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RESEARCH Open Access

A novel multi-network approach reveals
tissue-specific cellular modulators of
fibrosis in systemic sclerosis
Jaclyn N. Taroni1, Casey S. Greene2, Viktor Martyanov1, Tammara A. Wood1, Romy B. Christmann3,

Harrison W. Farber4, Robert A. Lafyatis3,5, Christopher P. Denton6, Monique E. Hinchcliff7, Patricia A. Pioli8,

J. Matthew Mahoney9* and Michael L. Whitfield1*

Abstract

Background: Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal

organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved

affected tissues or if each manifestation has a distinct underlying pathology.

Methods: We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected

tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary

fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all

tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network

analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and

fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets

for enrichment in skin and lung using a Wilcoxon rank sum test.

Results: We identified a common pathogenic gene expression signature—an immune–fibrotic axis—indicative of

pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells)

affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of

this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional

genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to

skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid

stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation

transcriptional programs in SSc-associated PF lung and in the skin of patients with an “inflammatory” SSc gene

expression signature.

Conclusions: Our results suggest that the innate immune system is central to SSc disease processes but that subtle

distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of

disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and

tissue-specific disease processes in complex human diseases.
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Background
Integrative genomics has yielded powerful tissue-specific

functional networks that model the interaction of genes in

these specialized “microenvironments” [1]. These tools

hold promise for understanding how genes may contrib-

ute to human diseases [2] that arise, in part, out of an ab-

errant interplay of cell types and tissues. Network biology

has played a crucial role in our understanding of complex

human diseases such as cancer [3, 4] and, more recently,

in disorders where the interactions among multiple tissues

are dysregulated [5]. Analytical approaches that leverage

biological “big data” can be especially fruitful in rare and

heterogeneous diseases [6], for which the risk of mortality

is significant and no approved treatments exist. We per-

formed an integrative, multi-tissue analysis for systemic

sclerosis (SSc; scleroderma), a disease for which all of

these tenets are true, and included samples from patients

with pulmonary fibrosis (PF) and pulmonary arterial

hypertension (PAH).

SSc is a systemic disease characterized by abnormal

vasculature, adaptive immune dysfunction (autoanti-

body production), and extracellular matrix (ECM) de-

position in skin and internal organs. The etiology of

SSc is unknown, but it has complex genetic risk [7]

and postulated triggers include immune activation by

cancer [8], infection [9], or dysbiosis [10]. SSc is clin-

ically heterogeneous, with some patients experiencing

rapidly progressive skin and internal organ disease

while others have stable disease that is largely limited

to skin. Understanding the molecular processes in

multiple affected organ systems is critical to under-

standing the pathogenesis of SSc and other complica-

tions, such as PF and PAH, that co-occur in these

patients. Here, we ask if deregulated pathways are

distinct or common between these tissues affected by

SSc and if each organ manifestation has distinct dis-

ease signatures at the molecular level.

An integrative genomics study of SSc is of particular

importance. Gene expression data from multiple tissues,

including skin [11–13], lung [14, 15], and esophagus

(ESO) [16], now exist. However, the rarity of the disease

results in studies with small sample sizes and the multi-

organ nature makes it difficult to assess molecular changes

across organ systems relative to controls. Therefore, ana-

lyzing the data from multiple tissues that are more diffi-

cult to obtain (e.g., esophagus and lung) in the context of

tissues that are more easily assayed (e.g., skin and periph-

eral blood) is a powerful way to make inferences about

pathogenesis in internal organs. In addition, putting SSc

disease-specific findings in the context of tools built from

biological big data is a way to bolster and refine our find-

ings for this rare disease.

We previously developed mutual information consen-

sus clustering (MICC) to identify gene expression that

is conserved across multiple, disparate datasets [17]. Here

we expanded MICC to perform an integrative, multi-

tissue analysis of SSc and related fibrotic conditions.

We included gene expression datasets from ten differ-

ent cohorts representing four different affected tissues

from patients with SSc. Following MICC, we used the

Genome-scale Integrated Analysis of gene Networks in

Tissues (GIANT) tissue-specific functional genomic

networks [1] to identify gene–gene interactions among

those expressed consistently across affected tissues.

These big data approaches integrate individual experi-

ments measuring hundreds of disease states and bio-

logical perturbations. Integration of these data holds

promise for understanding how genes contribute to

organ-specific manifestations of human diseases [2].

These GIANT networks are a detailed, genome-scale

representation of the functional interactions between

genes in different microenvironments.

We identified a pathogenic signature—a common

“immune–fibrotic axis”—that is present in all tissues

analyzed and is increased in the most severe disease com-

plications, including PF and PAH. Using tissue-specific

functional networks [1], we analyzed the nature of the im-

mune–fibrotic axis to understand the gene–gene interac-

tions that underlie fibrosis across organ systems. Using

differential network analysis, we were able to identify

skin- and lung-specific gene–gene interactions relevant to

macrophage (MØ) plasticity and SSc pathophysiology. We

now propose a model that implicates alternatively acti-

vated MØs as part of the immune–fibrotic axis that may

drive fibrosis in multiple tissues.

Methods
Patients and datasets

Eight out of ten datasets included in this study were pre-

viously published (Table 1). All patients in these studies

met the American College of Rheumatology definition

for SSc [18]; Additional file 1 summarizes the patient

information to which we had access on a per-array basis.

A total of 573 samples from 321 subjects recruited at

seven independent centers were analyzed. These data

represent samples from four different affected tissues de-

rived from seven different clinic centers in the US and

Europe. Data include SSc and control skin from a Uni-

versity of California, San Francisco cohort [11], a Boston

University cohort [12], and a Northwestern University

cohort [13, 17]. Many patients in the skin cohorts pro-

vided lesional (forearm) and non-lesional (back) skin

biopsies; a subset of patients in the Northwestern skin

cohort provided biopsies longitudinally over time as part

of a clinical trial for mycophenolate mofetil. Peripheral

blood mononuclear cells (PBMC) samples from patients

with and without SSc-associated PAH (SSc-PAH), patients
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with idiopathic PAH (IPAH), and healthy controls were

included from a Boston University cohort [19] and a Uni-

versity of Colorado PAH cohort [20]. Lung data contained

a cohort of late or end-stage patients that underwent lung

transplant at the University of Pittsburgh [15] and a

second cohort of open lung biopsies from early SSc-

associated PF (SSc-PF) obtained in Brazil [14]. The

lung biopsies included patients with SSc-PF, idiopathic

PF (IPF), SSc-PAH, and idiopathic PAH (IPAH). Data

on previously unpublished samples were also included

in these analyses. These are two datasets of skin biopsies

from patients with limited cutaneous SSc (LSSc) recruited

from University College London (UCL)/Royal Free

Hospital and Boston University Medical Center. Only data

that were judged to be high quality were included in the

analyses. To our knowledge, there was no overlap between

the patient cohorts beyond five patients recruited at

Northwestern that provided both skin and esophageal

biopsies. We summarize all patient cohorts in Additional

file 1. A more detailed description of the patient popula-

tions and criteria for inclusion can be found in the pri-

mary publications.

We used the patient disease label (e.g., PAH) as

published in the original work for all of these sets.

Below, we note some important characteristics (for the

purposes of this work) of the included patient popula-

tions. As noted in the “Results” section, the two lung

datasets contained patients with different histological

patterns of lung disease. Some patients included in the

PBMC dataset, including those with PAH, also had

interstitial lung disease, though exclusion of these pa-

tients does not significantly change the interpretation

as put forth in Pendergrass et al. [19]. As illustrated in

Additional file 1, two datasets (ESO, LSSc) did not

contain healthy control samples and three datasets

(UCL, LSSc, and PBMC) were comprised entirely of

LSSc patients.

Microarray dataset processing

This work contains ten datasets on multiple microarray

platforms. Agilent datasets (Pendergrass, PBMC, Mi-

lano, Hinchcliff, ESO, UCL, LSSc) used either Agilent

Whole Human Genome (4x44K) Microarrays (G4112F)

(Pendergrass, PBMC, Milano, Hinchcliff, ESO, UCL) or

8x60K (LSSc). Data were Log2-transformed and lowess

normalized and filtered for probes with intensity twofold

over local background in Cy3 or Cy5 channels. Data were

multiplied by −1 to convert to Log2(Cy3/Cy5) ratios.

Probes with >20% missing data were excluded. The Illu-

mina dataset (Bostwick, HumanRef-8 v3.0 BeadChips) was

processed using variance-stabilizing transformation xand

robust spline normalization using the lumi R package. Dr.

Christmann provided the raw data in the form of.CEL

files. Dr. Feghali-Bostwick provided Illumina BeadSum-

mary files. Affymetrix datasets (Risbano, HGU133plus2;

Christmann, HGU133A_2) were processed using the

Robust Multiarray Averaging (RMA) method as imple-

mented in the affy R package. Batch bias was detected

in the ESO dataset. To adjust these data, missing

values were imputed via k-nearest neighbor algorithm

using a GenePattern [21] module with default param-

eters and the data were adjusted using ComBat [22]

run as a GenePattern module to eliminate the batch

effect.

