrals. We show this novel method as
follows, for the problem of decision making in Section 4.1:

Step 1: For any xj ∈ U (j = 1, 2, · · · , m) and ai ∈ A (i = 1, 2, · · · , n), we calculate all

matching degrees f(xj ,xm+1)
(ai) =

1
1 + |aj(xj)− ai(xm+1)|

, which are shown in Table 3.

Table 3. A matching degree table.

U a1 a2 · · · an

x1 f(x1,xm+1)(a1) f(x1,xm+1)(a2) · · · f(x1,xm+1)(an)

x2 f(x2,xm+1)(a1) f(x2,xm+1)(a2) · · · f(x2,xm+1)(an)
...

...
... · · · ...

xm f(xm ,xm+1)(a1) f(xm ,xm+1)(a2) · · · f(xm ,xm+1)(an)

Step 2: For any xj ∈ U (j = 1, 2, · · · , m), we calculate all Choquet integrals under
fuzzy rough measures µ, which are shown as follows:

s(x1, xm+1) =
∫

f(x1,xm+1)
dµ =

n
∑

i=1
[µ(A

f(x1,xm+1)

(i) )− µ(A
f(x1,xm+1)

(i+1) )] f(x1,xm+1)
(a

f(x1,xm+1)

(i) ),

...

s(xj, xm+1) =
∫

f(xj ,xm+1)
dµ =

n
∑

i=1
[µ(A

f(xj ,xm+1)

(i) )− µ(A
f(xj ,xm+1)

(i+1) )] f(xj ,xm+1)
(a

f(xj ,xm+1)

(i) ),

...
s(xm, xm+1) =

∫
f(xm ,xm+1)

dµ =
n
∑

i=1
[µ(A

f(xm ,xm+1)

(i) )− µ(A
f(xm ,xm+1)

(i+1) )] f(xm ,xm+1)
(a

f(xm ,xm+1)

(i) ).

Step 3: We obtain the ranking of all alternatives by the value of s(xj, xm+1). Moreover,
the decision maker chooses the best one whose decision value is the same as that of xm+1.

For steps 1–3 above, the MCDM algorithm by fuzzy rough measures and Choquet
integrals is shown in Algorithm 1.
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Algorithm 1 The MCDM algorithm by fuzzy rough measures and Choquet integrals
Input: A decision information system S = (U, A

⋃
D) and a new decision object xm+1,

where U = {x1, · · · , xm}, A = {a1, · · · , an}.
Output: The decision value of xm+1.
(1) for j = 1→ m
(2) for i = 1→ m
(3) Compute f(xj ,xm+1)

(ai);
(4) end
(5) Compute s(xj, xm+1) =

∫
f(xj ,xm+1)

dµ;
(6) end
(7) for j = 1→ m
(8) Obtain the ranking of all s(xj, xm+1);
(9) end
(10) Give the decision value of xm+1 by the ranking of all s(xj, xm+1).

5. Comparison and Analysis

To illustrate the feasibility and effectiveness of our method above, it is compared with
other methods through a numerical example in this section.

5.1. Hiring Dataset

In this section, we list the hiring dataset taken from Komorowski et al. in [38], where
all the attributes have nominal values, which is shown in Table 4. It contains 8 objects with
4 conditional attributes and 1 decision attribute. The detailed description of each attribute
is as follows:

• The conditional attribute ‘Diploma’ has values: “MBA”, “MSc”, “MCE”.
• The conditional attribute ‘Experience’ has values: “High”, “Low”, “Medium”.
• The conditional attribute ‘French’ has values: “Yes”, “No”.
• The conditional attribute ‘Reference’ has values: “Excellent”, “Good”, “Neutral”.
• The conditional attribute ‘Decision’ has values: “Accept”, “Reject”.

Table 4. The hiring dataset [38].

