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Abstract

Background: Diagnostics of the human ageing process may help predict future healthcare needs or guide

preventative measures for tackling diseases of older age. We take a transcriptomics approach to build the first

reproducible multi-tissue RNA expression signature by gene-chip profiling tissue from sedentary normal subjects

who reached 65 years of age in good health.

Results: One hundred and fifty probe-sets form an accurate classifier of young versus older muscle tissue and this

healthy ageing RNA classifier performed consistently in independent cohorts of human muscle, skin and brain

tissue (n = 594, AUC = 0.83–0.96) and thus represents a biomarker for biological age. Using the Uppsala

Longitudinal Study of Adult Men birth-cohort (n = 108) we demonstrate that the RNA classifier is insensitive

to confounding lifestyle biomarkers, while greater gene score at age 70 years is independently associated

with better renal function at age 82 years and longevity. The gene score is ‘up-regulated’ in healthy human

hippocampus with age, and when applied to blood RNA profiles from two large independent age-matched

dementia case–control data sets (n = 717) the healthy controls have significantly greater gene scores than

those with cognitive impairment. Alone, or when combined with our previously described prototype Alzheimer disease

(AD) RNA ‘disease signature’, the healthy ageing RNA classifier is diagnostic for AD.

Conclusions: We identify a novel and statistically robust multi-tissue RNA signature of human healthy ageing that can

act as a diagnostic of future health, using only a peripheral blood sample. This RNA signature has great potential to

assist research aimed at finding treatments for and/or management of AD and other ageing-related conditions.

Background
It is anticipated that novel genomic diagnostics that pre-

dict future health risks will help guide targeted preventa-

tive measures and enable the evaluation of individualized

treatment strategies for many prevalent diseases of older

age. So far, use of individual molecular biomarkers in

healthy populations has offered modest performance [1, 2]

compared with traditional, more integrated disease

markers (e.g., blood pressure) or chronological age [3]. For

example, in people with cardiovascular disease, circulating

cystatin C concentration, a parameter that estimates renal

function, was related to 10-year mortality but was insuffi-

cient to predict cardiovascular deaths in healthy older

subjects [4]. Global RNA [5–9] and DNA methylation

profiling [10–12] have been recently utilized to study

the biology of chronological age. These existing signa-

tures will incorporate influences of age-related disease

and drug treatment. For example, Hannum et al. and

Horvath et al. built distinct multi-tissue linear models,

fitting age-related changes in DNA methylation with

chronological age [13, 14]. These models have a statis-

tical association with long-term health in the elderly

[15] but the associations are not substantive enough to

make it a practical diagnostic. In fact, as there are no

molecular diagnostics of ‘healthy’ ageing status in
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humans, we hypothesized that a molecular profile may

be useful at distinguishing people at risk for a variety of

age-related diseases.

The shift in population demographics in the coming de-

cades will mean that more than 1.2 billion people will be

aged 65 years or older worldwide [16]. Approximately 7 %

of this population will have dementia, with at least 60 % of

these having Alzheimer’s disease (AD). AD is the single

largest healthcare cost [17] and there are currently no

drug treatments that halt or cure it [18]. Consensus is that

only the earliest possible intervention is likely to signifi-

cantly impact on AD and thus we need to identify those at

greatest risk. The available validated diagnostics for AD

are neither scalable for mass population screening nor suf-

ficiently cost-effective to be practical [19]. For example,

brain imaging can provide clear evidence of neurodegener-

ation but is restricted to specialist centers [20] and an

imaging-based public health screening program would not

be affordable [19, 21]. There is a pressing need to stratify

the older healthy population, using simple and cost-

effective methods, to, for example, identify those appropri-

ate to enrich clinical trials of novel AD treatments.

Prototype blood diagnostics can be 75–85 % accurate at

distinguishing AD patients from controls; however, these

have not been validated using independently processed

samples or have failed to replicate in independent studies

[20]. For example, blood-based protein signatures can

diagnose mild cognitive impairment (MCI) and/or AD

from controls in single studies [22–26], yet a common set

of proteins has not been found across multiple studies.

Further, the candidate AD marker proteins included cyto-

kines and other markers of metabolic or cardiovascular

disease [27] and thus these will not be clinically specific

for AD when applied to older populations [28].

The expression of RNA is under genetic [29, 30], epi-

genetic [13] and environmental control [31, 32] and so

the abundance of individual RNA molecules in blood

cells reflects the integration of a variety of influences,

whether or not blood directly interacts with a diseased

organ. Thus, blood RNA [33–41] has been used to dis-

tinguish controls from MCI and/or AD, where variations

in blood RNA expression should reflect the shared gen-

etic, epigenetic [13] and environmental influences with

the brain. For some prototype RNA diagnostics, the per-

formances reported have been remarkably high (~95 %),

but the same samples have been used during model

building and validation [37, 38] and thus these represent

examples of extreme over-fitting. In general there is al-

ways a danger that a classification model, when built

using a specific set of cases and control samples from a

single study, reflects unknown specific features of that

particular cohort and thus is not generalizable.

In the present study we developed a RNA classifier of

‘healthy’ ageing starting with human muscle, with the

hypothesis that this gene expression pattern may provide

reliable genomic predictors for risk of age-related disease.