To compare datasets in our downstream analysis,

duplicate genes must not be present in the dataset

and must be summarized in some way. First, we an-

notated each probe with its Entrez gene ID. Agilent

4x44K arrays were annotated using the hgug4112a.db Bio-

conductor package. LSSc was annotated using UNC

Microarray Database with annotations from the manufac-

turer. Probes annotated to lincRNAs (A19) were removed

from the analysis. The Illumina dataset was annotated by

converting the gene symbols (provided as part of the

BeadSummary file) to Entrez IDs using the org.Hs.eg.db

Table 1 Datasets included in this study

Dataset label Tissue Phenotypes of interest References GEO accession

Milano Diffuse skin Inflammatory subset, proliferative subset Milano et al. [11] GSE9285

Pendergrass Diffuse skin Inflammatory subset, proliferative subset Pendergrass et al. [12] GSE32413

Hinchcliff Diffuse skin Inflammatory subset, proliferative subset Hinchcliff et al. [13]
Mahoney et al. [17]

GSE45485,
GSE59785

LSSc Limited skin NA Present study GSE76806

UCL Limited skin NA Present study GSE76807

Christmann Lung SSc-PF Christmann et al. [14] GSE76808

Bostwick Lung SSc-PF, IPF, IPAH, SSc-PAH Hsu et al. [15] GSE48149

ESO Esophagus Inflammatory subset, proliferative subset, SSc-PAH Taroni et al. [16] GSE68698

PBMC PBMC SSc-PAH Pendergrass et al. [19] GSE19617

Risbano PBMC IPAH, SSc-PAH Risbano et al. [20] GSE22356

Abbreviations: ESO Esophagus, GEO Gene Expression Omnibus, IPAH idiopathic pulmonary arterial hypertension, IPF idiopathic pulmonary fibrosis, PAH pulmonary

arterial hypertension, PBMC peripheral blood mononuclear cells, PF pulmonary fibrosis, NA not available
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package. The Risbano PBMC dataset was annotated using

the hgu133plus2.db package. The Christmann dataset was

annotated using an annotation file from the manufacturer.

Probes that did not map to any Entrez ID and probes that

mapped to multiple Entrez IDs were removed in all cases.

Probes that mapped to the same Entrez ID were collapsed

to the gene mean using the aggregate function in R,

followed by gene median centering.

Clustering of microarray data and statistical tests for

phenotype association

The collapsed datasets were used to find coherent

coexpression modules. We used Weighted Gene Co-

expression Network Analysis (WGCNA), a strong cluster-

ing method, which allows us to automatically detect the

number of coexpression modules and remove outliers

[23]. Each dataset was clustered using the blockwise-

Modules function in WGCNA R package using the

signed network option and power = 12; all other param-

eters were set to default. WGCNA does not identify

large, densely connected coexpression modules in random

data [23] and although changing the soft-thresholding

power ultimately changes the resulting modules, we and

others find the resulting modules to be stable and con-

cordant across parameter choices [23].

Using the WGCNA coexpression modules also re-

duces the dimensionality of the dataset, as it allows us

to test for genes’ association with, or differential ex-

pression in, a particular pathophenotype of interest on

the order of tens, rather than thousands, using the

module eigengene. The module eigengene is the first

principal component and represents the expression of

all genes in a module and an idealized hub of the

coexpression module. We used the moduleEigengenes

function in the WGCNA R package to extract the eigen-

genes. A module was considered to be pathophenotype-

associated if the module eigengene was significantly differ-

entially expressed in or significantly correlated with a

pathophenotype of interest. Only two-class categorical

variables were considered using a Mann–Whitney U test

(i.e., all pulmonary fibrosis and pulmonary arterial hyper-

tension patients were grouped together regardless of

underlying etiology). We used Spearman correlation for

continuous values. P values were Bonferroni-corrected on

a per-phenotype basis. See Additional files 2, 3, 4, 5,

6, 7, 8, and 9 for complete output of these analyses.

In the main text, we discuss categorical pathopheno-

types, as these were enriched at the consensus cluster

level. We do find instances of coexpression modules

that are associated with continuous pathophenotypes,

such as pulmonary function test measurements, but

these were not apparent at the consensus cluster level

of abstraction.

Module overlap network construction and community

detection

The ten-partite “module overlap network” was con-

structed as in Mahoney et al. [17], where it was called

the “information graph” due to its relationship to infor-

mation theory. We describe the method here in brief

and refer to Mahoney et al. [17] for motivating details.

The modules from different datasets have no a priori re-

lationship to each other. The module overlap network

encodes the pairs of modules that significantly overlap.

Specifically, for each pair of modules (Ci and Cj) we

compute an overlap score:

W ij ¼
Ci∩Cj

�

�

�

�

N
log

Ci∩Cj

�

�

�

�

Cij j Cj

�

�

�

�

ð1Þ

where N is the total number of genes shared between

the two datasets. The overlap scores can be positive,

negative, or zero, indicating that the modules overlap

more, less, or the same as expected at random, respect-

ively. As shown in Mahoney et al. [17], the overlap

scores can be naturally thresholded using information

theory to yield a sparse network of significant over-

laps—the module overlap network. We performed a

permutation test to test the significance of the mutual

information between a pair of partitions (datasets) and

found that the true value of the mutual information of

partitions was higher than all sampled values of the null

distribution (permuted p = 0; see Additional file 10 for

permutation test details and Additional file 11 for the

results of this test). This is consistent with mutual in-

formation being implicitly computed relative to a null

model.

The module overlap network is highly structured. For

example, a module representing an inflammatory process

in skin often significantly overlaps inflammatory modules

in other tissues. Thus, the structure of the module overlap

network corresponds to the biological processes that are

common to multiple datasets. We can identify these pro-

cesses by clustering the module overlap network itself.

Community detection is a procedure used to identify clus-

ters in networks. The type(s) of community detection we

employed is based on the concept of modularity (see

also Additional file 12; Glossary of terms used in this

paper). Networks with high modularity have sets of

nodes (here, coexpression modules) that are more

densely connected within a set and more sparsely con-

nected outside of that set [24]. Community detection

methods based on this concept take into account the

expected amount of edges within a set of nodes and de-

tect the sets of nodes that are more densely connected

than expected (communities) [25].

We used two methods of community detection. First, we

used fast-greedy modularity maximization (implemented in
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Matlab) [24], which yielded large, diffuse communities.

(The fast-greedy modularity optimization algorithm has a

known bias for the size of communities it selects and is

thought to find “low-resolution” clusters in some cases

[25].) We call these “top-level” communities. We tested

whether the modularity of the module overlap network as

calculated by fast-greedy community detection was signifi-

cant relative to a network where module labels are ran-

domly permuted. This allowed us to assess whether the

module overlap graph had significant community struc-

ture; the results were highly significant (permuted p = 0;

see Additional file 10 for permutation test details).

Because the above algorithm is greedy, it only finds a

local maximum for modularity. To find smaller, more

densely connected sub-communities, we used spin-glass

community detection (igraph R package implementation,

max number of communities = 10, all other parameters

were set to default) [26, 27]. This algorithm implements

a stochastic algorithm to maximize the modularity

function resulting in tighter clusters than the fast-

greedy algorithm [27]. We call these “bottom-level”

communities. The community/sub-community struc-

ture of the module overlap network demonstrates that

there is a hierarchy of biological processes that are

common across datasets, where large communities con-

tain smaller ones. To display this hierarchical commu-

nity structure, we first sorted by top-level community

label, and then within each community we sorted by

bottom-level label. The adjacency matrix of the module

overlap network and its node attributes (including

dataset of origin and community labels) are supplied in

Additional files 13 and 14, respectively.

We also tested each top-level community in the mod-

ule overlap network for enrichment of pathophenotype-

associated modules for each phenotype of interest using

a Fisher’s exact test followed by Bonferroni correction

(Table 2). This test takes into account both modules

that had increased and decreased in pathophenotypes

under study.

Functional and pathophenotype annotation of the

module overlap network

The module overlap network contains rich information

about the biological processes that are active in each tis-

sue under study. We functionally annotated the module

overlap network by finding pathways that strongly cor-

relate to each community. Because an edge in the mod-

ule overlap network corresponds to a significant overlap

between coexpression modules from different datasets,

we can think of an edge “encoding” that overlap as a

gene set. For each pair of coexpression modules Ci and

Cj, we define an “edge gene set”, Eij, as the overlap

between the two datasets:

Eij ¼ Ci∩Cj ð2Þ

To annotate this edge gene set with biological path-

ways, we computed the Jaccard similarity of an edge

gene set E and a pathway P:

J E; Pð Þ ¼
jE∩Pj

jE∪Pj
ð3Þ

We used biological pathways from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [28],

BioCarta, and Reactome [29] obtained from Molecular

Signatures Database from the Broad Institute (http://

software.broadinstitute.org/gsea/msigdb). The Jaccard

similarity between the edge and pathway will be equal

to one if all of the genes shared between two modules

are exactly the same set of genes annotated to the path-

way, or zero if no genes are shared between the two

sets. To functionally annotate a community in the in-

formation graph, we compared the Jaccard similarities

of the edges within the community to edges outside of

the community using a Mann–Whitney U test (with

Bonferroni adjustment). The full results of this analysis

are included as Additional files 15, 16, 17, 18, 19, 20,

21, 22, and 23.

Tissue consensus gene sets

To understand how the immune and fibrotic responses in

these phenotypes are functionally related, we found the

consensus genes in the combined 4A and 4B clusters.