U Diploma Experience French Reference Decision

x1 MBA Medium Yes Excellent Accept
x2 MSC High Yes Neutral Accept
x3 MSC High Yes Excellent Accept
x4 MBA High No Good Accept
x5 MBA Low Yes Neutral Reject
x6 MCE Low Yes Good Reject
x7 MSC Medium Yes Neutral Reject
x8 MCE Low No Excellent Reject

5.2. An Applied Example

For the hiring dataset [38], which is shown in Table 4 in the paper, we denote the
first seven records as the original decision information, and the eighth record x8 as a new
object (we suppose that we do not know the decision value of x8). In order to facilitate the
calculation, we perform the following for Table 4:

• The conditional attribute ‘Diploma = a1’ has values: “MBA = 1”, “MSc = 2”, “MCE = 3”.
• The conditional attribute ‘Experience = a2’ has values: “Medium = 1”, “High = 2”,

“Low = 3”.
• The conditional attribute ‘French = a3’ has values: “Yes = 1”, “No = 0”.
• The conditional attribute ‘Reference = a4’ has values: “Excellent = 1”, “Neutral = 2”,

“Good = 3”.
• The conditional attribute ‘Decision = D’ has values: “Accept = 1”, “Reject = 0”.
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It can be denoted as in Table 5.

Table 5. A decision problem in the hiring dataset.

U Diploma (a1) Experience (a2) French (a3) Reference (a4) Decision (D)

x1 MBA (1) Medium (1) Yes (1) Excellent (1) Accept (1)
x2 MSC (2) High (2) Yes (1) Neutral (2) Accept (1)
x3 MSC (2) High (2) Yes (1) Excellent (1) Accept (1)

An information system IS = (U′, A) x4 MBA (1) High (2) No (0) Good (3) Accept (1)
x5 MBA (1) Low (3) Yes (1) Neutral (2) Reject (0)
x6 MCE (3) Low (3) Yes (1) Good (3) Reject (0)
x7 MSC (2) Medium (1) Yes (1) Neutral (2) Reject (0)

A decision object x8 MCE (3) Low (3) No (0) Excellent (1) “?”

Then, we use our method to predict the decision value of x8, i.e., we should predict
the “?” in Table 5.

Example 8. Let IS = (U, A) be an information system, which is the first seven records shown
in the hiring dataset [38]. For a decision object x8, we take the value of each conditional attribute
to be a1(x8) = 3, a2(x8) = 3, a3(x8) = 0, a4(x8) = 1. It is shown in Table 5. Then, we use the
following steps to give the decision value of x8 according to S = (U, A

⋃
D).

Step 1: For any xj ∈ U (j = 1, 2, · · · , 7) and ai ∈ A (i = 1, 2, 3, 4), we calculate all matching
degrees f(xj ,x8)

(ai), which are shown in Table 6.

Table 6. f(xj ,x8)(ai), (i = 1, 2, 3, 4) and (j = 1, 2, · · · , 7).

U a1 a2 a3 a4

f(x1,x8)(ai) 0.3333 0.3333 0.5000 1.0000
f(x2,x8)(ai) 0.5000 0.5000 0.5000 0.5000
f(x3,x8)(ai) 0.5000 0.5000 0.5000 1.0000
f(x4,x8)(ai) 0.3333 0.5000 1.0000 0.3333
f(x5,x8)(ai) 0.3333 1.0000 0.5000 0.5000
f(x6,x8)(ai) 1.0000 1.0000 0.5000 0.3333
f(x7,x8)(ai) 0.5000 0.3333 0.5000 0.5000

Step 2: For f(x1,x8)
, we have

f(x1,x8)
(a1) ≤ f(x1,x8)

(a2) ≤ f(x1,x8)
(a3) ≤ f(x1,x8)

(a4).

Hence, we obtain

a
f(x1,x8)

(1) = a1, a
f(x1,x8)

(2) = a2, a
f(x1,x8)

(3) = a3 and a
f(x1,x8)

(4) = a4.

Hence,

A
f(x1,x8)

(i) = {a
f(x1,x8)

(i) , a
f(x1,x8)

(i+1) , · · · , a
f(x1,x8)

(4) } (i = 1, 2, 3, 4) and A
f(x1,x8)

(5) = ∅.

Therefore, by Definition 4, we have

µ(A
f(x1,x8)

(1) ) = 1, µ(A
f(x1,x8)

(2) ) = 0.8571, µ(A
f(x1,x8)

(3) ) = 0, µ(A
f(x1,x8)

(4) ) = 0 and µ(A
f(x1,x8)

(5) ) = 0.