Tissue consensus gene sets were derived by considering

all modules within 4A and 4B, finding their unions within

their dataset, and then computing their intersection across

datasets from the same tissue of origin. For example, the

lung consensus gene set (CClung) was derived by comput-

ing the union of the Christmann (denoted c) and Bostwick

(denoted b) modules in 4AB separately, and then comput-

ing the intersection across these two datasets:

Table 2 Bonferroni-corrected p values, Fisher’s exact test

pathophenotype-associated modules in top-level communities

in the module overlap graph

Top-level
community

“In SSc”
p value

“In inflammatory”
p value

“In proliferative”
p value

“In PAH”
p value

“In PF”
p value

1 1 0.02 1 1 1

2 0.71 0.07 1 1 1

3 0.09 0.27 1 0.77 0.29

4 8.56E-07 6.30E-12 1 0.30 1

5 1 1 0.03 1 1

6 1 1 1 1 1

7 1 0.64 1 0.03 1

8 1 1 1 1 1
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CClung ¼ ∪c∈C 4AB
c

� �

∩ ∪b∈B4AB
bð Þ ð4Þ

As each tissue was considered separately (limited skin

and diffuse skin were considered separately), five tissue

consensus gene sets were generated; the union of these

tissue consensus datasets was used to query the

functional genomic networks and is referred to as the

“immune–fibrotic axis consensus” gene set or genes

throughout the text. For all genes in modules in clus-

ters 4A and 4B, we calculated the Pearson correlation

to their respective module eigengene. We compared this

correlation of consensus genes to that of non-consensus

genes using a Mann–Whitney U test. Additional file 24

contains the tissue consensus genes from 4AB or the im-

mune–fibrotic axis consensus genes.

Querying GIANT functional networks, single tissue

network analysis, and network visualization

The GIANT functional genomic networks were ob-

tained as binary (.dab) files and processed using the

Sleipnir library for computational functional genomics

[30]. We queried all networks (lung, skin, “all tissue”,

macrophage) using the immune–fibrotic axis consensus

gene sets (as Entrez IDs) and pruned all low probability

(<0.5) edges. All networks are available for download

from the GIANT webserver (http://giant.princeton.edu/)

[1]. For the single tissue analysis (e.g., lung network), we

considered only the largest connected component of each

network and performed spin-glass community detection

as implemented in the igraph R package [27] to obtain the

functional modules. We annotated functional modules

using g:Profiler [31] using all genes in a module as a query.

All networks in this work were visualized using Gephi

[32]. The network layout was determined by community

membership, the strength of connections between com-

munities, and finally the interactions between individual

genes. The lung network node attribute file and edge lists

are supplied as Additional files 25 and 26.

Differential network analysis

The tissue-specific networks from GIANT allow for the

analysis of the differing functional connectivity between

genes in different microenvironments. In order to

understand the specific immune–fibrotic connectivity

in lung relative to skin, we performed a differential

network analysis. To compare networks we retained

only nodes common to the largest connected compo-

nents of the consensus skin and lung networks (see

"Querying GIANT functional networks, single tissue

network analysis, and network visualization"). We de-

fine the “differential lung network” as the network with

adjacency matrix:

Adiff ¼ max Alung−max Askin; Aglobal

� �

; 0
� �

ð5Þ

where Alung, Askin, and Aglobal are the lung, skin, and

global (all tissues) adjacency matrices from GIANT. The

differential lung network is thus the lung network minus the

maximum edge weight from the skin and lung networks,

where all edges that are stronger in skin or the global net-

work are set to zero. Thus, the differential lung network

contains only highly lung-specific interactions. Functional

modules in the lung differential network were found using

spin-glass community detection (see "Querying GIANT

functional networks, single tissue network analysis, and net-

work visualization") within the largest connected component

of the network. The differential lung network node attributes

and edge list are supplied as Additional files 27 and 28.

To perform the macrophage-specific network analysis

in the supplemental material, we subtracted global edge

weights from the macrophage network, setting negative

edges to zero (as above). We then permuted the order of

the adjacency matrix (edges) 1000 times and assessed if

the true weight within a community was more than ran-

dom (red), less than random (blue), or no different from

random (white). We performed the same permutation

testing on the lung network with global subtraction and

found more weight than expected “on-diagonal” and less

weight than expected “off-diagonal”; this demonstrates

how spin-glass community detection takes into account

the expected distribution of edges.

Differential expression and MØ gene set analysis

To identify genes that were differentially expressed in SSc-

PF, SSc-PF samples were compared to normal controls in

both datasets using Significance Analysis of Microarrays

(SAM [33]; 1000 permutations, implemented in the samr R

package [33]). Genes with a false discovery rate (FDR) <5%

were considered further. The MØ gene sets used in this

study are WGCNA modules taken from a study of human

MØ transcriptomes [34]. The z-score of each genes’ expres-

sion (Eq. 6) was computed in the collapsed Christmann

and Hinchcliff datasets (as described in the “Microarray

dataset processing” section of “Methods”). The z-score z of

gene g in the ith array/sample is computed as:

Zgi ¼
xgi−μg

σg
ð6Þ

where xgi is the gene expression value in array/sample i,

μg is the gene mean, and σg is the gene standard devi-

ation. The average z-score of genes in a set (module

from Xue et al. [34]). computed for an array/sample to

summarize gene set expression. Mann–Whitney U tests

were used to compare average z-scores between groups.

To validate these findings in an independent SSc skin

dataset, we used the data from Assassi et al. [35] as

processed by the authors and deposited in NCBI Gene
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Expression Omnibus (GEO; GSE58095 series matrix).

We collapsed duplicated probes to the gene mean, z-scored

genes as in Eq. 6, and compared average z-scores as above.

Results

We performed an integrative analysis of ten independent

gene expression datasets containing samples from pa-

tients with SSc and associated co-morbidities (Table 1).

The primary goal of this study was to identify the

fundamental processes that occur across end-target and

peripheral tissues of patients with SSc and related fi-

brotic conditions. Secondly, we aimed to identify the

presence or absence of common gene expression pat-

terns that underlie the molecular intrinsic subsets of

SSc [11] in different organs. Analysis of multiple tissue

biopsies from patients with skin fibrosis, esophageal

dysfunction, PF, and PAH allowed us to determine in a

data-driven manner whether these tissues were per-

turbed in a similar manner on a genomic scale.

We applied MICC [17] to identify conserved, differ-

entially co-expressed genes across all tissues in our SSc

compendium. MICC is a “consensus clustering” proced-

ure, meaning that it identifies the shared co-clustering of

genes present in multiple datasets. MICC identifies genes

that are consistently coexpressed in multiple tissues.

Procedurally, MICC clusters gene expression data into

coexpression modules using WGCNA (Fig. 1). Because

this clustering is purely data-driven, coexpression modules

derived from different datasets necessarily differ from each

other. MICC integrates these coexpression modules across

WGCNA

Datasets A-D

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4
...

...

...

...

Differential 
expression in 

pathophenotypes of 

pathophenotype-
associated modules

multi-tissue MICC

1. divide datasets into coexpression modules

2. construct module overlap graph & identify communities and sub-communities

Enrichment for 
pathophenotype-

associated modules
1

2

3

41
2

3

4

1

2

3

4

1

2

3

4

Edge overlap with 
pathways

GIANT 

3. perform functional genomic network analyses

skin networklung network

-

community 

sub-community

Lung network 
analyses

Differential network 
analyses

Fig. 1 Schematic overview of the analysis pipeline. Four datasets are shown for simplicity. Each gene expression dataset was partitioned using

WGCNA independently to obtain coexpression modules. Module eigengenes were tested for their differential expression in pathophenotypes of

interest. Modules were compared across datasets using MICC to form the “module overlap graph” and community detection algorithms were

used to identify communities and sub-communities in the graph. These communities correspond to molecular processes that are conserved

across datasets. Each community was examined for enrichment of pathophenotype-associated modules and edge overlap with canonical

biological pathways. Gene sets derived from these communities were used to query GIANT functional genomic networks. The resulting networks

allow for tissue-specific interrogations of the gene sets. Differential network analysis was performed to compare the lung and skin networks
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datasets by identifying significant overlaps between mod-

ules from different datasets and forming a “module overlap

network”. MICC then parses the module overlap network

to find sets of modules (communities) that are strongly

conserved across many datasets (see “Methods”). These

strongly overlapping modules correspond to molecular

processes that are conserved across multiple datasets.

All datasets were partitioned into coexpression mod-

ules using WGCNA, resulting in 549 modules (Table 3).

We constructed the ten-partite module overlap net-

work (Fig. 2) and identified eight communities in the

network using modularity-based community detection

methods. Because the community structure of the module

overlap network was hierarchical, we used a hierarchical

labeling scheme, where numerals denote large communi-

ties and letters denote smaller sub-communities (Fig. 2a).

For each community, we used set theoretic formulae to

derive a final gene set (“consensus genes”) associated

with the modules in that community (see “Methods”;

Additional file 29; consensus gene sets ranged from

64–9597 genes in size). The majority of the consensus

gene sets pertain to biological processes that are not ne-

cessarily disease-specific (e.g., there is no enrichment for

genes [modules] that are differentially expressed in disease

versus control in that community). These include processes

such as telomere organization (1A) and macromolecule

localization (3A). Disease-specific consensus genes were

identified by first determining which communities were

enriched for modules associated with pathophenotypes

(e.g., contain differentially expressed genes in disease) under

study and then deriving consensus gene sets from those

combined communities (see "Severe pathophenotypes share

a common immune–fibrotic axis").

Severe pathophenotypes share a common immune–fibrotic

axis

The module overlap network is agnostic to the clinical

phenotypes corresponding to each biopsy. To associate

communities in the module overlap network with SSc and

fibrotic pathophenotypes, we tested each of the 549

modules for differential expression in relevant pathophe-

notypes (see “Methods”). For example, every lung module

in the PAH cohorts was tested for differential expression

in PAH. Clusters 4A and 4B in the module overlap

network contain modules with increased expression in all

pathophenotypes of interest: the inflammatory and prolif-

erative subsets of SSc, PAH, and PF (Fig. 2b). Thus, the

modules in these communities correspond to a common,

broad disease signal that is present in every pathopheno-

type under study. As with our prior studies, we did not

find a strong association with autoantibody subtype and

the co-expression modules identified here.

Edges in the module overlap graph represent overlap

between coexpression modules in different datasets, so

we identified the intersection of genes between adjacent

modules. We then asked if these “edge gene sets” were

similar to known biological processes by computing the

Jaccard similarity between edges and canonical pathways

from the Molecular Signatures Database [36]. Edges in 4A

encode immune processes such as antigen processing and

presentation and cytotoxic T-cell and helper T-cell path-

ways (Table 4). This cluster also contains modules from all

tissues, including PBMCs (Fig. 2b). Altered immuno-

phenotypes have been reported in SSc-PAH and SSc-PF

[14, 19]. Here, we find that the immune processes with

increased expression in these severe pathophenotypes

have substantial overlap with each other, as well as with

the inflammatory subsets in esophagus and skin (Fig. 2b;

Additional file 30: Figure S1). Notably, 4A is composed

of modules with increased expression in PAH in PBMCs

and lung, and a module upregulated in end-stage PF

(Additional file 30: Figure S1). This demonstrates a com-

monality of molecular pathways between the inflamma-

tory component of SSc and the most severe end-organ

complications at the expression level.

Edges in 4B encode pro-fibrotic processes, including

ECM receptor interaction, collagen formation, and TGF-

β signaling (Table 4). Cluster 4B consists of skin inflam-

matory and fibroproliferative subset-associated modules

as well as lung PAH-, late PF- and early PF-associated

modules (Fig. 2b; Additional file 30: Figure S1). These

results replicate and expand what we have found in our

prior meta-analysis of skin data alone [17]: the expres-

sion patterns observed in the SSc intrinsic subsets are

shared with other tissues and SSc-associated pathophe-

notypes and indicative of altered immune and fibrotic

processes (an immune–fibrotic axis).

To understand how the immune–fibrotic axis and

these phenotypes are functionally related, we identified

the consensus genes in the combined 4A and 4B clus-

ters (see “Methods”; 2079 unique genes; Additional file

24). Consensus genes are highly central within their

Table 3 Number of microarrays and WGCNA coexpression

modules in each of the datasets included in this study

Dataset Number of arrays Number of coexpression modules

Milano 75 39

Pendergrass 89 38

Hinchcliff 165 62

LSSc 24 39

UCL 15 98

Christmann 18 56

Bostwick 62 54

ESO 33 71

PBMC 54 38

Risbano 38 54

Taroni et al. Genome Medicine  (2017) 9:27 Page 8 of 24



respective dataset gene–gene correlation networks and

our procedure identifies sets of genes that capture

disease-specific variation (Additional file 30: Figure

S2). Using a conservative measure, these consensus

genes are enriched for genes with increased expression

in all disease manifestations (SAM [33], FDR <5%; PF

in both lung datasets p < 2.2e-16; PAH lung, p = 7.88 ×

10−5; PAH in both PBMC datasets, p = 3.20 × 10−15,

Fisher’s exact test). This demonstrates that the tissue

consensus genes are highly relevant to all disease man-

ifestations in this study. The tissue consensus gene

sets allow us to rigorously extrapolate from this con-

servative set a substantially broader, disease-associated

signal. This extrapolation is especially important for

tissue studies that are underpowered to detect a large

number of significantly differentially expressed genes

(see “Discussion”). We took the union of the tissue

consensus gene sets as a set of “immune–fibrotic axis

consensus genes” that are informative about pathology

in every tissue.

A

B

Fig. 2 The multi-tissue module overlap graph demonstrates that

severe pathophenotypes have similar underlying expression patterns.

a The full adjacency matrix of the module overlap graph sorted to

reveal hierarchical community structure. A darker cell color is indicative

of a higher W score or larger edge weight. Communities (numbered)

and sub-communities (lettered) are indicated by the annotation tracks

above and on the right side of the matrix, respectively. Coexpression

modules with expression that is increased in a phenotype of interest

are marked by the annotation bar on the left side of the matrix. If a

module was up in SSc as well as another pathophenotype of interest,

the other pathophenotype color is displayed. b The adjacency matrix

of sub-communities 4A and 4B indicates that these clusters contain

modules that are up in all pathophenotypes of interest and show that

there are many edges between the two sub-communities. Sub-

community 4A contains modules from all tissues whereas 4B contains

mostly solid tissue modules as indicated by the tissue annotation track

to the left of the matrix

Table 4 Selected pathways that are similar to overlapping

coexpression patterns in consensus clusters in the information

graph

Consensus cluster Summary of selected pathways

1A DNA repair
Cell cycle
RNA metabolism
Transcription

2 Cell–cell junction organization
Aquaporin-mediated transport
Tight junctions

3A Endocytosis
mRNA processing
Metabolism of proteins

4A T cytotoxic and helper pathway
Antigen processing and presentation
Allograft rejection

4B ECM receptor interaction
Collagen formation
ECM organization
TGF-beta signaling
Signaling by PDGF

5 G2 M checkpoint
Unwinding of DNA
Cell cycle

6 Notch signaling
Nuclear receptors in lipid metabolism
and toxicity

7 Steroid biosynthesis
Fatty acid metabolism
PPAR signaling pathway

8 Keratin metabolism
FGFR ligand binding and activation

We calculated the Jaccard similarity index between edges in the information

graph and canonical pathways and used a Mann–Whitney U test to assess

whether a particular pathway was more similar to edges within a consensus

cluster than outside the consensus cluster
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The lung functional genomic network reveals a coupling

of immune and fibrotic processes

The GIANT functional networks infer functional rela-

tionships between genes by integrating publicly avail-

able data, including genome-wide human expression

experiments, physical and genetic interaction data, and

phenotype and disease data [1]. In these networks,

genes are nodes and edges are weighted by the esti-

mated probability of a tissue-specific relationship be-

tween genes. GIANT contains networks for multiple

tissues, including skin and lung. To investigate the

function of the immune–fibrotic axis consensus genes

in pulmonary manifestations of SSc, we extracted the

subnetwork of the GIANT whole genome lung network

corresponding to the immune–fibrotic axis consensus

genes—the lung network (Fig. 3; Additional file 30:

Figure S3). Similar to our previous analysis of SSc skin,

we find interconnected functional modules related to

both immune (interferon (IFN)/antigen presentation

and innate immune/NF-κB/apoptotic processes) and fi-

brotic (response to TGF-β and ECM disassembly/wound

healing) processes (Fig. 3a). This demonstrates that, like

skin, there is functional coupling between inflammatory

and pro-fibrotic pathways in lung.

Our analysis includes two lung datasets derived from

both early SSc-PF (open lung biopsies obtained for

diagnostic purposes [14]) and end-stage or late disease

(SSc-PF patients that underwent lung transplantation

[15]). In addition to the differences in disease stage be-

tween these two datasets, there is also some difference

in the histological patterns of fibrosis in these cohorts.

In the Bostwick lung dataset [15], all patients with SSc-

PF had usual interstitial pneumonia (UIP). This study

used lung tissues from patients who underwent lung

transplantation (late disease). The Christmann lung

dataset [14] contains five patients with non-specific

interstitial pneumonia (NSIP) and two patients with cen-

trilobular fibrosis. This study looked at early SSc-PF pa-

tients, used open lung biopsies, and specifically avoided

honeycombing areas.

Although NSIP and UIP have distinct clinical out-

comes, they have been shown to be nearly indistinguish-

able at the gene expression level [37]. Furthermore,

these datasets have overlapping coexpression patterns as

demonstrated by their shared community membership

in the module overlap network. Comparison of different

datasets allows us to determine how genes with increased

expression at these different stages and histological sub-

types of lung disease are distributed throughout the lung

network. Genes overexpressed in SSc-PF (SAM, PF versus

Normal comparison, FDR <5%) are distributed throughout

the lung network and therefore are predicted to partici-

pate in all of the molecular processes identified in the

network. Quantification of the distribution of SSc-PF

differentially expressed genes throughout the consensus

lung network (Fig. 3b) demonstrates that molecular

processes can be associated with either a disease stage,

histopathological pattern, or both stages/patterns. The

cell cycle module contains only early/NSIP SSc-PF genes,

the innate immune response/NF-κB/apoptotic processes

module contains more late/UIP SSc-PF genes, and the

response to TGF-β module contains genes from both

histological patterns (Fig. 3a, b).