In the same way, for any f(xj ,x8)
(j = 1, 2, · · · , 7), we can obtain all permutations of {a1, a2, a3, a4}

in Table 7.
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Table 7. {a
f(xj ,x8)

(1) , a
f(xj ,x8)

(2) , a
f(xj ,x8)

(3) , a
f(xj ,x8)

(4) } relates to any f(xj ,x8) (j = 1, 2, · · · , 7).

a
f(xj ,x8)

(1) a
f(xj ,x8)

(2) a
f(xj ,x8)

(3) a
f(xj ,x8)

(4)

f(x1,x8) a1 a2 a3 a4
f(x2,x8) a1 a2 a3 a4
f(x3,x8) a1 a2 a3 a4
f(x4,x8) a1 a4 a2 a3
f(x5,x8) a1 a3 a4 a2
f(x6,x8) a4 a3 a1 a2
f(x7,x8) a2 a1 a3 a4

By Table 7, we can calculate all µ(A
f(xj ,x8)

(i) ) in Table 8, where i ∈ {1, 2, 3, 4}, j = 1, 2, · · · , 7

and µ(A
f(xj ,x8)

(5) ) = 0.

Table 8. µ(A
f(xj ,x8)

(i) ) with i ∈ {1, 2, 3, 4} and j = 1, 2, · · · , 7.

A
f(xj ,x8)

(1) A
f(xj ,x8)

(2) A
f(xj ,x8)

(3) A
f(xj ,x8)

(4)

µ(A
f(x1,x8)

(i) ) 1 0.8571 0 0

µ(A
f(x2,x8)

(i) ) 1 0.8571 0 0

µ(A
f(x3,x8)

(i) ) 1 0.8571 0 0

µ(A
f(x4,x8)

(i) ) 1 0.8571 0.2857 0

µ(A
f(x5,x8)

(i) ) 1 0.8571 0.7143 0.2857

µ(A
f(x6,x8)

(i) ) 1 0.7143 0.4286 0

µ(A
f(x7,x8)

(i) ) 1 0.2857 0 0

By Table 8 and Theorem 2, we calculate

s(x1, x8) =
∫

f(x1,x8)
dµ

= (1− 0.8571)× 0.3333 + (0.8571− 0)× 0.3333 + 0× 0.5 + 0× 1
= 0.3333;

s(x2, x8) =
∫

f(x2,x8)
dµ

= (1− 0.8571)× 0.5 + (0.8571− 0)× 0.5 + 0× 0.5 + 0× 0.5
= 0.5000;

s(x3, x8) =
∫

f(x3,x8)
dµ

= (1− 0.8571)× 0.5 + (0.8571− 0)× 0.5 + 0× 0.5 + 0× 1
= 0.5000;

s(x4, x8) =
∫

f(x4,x8)
dµ

= (1− 0.8571)× 0.3333 + (0.8571− 0.2857)× 0.3333 + (0.2857− 0)× 0.5 + 0× 1
= 0.3810;

s(x5, x8) =
∫

f(x5,x8)
dµ

= (1− 0.8571)× 0.3333 + (0.8571− 0.7143)× 0.5 + (0.7143− 0.2857)× 0.5 +
(0.2857− 0)× 1

= 0.6190;
s(x6, x8) =

∫
f(x6,x8)

dµ
= (1− 0.7143)× 0.3333 + (0.7143− 0.4286)× 0.5 + (0.4286− 0)× 1 + 0× 1
= 0.6667;

s(x7, x8) =
∫

f(x7,x8)
dµ

= (1− 0.2857)× 0.3333 + (0.0.2857− 0)× 0.5 + 0× 0.5 + 0× 0.5
= 0.3810.
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Step 3: We obtain the ranking of all alternatives by the value of s(xj, xm+1), where s(x6, x8)
is the best one. Hence, the decision value of x8 is the same as that of x6, which is 0.

5.3. Comparison with Other Methods

We use the R programming language for dealing with Example 8 by the AQ algo-
rithm [46], the CN2 algorithm [39] and the LEM2 algorithm [40], respectively. The AQ
algorithm [46], the CN2 algorithm [39]) and the LEM2 algorithm [40] are at pages 96, 97
and 105 in the the package ’RoughSets’, respectively. The package ’RoughSets’ can be
downloaded from https://CRAN.R-project.org/package=RoughSets, accessed on 23 May
2022. In fact, Table 1 and x8 are taken from the hiring dataset in [38], where the actual
decision value of x8 is 0. Then, we use some existing algorithms to predict the decision
value of x8 according to Table 1. All results are shown in Table 9.