Hub and bridge genes are associated with the

pathogenesis of pulmonary fibrosis

Certain genes occupy privileged positions within mo-

lecular networks and these genes often have critical

biological function [38]. Module hub genes are con-

nected to a significant fraction of genes within a func-

tional module, whereas bridge genes are genes that

connect to multiple functional modules and thus

“bridge” them. We identified the hub and bridge genes

within the lung network for their possible roles in PF

pathogenesis. We highlight the hubs and bridges of the

lung network in Fig. 3c–e and f, respectively. The hubs

of several of the functional modules in the consensus

lung network show increased expression at different

disease stages or histological patterns (Fig. 3c–e). For

instance, LAMC1 shows increased expression in early/

NSIP SSc-PF and is highly connected within the re-

sponse to TGF-β module (Fig 3c). The gene Niemann-

Pick disease, type C2 (NPC2) is upregulated in early

disease and is connected to cathepsins L and B (CTSL,

CTSB) and GLB1 in the lung network (Fig 3d). We

tabulate information on selected genes from the lung

network in Table 5.

The innate immune response/NF-κB signaling/apoptotic

process module contains genes that are highly expressed

in late/UIP SSc-PF, including the hub genes CYR61 and

TM4SF1 (Fig. 3a, b; Additional file 30: Figure S3). The

hub gene TNFAIP3 (A20), which is increased in late SSc-

PF (Fig. 3e), is a negative regulator of NF-κB signaling and

inhibitor of TNF-mediated apoptosis. The innate immune

response/NF-κB signaling/apoptotic process and IFN/anti-

gen presentation modules are bridged by TNFSF10, also

known as TRAIL (TNF-related apoptosis inducing ligand;

Fig. 3f). These results suggest that the balance of apoptosis

is altered in late/UIP SSc-PF. The upregulation of genes

with anti-apoptotic function was not reported in the

original study [15], which demonstrates the strength of

both the MICC method and the study of functional

interactions.

CD44 and PLAUR (uPAR) bridge multiple functional

modules in the lung network (Fig. 3f) and have been im-

plicated in IPF [39, 40]. Because these genes link modules

important in regulating disease progression, therapeutic

targeting of CD44 and uPAR may be an effective strategy
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in combating SSc-PF. Indeed, anti-CD44 treatment

reduces fibroblast invasion and bleomycin-induced lung

fibrosis [39], and inhibition of uPAR ligation significantly

reduces motility of pulmonary fibroblasts from patients

with idiopathic PF [40]. These results are consistent with

our identification of these genes as key genes in the lung

network.

The lung microenvironment provides a distinct milieu for

pro-fibrotic processes

Pulmonary fibrosis is histologically distinct from skin

fibrosis and occurs in a subset of patients with SSc. We

hypothesized that the lung microenvironment may have

a distinct organization of immune–fibrotic axis consen-

sus genes when compared to skin. Indeed, for interac-

tions (edge weight >0.5) that are present in both the

lung and skin networks, there are gene pairs that are

much more likely to interact in one tissue than the other

(Fig. 4a). In other words, the skin and lung networks are

“wired differently”. To identify highly lung-specific and

highly skin-specific interactions, we performed a differen-

tial network analysis that identified gene pairs that are

strongly predicted to interact in one tissue but not the

other (see “Methods”).

These highly specific interactions are displayed in

Fig. 4b, where a cell is red if it is lung-specific or blue if

it is skin-specific (cf. Additional file 30: Figure S4). The

number of tissue-specific edges in each functional mod-

ule is quantified in Fig. 4b, c, which illustrate that most

functional modules in lung have fewer interactions than

in skin, with the exception of the cell cycle module. Of

particular interest is the relationship between the pha-

golysosome/ECM disassembly genes and response to

TGF-β genes, as strong differential connectivity can be

observed in this module (Fig. 4b, c). Thus, even though

ECM disassembly and TGF-β module genes are coordi-

nately differentially expressed in both lung and skin,

they are differentially connected to each other, suggest-

ing that the microenvironment strongly determines the

functional consequences of upregulating these pro-

fibrotic genes.

To summarize lung-specific biological processes in the

immune–fibrotic axis, we clustered the lung-specific inter-

actions (differential lung network) to identify lung-specific

pathways (Additional file 30: Figure S5). We identified 23

clusters corresponding to biological processes such as type

I IFN signaling (cluster 10), antigen processing and pres-

entation (cluster 4), REACTOME cell surface interactions

at the vascular wall (cluster 22), and mitotic cell cycle

(cluster 16; shown in Additional file 30: Figure S5b). Taken

together, this suggests that within the immune–fibrotic

axis we find innate immune and cell proliferation pro-

cesses that are highly lung-specific. One of the largest of

these clusters (cluster 13; Fig. 4d; Additional file 30: Figure

S5c) includes NPC2, S100A4, and CTSB, which encode

protein products that are highly expressed in normal

lung-resident MØs (LR-MØs) [41, 42].

NPC2 is a hub of the ECM disassembly/wound healing

module in the full lung network (Fig. 3); many of the

genes in cluster 13 also belong to the ECM disassembly/

wound healing module in the whole network, including

the cathepsins CTSB and CTSL. Alveolar MØs are the

main source of cathepsins in bleomycin-induced fibrotic

lung tissue [43]. Additional genes associated with devel-

opment and maintenance of alternative MØ activation

include TGFBI [44], NEU1 [45], PRCP [46], and DAB2

[47]. Genes that are specifically associated with alterna-

tive activation of lung MØs include PLP2 [48] and

IFITM1 [49] (Fig. 4d; Additional file 30: Figure S5c).

Based on these genes and the complete lung network in

Fig. 3, we identified an LR-MØ signature. These findings

are consistent with previous reports of alternative MØ

activation in SSc [14, 50].

To explore this signature further, we examined some

genes from this cluster along with genes identified in the

Christmann et al. study [14]. Consistent with the pri-

mary publication [14], some heterogeneity in SSc-PF

gene expression is observed and is likely due to tissue

sampling from various lobes of the lung as well as the

(See figure on previous page.)

Fig. 3 Genes that are overexpressed in late and early SSc-PF are distributed throughout the lung network. a The lung network shows functional

connections between inflammatory and fibrotic processes. Genes in the largest connected component were clustered into functional modules

using community detection. Biological processes associated with the functional modules are in boxes next to the modules. Genes are colored by

whether they are overexpressed in late SSc-PF/UIP (red), early SSc-PF/NSIP (blue), both (SSc-PF, purple), or neither (grey). NSIP non-specific interstitial

pneumonia, UIP usual interstitial pneumonia. Gene symbols in bold have putative SSc risk polymorphisms. Node (gene) size is determined by

degree (number of functional interactions) and edge width is determined by the weight (probability of interaction between pairs of genes). The

layout is determined by community membership, the strength of connections between communities, and finally the interactions between individual

genes in the network. A fully labeled network is supplied as Additional file 30: Figure S3 and is intended to be viewed digitally. b Quantification of

differentially expressed genes in each of the five largest functional modules. c–e Hubs of the consensus lung network; only the first neighbors of the

hub that are in the same functional module are shown. c LAMC1 is a hub of the response to TGF-beta module. d NPC2 is a hub of the ECM

disassembly, wound healing module. e TNFAIP3 is a hub of the innate immune response, NF-κB signaling, and apoptotic processes module.

f Bridges of the consensus lung network. First neighbors of PLAUR, CD44, TNFSF10, and TGFBI are shown
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Table 5 Selected genes in the consensus lung network

Functional module Gene
symbol

Description Network
position

Up in Function/potential role in disease

Cell cycle BUB3 BUB3 mitotic checkpoint protein - Early SSc-
PF/NSIP

Encodes a mitotic cell cycle checkpoint protein
that regulates the onset of anaphase

CDC7 Cell division cycle 7 - - Regulates MCM complex

MCM3 Minichromosome maintenance complex
component 3

- Early SSc-
PF/NSIP

Subunit of minichromosome maintenance
(MCM) complex

MSH6 MutS homolog 6 - Early SSc-
PF/NSIP

Participates in DNA mismatch repair.

ECM disassembly/
wound healing

CD44 CD44 molecule (Indian blood group) Bridge - A hyaluronic acid receptor that can interact with
many other ligands found in the ECM. Primary
idiopathic PF fibroblasts exhibit an invasive
phenotype that was abrogated with treatment
with anti-CD44 [39]

CD63 CD63 molecule - - Has been observed to interact with TIMP1 [83]

CTSB Cathepsin B - - Regulates NPC2 secretion, TNF-alpha production,
and cholesterol trafficking genes in an animal
model of obesity [51]

CTSL Cathepsin L - - Regulates NPC2 secretion, TNF-alpha production,
and cholesterol trafficking genes in an animal
model of obesity [51]

GLB1 Galactosidase, beta 1 - Early SSc-
PF/NSIP

Mutations in this gene can lead to
GM1-gangliosidosis, a manifestation of
which includes foam cell accumulation
in the lungs [84]

NPC2 Niemann-Pick disease, type C2 Hub Early SSc-
PF/NSIP

Mutations in this gene result in a lipid storage
disorder. Functions in the regulation of
cholesterol trafficking through the lysosome
by binding to cholesterol released from low
density lipoproteins taken up by cells

TGFBI Transforming growth factor, beta-induced Bridge Late SSc-
PF/UIP

Induced by phagocytosis of apoptotic debris in
monocyte-derived MØs and regulates collagen
turnover [44]

TIMP1 TIMP metallopeptidase inhibitor 1 - Early SSc-
PF/NSIP

Has been observed to interact with CD63 and
overexpression has been noted to inhibit
apoptosis in a CD63-dependent manner [83]

Innate immune
response/NFkB
signaling/apoptotic
process

BIRC3 Baculoviral IAP repeat-containing protein 3 - Late SSc-
PF/UIP

Has antiapoptotic activity through interactions
with caspases as well as the TNF superfamily
members TRAF1 and TRAF2 [85, 86]

CYR61 Cysteine-rich, angiogenic inducer, 61 Late SSc-
PF/UIP

Also known as CCN1. Implicated in apoptosis in
fibroblasts [87]. Has been shown to play a role
in Fas-mediated and TRAIL-induced apoptosis
[88, 89]

DUSP6 Dual specificity phosphatase 6 - Late SSc-
PF/UIP

Plays a role in the positive regulation of
apoptosis [90]

FAS Fas cell surface death receptor - Early SSc-
PF/NSIP

Cell surface death receptor

NFKBIE Nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor, epsilon

- - Negative regulator of NFkB signaling

PLAUR Plasminogen activator, urokinase receptor Bridge Late SSc-
PF/UIP

Also known as uPAR. Contains an SSc risk SNP.
Pulmonary fibroblasts from patients with
idiopathic PF over express uPAR and that uPAR
ligation results in a hypermotile phenotype [40]

PLSCR1 Phospholipid scramblase 1 - - Regulates phospholipid membrane asymmetry

TNFAIP3 Tumor necrosis factor, alpha-induced
protein 3

Hub Also known as A20. Contains an SSc risk SNP
(also associated with other autoimmune
conditions). Negative regulator of NFkB signaling

TNFSF10 Bridge -
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inclusion of patients with centrilobular fibrosis (Fig. 5a,

right dendrogram branch). Nevertheless, the LR-MØ

signature comprises genes that are highly correlated with

canonical markers of alternatively activated MØs that

were validated by either PCR or immunohistochemistry

in the original study (e.g., CD163 and CCL18). We also

observed that genes in the phagolysosome/ECM disas-

sembly functional module identified in lung are more

highly connected in a macrophage-specific network than

is expected at random (Additional file 30: Figure S6).

The LR-MØ cluster in the differential lung network

also contains a number of genes implicated in lipid stor-

age disorders, including HEXB, GLB1, and NPC2. Sev-

eral other LR-MØ cluster genes have been shown to be

important for regulating cholesterol trafficking genes in

an animal model of obesity, including CTSB, CTSL, and

NPC2 [51]. It has been noted that lipid metabolism

genes are upregulated in lung MØs relative to other

tissue-specific MØs [48]. Furthermore, in the bleomycin

injury mouse model of pulmonary fibrosis, lipid-laden

MØs have been observed to increase expression of

markers associated with alternative MØ activation and

to secrete TGF-β [52].

Distinct MØ gene expression programs are elevated in

lung and skin

We hypothesized that early SSc-PF lung samples may

have evidence of both alternatively activated and lipid-

stimulated MØs and that this may differ from what is

observed in skin. The presence of alternatively activated

MØs in the inflammatory subset of skin was inferred in

our single tissue analysis [17]. To test this hypothesis,

we used gene sets associated with classic activation of

MØs, alternative activation of MØs, or stimulation of

MØs with a variety of activation stimuli, including free

fatty acids, taken from Xue et al. [34]. To summarize the

expression of each MØ gene set [34] and compare

across tissues in these data, we computed the average

expression of all genes in each gene set (see “Methods”;

see Additional file 31 for a mapping between Xue et al.

modules and our naming scheme). Results are displayed

for control and SSc-PF lung, as well as control and

SSc-inflammatory skin (Fig. 5b). As shown in Fig. 5b,

there is evidence of an increase in alternatively acti-

vated and free fatty acid stimulated gene sets in SSc-

PF and SSc-inflammatory skin. These data do not

show statistically significant differences in expression

Table 5 Selected genes in the consensus lung network (Continued)

Tumor necrosis factor (ligand) superfamily,
member 10

Also known as TRAIL. Elevated in serum of SSc
patients [91]

TNFRSF10B Tumor necrosis factor receptor
superfamily, member 10b

- Late SSc-
PF/UIP

Also known as TRAILR2

IFN/antigen
presentation

HLA-E Major histocompatibility complex, class I, E - - Class I MHC molecule

HLA-F Major histocompatibility complex, class I, F - - Class I MHC molecule

IFITM1 IFN induced transmembrane protein 1 - SSc-PF
(UIP and
NSIP)

IFN signaling

IFITM2 IFN induced transmembrane protein 2 - Early SSc-
PF/NSIP

IFN signaling

IFITM3 IFN induced transmembrane protein 3 - Early SSc-
PF/NSIP

IFN signaling

IRF1 IFN regulatory factor 1 - Late SSc-
PF/UIP

Activator of type I IFN signaling

OAS1 2′-5′-Oligoadenylate synthetase 1, 40/
46 kDa

- Early SSc-
PF/NSIP

Involved in innate immune response to viral
infection

Response to
TGF-beta

CAV1 Caveolin 1 - - Contains an SSc risk SNP

CTGF Connective tissue growth factor - - Also known as CCN2. Has been shown to play
a role in Fas-mediated and TRAIL-induced
apoptosis [88, 89]

DAB2 Dab, mitogen-responsive phosphoprotein,
homolog 2 (Drosophila)

- SSc-PF
(UIP and
NSIP)

Required for the epithelial to mesenchymal
transition induced by TGF-beta in mouse
and for type II TGFbR recycling [92, 93]

FN1 Fibronectin 1 - - Extracellular matrix protein.

LAMC1 Laminin gamma1 chain Hub Early SSc-
PF/NSIP

Expression of this gene is essential for the
development of basement membranes [94]

THBS1 Thrombospondin 1 - - Mediates cell-to-cell and cell-to-matrix
interactions. Putative biomarker of modified
Rodnan skin score [95]
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of gene sets associated with classic MØ activation

between controls and SSc-PF or SSc-inflammatory

skin (see Additional file 32 for p values of all mod-

ules tested).

The discovery of IFN-related genes among the consen-

sus genes indicates that these pathways are increased in

pathophenotypes of interest (e.g., SSc-PF and the skin in-

flammatory subset). Christmann et al. also noted a strong

IFN-related gene signature in SSc-PF samples, although

the cellular compartment responsible for this signature

was not described [14]. Because stimulation with IFN

results in classic activation of MØs, we examined the

A B

C D

Fig. 4 (See legend on next page.)
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(See figure on previous page.)

Fig. 4 The lung and skin network structures indicate distinct tissue microenvironments influence fibrosis. The skin and lung networks were

compared by first finding the giant component of the lung network and then collapsing to nodes only found in both the skin and lung

networks (which are termed the common skin and common lung networks). a A scatterplot of high probability edges (>0.5 in both networks)

illustrates that pairs of genes with a higher probability of interacting in skin than lung exist and vice versa. Edges are colored red if the weight

(probability) is 1.25 times higher in lung or blue if it is 1.25 times higher in skin. b The differential adjacency matrix where a cell is colored if the

edge weight in a given tissue is over and above the weight in the global average and tissue comparator networks. For instance, a cell is red if the

edge weight was positive following the successive subtraction of the global average weight and skin weight. Community detection was performed

on the common lung network to identify functional modules; common functional modules largely recapitulate modules from the full lung network.

Representative processes that modules are annotated to are above the adjacency matrix. The annotation track indicates a gene’s functional module

membership. Nodes (genes) are ordered within their community by common lung within community degree. A fully labeled heatmap is supplied as

Additional file 30: Figure S4 and is intended to be viewed digitally. c Quantification of tissue-specific interactions in each of the five largest functional

modules. d The lung-resident MØ module found in the differential lung network (consists only of edges in red in b)

A

B

Fig. 5 Evidence for alternative activation of MØs in SSc-PF lung that is distinct from SSc skin. a Genes identified by differential network analysis

and inferred to be indicative of lung-resident MØs are correlated with canonical markers of alternatively activated MØs such as CCL18 and CD163 in the

Christmann dataset. b Summarized expression values (mean standardized expression value) of gene sets (coexpression modules) upregulated in various

MØ states from the Christmann and Hinchcliff datasets: module CL1, classic activation (IFN-γ); modules ALT 1 and 2, alternative activation (IL-4, IL-13);

modules FFA 1, 2, and 3, treatment with free fatty acids. FFA free fatty acid. Modules from [34]. Asterisks (*) indicate significant differences (p < 0.05)
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expression of genes from CL 1, as it is most strongly asso-

ciated with IFN-γ treatment (“classic activation”) in hu-

man MØs [34]. However, CL 1 genes’ expression is not

different between disease and controls in either skin or

lung (Wilcoxon p = 0.76 and 0.80, respectively; Fig. 5b).

This result is consistent with our inability to discern dif-

ferences in classic MØ activation markers between con-

trols and SSc-PF and inflammatory skin and suggests that

classically activated MØs are not the source of the re-

ported IFN signature we find.