Table 9. The decision results of x8 utilizing different methods for Example 8.

Methods The Actual Decision Value of x8 The Predicted Decision Value of x8

The AQ algorithm [46] 0 1
The CN2 algorithm [39] 0 0

The LEM2 algorithm [40] 0 0
Algorithm 1 in this paper [40] 0 0

As shown in Table 9, we find that our method is effective, since the predicted
value is equal to the actual value. In the AQ algorithm [46], we use “nOFItervales = 3”,
“confidence = 0.8” and “timescovered = 3”, and then we obtain 6 rules to make a decision.
In the CN2 algorithm [39], we use “nOFItervales = 3”, and then we obtain two rules to
make a decision. In the LEM2 algorithm [40], we use “maxNOfCuts = 1”, and then we
obtain two rules to make a decision. The AQ algorithm [46], the CN2 algorithm [39] and the
LEM2 algorithm [40] all depend on the corresponding rules, which are obtained through
rough sets. Although the CN2 algorithm [39] and the LEM2 algorithm [40] can also obtain
the predicted value 0 for x8, the predicted value will be changed by different threshold
values. We present some discussions on this statement.

For the AQ algorithm [46], the predicted value is also 1, which does not equal the
actual value, although we changed “nOFItervales”, “confidence” and “timescovered”. For
example, we use “nOFItervales = 3”, “confidence = 0.9” and “timescovered = 8”, and we ob-
tain 16 rules and the predicted value 1; we use “nOFItervales = 1”, “confidence = 0.9”
and “timescovered = 3”, and we obtain 15 rules and the predicted value 1; we use
“nOFItervales = 3”, “confidence = 0.98” and “timescovered = 28”, and we obtain 56 rules
and the predicted value 1. Hence, we only present the CN2 algorithm [39] and the LEM2
algorithm [40] in Table 10.

Table 10. The decision results of x8 utilizing different threshold values for Example 8.

Different Threshold Values in Algorithms Rules The Predicted Decision Value Of x8

“nOFItervales = 3” in the CN2 algorithm [39] 2 0
“nOFItervales = 1” in the CN2 algorithm [39] 6 1

“maxNOfCuts = 1” in the LEM2 algorithm [40] 2 0
“maxNOfCuts = 3” in the LEM2 algorithm [40] 3 1

As shown in Table 10, we find that the predicted decision value of x8 is changed by
using different values in the CN2 algorithm [39] and the LEM2 algorithm [40], respectively.
However, our method uses the matching degree between any original object xj ∈ U
(j = 1, 2, · · · , 7) and the decision object x8, and then corresponding Choquet integrals are
used to aggregate them. Hence, the result of our method is unique. In particular, our

https://CRAN.R-project.org/package=RoughSets
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method is more stable than others. For the above comparative analysis, our method is more
feasible and effective than others under the hiring dataset [38].

6. Conclusions

In this article, we combine rough sets and fuzzy measures to solve the problem of
MCDM, which can well avoid the limitations of the existing decision-making method under
rough sets. The contributions of this paper are listed as follows:

• The notion of the attribute measure is presented based on the importance degree
in rough sets, which can illustrate the non-additive relationship of two attributes in
rough sets. By the new notion, we can find that attributes are related to each other
in information systems. It can also be used to construct the corresponding Choquet
integral.

• Then, a type of nonlinear aggregation operator (i.e., Choquet integral) is constructed,
which can aggregate all information between two objects in a decision information
system. Moreover, a method based on the Choquet integral is proposed to deal with
the problem of MCDM, which is inspired by case-based reasoning theory. This novel
method can address the deficiency of the existing methods well. It can solve the issue
of attribute association in MCDM.

In further research, the following topics can be considered: other integrals and gen-
eralized rough set models [47–49] will be connected with the research content of this
article. The novel method can be combined with other decision-making and aggregation
methods [50–52].
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