Modules ALT 1 and ALT 2 are both associated with

IL-4 and IL-13 treatment, which are stimuli associated

with alternative activation of MØs [34]. These two gene

sets are non-overlapping coexpression modules and

therefore represent two “parts” of the alternatively

activated MØ transcriptional program. We performed

functional enrichment analysis for ALT 1 and 2 to

understand which biological processes underlie these

transcriptional signatures (see “Methods”). Module ALT

1 is enriched for genes involved in oxidative phosphoryl-

ation (KEGG, p < 0.0001) and the citric acid cycle

(REACTOME, p < 0.0001) pathways. In lung, ALT 1 ex-

pression is higher in SSc-PF than in controls (Wilcoxon

p = 0.0046). There is no difference between healthy

controls and the inflammatory subset in skin (Wilcoxon

p = 0.41). Module ALT 2 shows an opposite trend and is

enriched for genes implicated in the positive regulation

of response to wounding (Gene Ontology (GO) biological

process (BP), p = 0.027) and defense response (GO BP,

p = 0.00035); this module includes alternatively acti-

vated MØ markers such as CD14 and CCL26 [53, 54].

ALT 2 expression is increased in the inflammatory sub-

set in skin (Wilcoxon p = 0.041) and trends toward de-

creased expression in SSc-PF lung (Wilcoxon p = 0.16).

Together, these pathways suggest a metabolic “switch”

associated with alternative activation in lung that is not

found in skin (for review see [55]; Fig. 5b).

We also analyzed modules associated with free fatty

acid (FFA) stimulation, which are relevant to the ques-

tion of lipid signaling or exposure in SSc tissues (FFA

1, 2, and 3). We first performed functional enrichment

analysis for these modules to gain biological insight

into these transcriptional programs. FFA 1 is enriched

for genes involved in the unfolded protein response

(REACTOME, p = 0.025). FFA 2 is enriched for antigen

processing-cross presentation genes (REACTOME; p =

0.00101). FFA 3 is enriched for genes in the ER-

phagosome pathway (REACTOME, p = 0.0076). Expres-

sion of FFA 1 and 2 is significantly increased in lung

(FFA 1 Wilcoxon p = 0.046, p = 0.97 in skin; FFA 2

Wilcoxon p = 0.0013, p = 0.63 in skin), whereas FFA 3 is

upregulated in SSc-PF lung (Wilcoxon p = 0.0013) and

the SSc inflammatory subset in skin (Wilcoxon p =

0.00056). These results suggest that LR- MØs may have

a distinct lipid exposure that strongly diverges from

that in skin.

We repeated this analysis in an independent SSc skin

dataset (Assassi et al. [35]) to validate our findings

(Additional file 30: Figure S7). Assassi et al. reported

that macrophage transcripts are elevated in SSc skin

but used a “general” to macrophages signature gene list

that does not provide information about activation

state. The results from Assassi et al. largely agree with

the results from the Hinchcliff dataset: ALT 2, but not

ALT1 (Wilcoxon p = 0.0682), is significantly increased

in SSc skin (Wilcoxon p = 5.92e-05), and FFA 3 is the only

FFA module significantly increased in SSc skin (Wilcoxon

p = 3.219e-06; FFA 1 p = 0.928; FFA 2 p = 0.486). The only

disparity between the two skin datasets is that we find that

CL 1 is significantly increased in the Assassi SSc patients

(p = 0.000856). This difference may be because we looked

at all SSc patients rather than “fibroinflammatory” patients

alone, or due to the increased coverage of the genome on

the platform used. Overall, analysis of Assassi et al. sup-

ports the differences in MØ alternative activation pro-

grams and lipid response in SSc-affected skin and lung.

The differential network analysis (Fig. 4) allowed us

to identify highly lung-specific interactions in the im-

mune–fibrotic axis that implicated lipid signaling as a

distinct functional process in lung. The higher expres-

sion of multiple free fatty acid-associated modules in

lung suggests that the role of lipid signaling in MØs

may be more important in this tissue than in skin, con-

sistent with what we would predict based on highly

lung-specific gene–gene interactions, and based on

prior biomedical literature in related conditions [48,

52]. Thus, a major difference between the lung and skin

networks can be attributed to the presence of a distinct

MØ phenotype in lungs.

Discussion
SSc is a systemic disease that affects multiple internal or-

gans. Herein, we present the first study of molecular

mechanism of disease across multiple affected organ sys-

tems in SSc. To our knowledge, we show for the first time

that a common set of cell types and pathways are driving

disease across these affected organs, and importantly that

it can also be found in related fibrotic conditions.

Gene expression data have been collected for multiple

tissues in SSc and related conditions. However, these

data often have issues that are common to many rare

diseases. First, SSc is not prevalent and patients with

particular disease manifestations are still rarer, so there

is a limit to the amount of biopsy material available for

study. Second, for practical and ethical reasons, internal

organ biopsies are seldom taken from healthy subjects,

making comparisons difficult. Thus, lung, esophagus,

and other affected internal organs are more difficult to
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study than blood and skin tissue. Therefore, there is a

critical need to leverage our biological prior knowledge

with our understanding of well-studied tissues—like

blood and skin—to make plausible inferences about

pathogenesis in tissues that are more difficult to study.

The clinical heterogeneity of SSc, particularly the diffi-

culty of predicting internal organ involvement, raises an

important question: are the fibrotic processes observed

in multiple organs derived from a common disease

process, or is each organ manifestation effectively a dis-

tinct disease? Our analyses demonstrate that there is a

common gene expression signature underlying all severe

organ manifestations of SSc—the immune–fibrotic axi-

s—in solid organs. The immune–fibrotic axis underlies

both SSc pulmonary manifestations of PF and PAH, and

the intrinsic subsets of skin and esophagus. Moreover,

coexpression modules from peripheral blood, a mixture

of innate and adaptive immune cells, have significant

overlap with modules associated with all pathopheno-

types studied. Thus, while fibrotic processes were largely

associated with solid tissues, the inflammatory compo-

nent of the immune–fibrotic axis is only found in per-

ipheral blood.

The presence of a common gene expression signature

across multiple tissues suggests a common disease

driver, but it does not resolve the possible tissue-specific

processes that contribute to disease in the internal organs.

Indeed, there are many layers of biological regulation

between gene expression and whole tissue phenotypes.

Resolving the relationship between molecular profiles and

phenotypes is a difficult biological problem underlying

most biomedical inquiry. However, these relationships

have been approximated by integrating high-throughput

genomic data into tissue-specific functional networks

using big data machine-learning strategies [1]. We ad-

dressed tissue specificity in SSc pathology by interpreting

the common expression signal—the immune–fibrotic

axis—within these tissue-specific functional networks.

These networks allowed us to identify critical genes that

occupy important positions in molecular pathways in

lung. It is clear from this work that the coupling of im-

mune and fibrotic processes is a hallmark of SSc that

occurs in SSc-PF and SSc-PAH as well as skin. How-

ever, we also find subtle, lung-specific functional differ-

ences that we attribute, in part, to the plasticity of the

myeloid cell lineage.

The plasticity of the myeloid lineage may drive tissue-

specific SSc disease processes

Altered immune function has been implicated in the

pathogenesis of SSc [56, 57]. In most prior studies,

characterization of macrophage activation has relied on

analysis of a very limited number of surface markers and/

or a few characteristic mRNAs [56, 57]. Most of these

studies have concluded that SSc macrophages bear an

M2 activation profile based on CD163 and/or CD206

expression. Macrophage polarization spans a broad

spectrum of activation states, ranging from “classically

activated” or M1 cells, which largely mediate pro-

inflammatory responses to “alternatively activated” or

M2 cells, which are predominantly associated with im-

mune suppression and wound healing. While expres-

sion of CD206 and CD163 is higher in alternatively

activated macrophages compared with “classically acti-

vated” macrophages, it is difficult to make global gener-

alizations about macrophage activation based on such

limited analysis. While operationally useful, the desig-

nation of M1 versus M2 activation has limited utility in

vivo as macrophage activation is informed by the local

cytokine milieu to which these cells are exposed.

Our study of multiple skin cohorts showed that

multiple gene expression markers of activated MØs are

elevated in SSc skin across multiple data sets, consistent

with gene expression profiling of lung tissue from SSc

patients with interstitial lung disease [14]. These data

are consistent with elevated levels of IL-4 and IL-13 in

SSc sera [58, 59]. Furthermore, CD68+ MØs have been

identified as producers of IL-13 in human SSc skin biop-

sies and genetic deficiency of IL-13 is protective against

disease in a mouse model of SSc [60]. IL-13 activates tis-

sue fibrosis [61] and genetic and observational studies

link IL-13 with SSc pathogenesis [62–64].We have fur-

ther demonstrated that SSc MØs express high levels of

profibrotic cytokines, suggesting they play a significant

role in mediating fibrosis and in maintaining an inflam-

matory environment in SSc (unpublished data).

By performing a combined analysis of SSc gene expres-

sion in multiple tissues, we are able to observe and infer,

in a genome-wide manner, commonalities in the complex

mixture of cell types in a tissue at the time of biopsy.

Overwhelmingly, we detected a MØ signature associated

with severe disease. In the module overlap network, we

find that PAH-associated modules from PBMCs [19, 20]

have significant overlap with SSc inflammatory subset-

associated modules from skin and esophagus (Fig. 2).

Indeed, in Pendergrass et al. [19], we observed that

PBMCs from lcSSc patients have significant enrichment in

myeloid- and MØ-related gene sets compared to healthy

controls. Christmann et al. [65] expanded on this, showing

that highly expressed transcripts in LSSc-PAH CD14+

monocytes were induced in IL-13-stimulated cells, i.e.,

that PAH monocytes are alternatively activated. We assert

that this MØ polarization is a significant part of the im-

mune–fibrotic axis we find in these data and, therefore, is

likely a common driver of the complex pathophysiology of

SSc. In support of this, an independent study also identi-

fied MØs and dendritic cells (DCs) as possible sources of

an “inflammatory” signature in lesional SSc skin [35].
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We found evidence for the contribution of LR-MØs to

SSc-PF pathobiology, consistent with the alternative

activation of MØs and TGF-β production. In our prior

analysis of skin, we inferred alternatively activated MØs

as modulators of the SSc inflammatory intrinsic subset

in skin [17]. Our current study identifies a LR-MØ sig-

nature within the functional relationships of immune–

fibrotic axis consensus genes in lung (Figs. 4d and 5a).

We posit that the differences in fibrotic responses of

skin and lung tissue are due, in large part, to innate dif-

ferences between tissue-resident MØs that have been

observed [66, 67], as well as the interactions between

infiltrating monocytes and tissue-resident cell types

(e.g., alveolar epithelial cells versus keratinocytes).

Because MØ phenotype and function are plastic and

readily modulated by the local tissue microenviron-

ment, it is likely that differential activation of MØs in

these tissues is the result of exposure to distinct cyto-

kine milieu. Indeed, we show that distinct alternative

activation gene expression programs have increased

expression in SSc-PF lung and inflammatory SSc skin

(Fig. 5). In particular, there were multiple lipid-related

signatures elevated in SSc-PF lung alone.

We cannot rule out that the MØ changes we observe

are a secondary response to the affected organ path-

ology. Regardless, therapies that target MØ effectors

such as IL6R have shown promise in clinical trials [68]

and MØ chemoattractants have been shown to be im-

portant in animal models of SSc inflammatory disease,

suggesting that MØs play a central role in SSc pathogen-

esis. We also cannot rule out that DCs contribute to our

results, as plasmacytoid DCs are observed to be important

in the stiff skin syndrome mouse model [69]. However,

some skin-resident DCs have been shown to be transcrip-

tionally similar to peripheral blood monocytes in humans

[70]. We speculate that the circulation of peripheral mye-

loid cells contributes to the multi-organ nature of SSc. Fu-

ture studies may use in silico and cell-sorting techniques

to deconvolve SSc expression data to identify changes in

cell proportion and transcriptome throughout the disease

course and to finely phenotype myeloid cells from SSc

patient tissue samples.

Summary of SSc-PF disease processes

The study of two different lung datasets that sampled

early- and late-stage/UIP SSc-PF allows us to describe dif-

ferences between the disease processes found in these two

datasets. The two datasets each contained patients with

different types of interstitial pneumonia (see “Methods”),

which may limit interpretation of these results. However,

as stated in the results, we and others [37] find evidence

of highly similar gene expression patterns between UIP

and NSIP. We do not have treatment information for

patients in these studies and acknowledge that late-stage

patients are more likely to be treated with immunosup-

pressive therapy. With these caveats in mind, we can

nevertheless draw non-intuitive conclusions through the

combination of our data-driven approach and mechanistic

insight from disparate literature. We provide an overview

of disease processes we observe in SSc in Fig. 6.

We found that gene signatures that are increased in al-

ternatively activated human MØs and MØs treated with

free fatty acids are enriched in early SSc-PF patients and

that there is no evidence for enrichment of a pro-

inflammatory, IFN-stimulated MØ signature (Fig. 5) [34].

Christmann et al. had previously identified an increase

in IFN- and TGF-β-regulated genes in biopsies from

early SSc-PF [14], but it was unclear which cell types

were responsible for the IFN signature or if there was

evidence of distinct subpopulations of MØs. Increased

CCL18 protein and higher CD163 mRNA were observed

in lungs of patients with SSc-associated interstitial lung

disease, suggestive of the presence of alternatively acti-

vated MØs [14].

We also find elevated gene expression programs asso-

ciated with MØ alternative activation (specifically meta-

bolic “reprogramming”) and lipid exposure in Christman

et al. (Fig. 5).The LR-MØ signature identified in our differ-

ential network analysis consisted of genes with increased

expression in early SSc-PF that participate in lipid and

cholesterol trafficking (Fig. 4d; Additional file 30: Figure

S5). The expression of these genes is correlated with

“canonical” MØ genes identified in [14] (Fig. 5). In the

bleomycin injury mouse model of pulmonary fibrosis,

lipid-laden MØs, or foam cells, have been observed to

upregulate markers associated with alternative MØ activa-

tion and to secrete TGF-β [52]. Oxidized phospholipid

treatment also causes alternative activation and TGF-β

secretion in human MØs [52]. Consistent with this report,

recent work demonstrates that foam cell formation in vivo

favors the development of a pro-fibrotic MØ activation

profile [71, 72]. These studies, along with our results,

suggest that lipid exposure or uptake in MØs may be

important.

We find genes from both datasets in the response to

the TGF-β module of the lung network. TGF-β signal-

ing is a hallmark of SSc and other fibrotic diseases, and

was noted in the initial analysis of both SSc lung data-

sets [14, 15]. However, we also find evidence that the

type I IFN signature is present in the Bostwick dataset

(Fig. 3). The functional module most strongly associ-

ated with late stage disease/UIP is the innate immune,

NF-κB, and apoptotic processes module. This module is

connected to the TGF-β module through components

of the fibrinolysis pathway such as PAI-1 (SERPINE1;

Fig. 3). PAI-1 is upregulated in late stage SSc-PF and is

known to be important in pulmonary fibrosis [73–75].

One mechanism by which fibrinolysis may contribute
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to the resolution of fibrosis is through the induction of

fibroblast apoptosis [76]. Both TGF-β1 and PAI-1 have

been shown to inhibit lung fibroblast apoptosis [76].

We found evidence for a shift in the balance of apop-

tosis in the Bostwick dataset, perhaps in myofibroblasts

[77], in our network analyses (Fig. 6). Long-lived myofi-

broblasts are thought to continually deposit collagen and

contribute to persistent fibrosis [78]. This apoptotic-

resistance phenotype is related to the stiffness of the

matrix [79], suggesting that a shift in apoptotic processes

may occur once the deposition of excess collagen begins.

Moreover, impaired phagocytosis of apoptotic cells, or

efferocytosis, has been observed in the alveolar MØs of

IPF patients [80]. We find genes involved in efferocyto-

sis, specifically in receptors (CD44) and endocytic ma-

chinery associated with this process, in the lung network

(Figs. 3 and 6) [81]. If the shift in apoptosis and efferocy-

tosis occurs, we speculate that the fibrotic and inflam-

matory processes in our network will also be altered.

Efferocytosis by alveolar MØs plays a key role in the

resolution of inflammation in the lung through the subse-

quent release of TGF-β [82]. We hypothesize that, follow-

ing initial injury, TGF-β signaling, antifibrinolytic factors,

and the disruption of apoptosis and efferocytosis may con-

tribute to progressive fibrosis in SSc-PF (Fig. 6).

Limitations and future directions

A limitation of this study is a lack of post-genomic

validation, particularly in lung. This work is in essence

hypothesis-generating, but the need for this study is

highlighted by the sparseness of biopsy material, and it

provides new directions for inquiry into the pathogen-

esis of the disease.

Our results suggest that alternatively activated MØs

likely play a central role in the pathogenesis of SSc by acti-

vating fibroblasts. Most importantly, they show for the

first time that this is likely to occur across multiple af-

fected organ systems in SSc patients. Future experiments

will need to examine these cells functionally to determine

if SSc MØs can activate other cell types (e.g., fibroblasts)
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to produce ECM and to examine the role of these cells in

mouse models of fibrosis as well as gene expression in

multiple organs from the same patient. Our integrative

genomics approach directly compares multiple tissues and

manifestations and suggests that there may be subtle dif-

ferences in the MØ phenotype in SSc-affected skin and

lung. This supports the fine phenotyping of these cells

from SSc patient tissue samples when possible, and the

possibility of targeting these cells therapeutically.

Conclusions

In this study, we have utilized data from multiple tissues

to examine the systemic nature of SSc. Our integrative

analysis allowed us to leverage well-studied tissues to in-

form us about SSc manifestations that are under-studied

molecularly. This study rigorously tests the notion that

patients with severe disease have shared immunological

and fibrotic alterations. The common immune–fibrotic

axis shows evidence for alternatively activated MØs in

multiple SSc tissues. However, there are subtle differ-

ences in the MØ gene expression programs detected in

skin and lung. Different microenvironments likely pro-

vide distinct stimuli to infiltrating MØs that determine

the pro-fibrotic character of these cells. The plasticity of

this lineage is likely central to the divergence of fibrotic

processes in multiple SSc-affected tissues and is a central

component of an immune–fibrotic axis driving disease.
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