We built the RNA classifier using human muscle global

gene expression profiles because it has proven a useful tis-

sue for predicting systemic physiological traits in humans

[42] and because we can define healthy physiological sta-

tus with ease [31]. When the RNA classifier was related to

cognitive health, this ‘healthy ageing gene score’ had the

advantage of being hypothesis driven, and built using a

paradigm and samples entirely distinct from clinical case–

control samples. When applied to blood RNA, we estab-

lished good validation for AD diagnosis and selectivity

over common age-related pathologies. The results of the

present study further support the idea that analysis of

peripheral blood RNA would be a fruitful strategy for

developing biomarkers of cognitive health and prove that

a common healthy ageing gene-expression program is

detectable across multiple tissues.

Results and discussion

Identification of a reproducible RNA signature for age of

human muscle, brain and skin

Our objective was to discover a pattern of RNA expres-

sion that could be reliably used as a biomarker for

‘health status’ in older subjects — one that differed sub-

stantially in terms of ability to stratify health, and one

that was more informative than chronological age. We

applied machine-learning methods to RNA expression

data to distinguish between healthy 25-year-old and

healthy 65-year-old individuals. We took a simple classi-

fier approach [43] without ad hoc a priori filtering to

identify a consistent set of RNA markers of ageing across

tissue types because standard differential expression is

unable to provide a common multi-tissue set of discrimin-

atory RNA molecules [9]. We selected muscle tissue gene-

chip profiles from 15 sedentary young and 15 sedentary

older subjects with good aerobic fitness (Gene Expression

Omnibus (GEO) accession [GSE59880]) [31, 44] and who

were free of diabetes [42, 44]. Specifically, we utilized a

k-nearest neighbor (kNN) classification approach be-

cause this captures data features that share non-linear

interactions with robust performance [45] and is a

method consistent with strategies recommended by the

Microarray Quality Control consortium [43]. This first

data set — called the ‘training data-set’ — was used

only once to select genes (Affymetrix probe-sets) and

direction of gene expression change, and was then dis-

carded from the project (Fig. 1). Expression differences

of ~54,000 probe-sets were ranked using an empirical

Bayesian statistic and a leave-one-out cross-validation

(LOOCV) process (see “Materials and methods”).

Probe-sets that targeted multiple genomic loci were re-

moved and a 150 probe-set list, each gene having a
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nominal performance of 90 % or better, was selected

for further study (Additional file 1). The extended list

of probe-sets with a 70 % or better performance is also

included in Additional file 1.

We checked that the 150 RNAs were not differen-

tially expressed to any measurable extent in human

muscle by exercise or a number of other common dis-

eases that impact on skeletal muscle, using our previ-

ously published gene-chip data [8, 31, 44, 46]. We later

confirmed this lack of association with lifestyle disease

using a sensitive gene-set approach. Use of fully inde-

pendent training and validation data sets allows for

genuine external validation to be demonstrated (see

“Materials and methods”). Using the ‘Campbell’ muscle

data set [GEO:GSE9419] [47] as the samples of known

identity, we demonstrated that additional young and

old muscle samples selected from four additional

muscle data sets (‘Trappe’ [GEO:GSE28422] [48], ‘Hoffman’

[GEO:GSE38718] [49], and ‘Kraus’ [GEO:GSE47969]

and ‘Derby’ [GEO:GSE47881] [8]) could be classified

with an average ~93 % accuracy (70–100 %) using only

the 150 probe-sets selected at the start of the project.

Substitution of the Campbell data set with the other

muscle data sets worked equally as well. These data

shared a common microarray platform (Affymetrix

HGU133plus2) but, as we demonstrate below, the clas-

sifier remains robust in the face of alternative plat-

forms. Receiver operating characteristic (ROC) curves

for kNN = 5 demonstrating classifier performance for a

number of tissue types are presented in Fig. 2.

Remarkably, the muscle-derived 150 RNA profile

performed very well in classifying brain tissue by age.

Using data from the HGU133Plus2 microarray plat-

form for old and young samples of ectodermal origin

(I, e, brain, n = 120) [50] we confirmed that the 150

RNA ‘healthy ageing’ genes selected in muscle could

also distinguish the age of human brain one sample at

a time, with a classification success rate up to 91 %

(Fig. 2). Four brain regions were evaluated (postcentral

gyrus, entorhinal cortex, hippocampus and superior

frontal gyrus; [GEO:GSE11882]) and while they were

confirmed disease-free by histopathology in the ori-

ginal study [50], unlike our muscle cohorts, their true

functional status remains unknown. The postcentral

gyrus samples were classified with 86 % sensitivity and

89 % specificity. In this cohort, older hippocampal

regions were often misclassified using the 150 genes

(33 % sensitivity) as ‘young’. This higher misclassifica-

tion rate may relate to the substantial neurogenesis

known to take place in the adult hippocampus or de-

lays in tissue processing. We evaluated whether the

150 genes could accurately classify the age of tissue of

mesodermal origin (skin) using gene expression data

in a total of 279 human skin samples, of which there

were up to three technical replicates per clinical sam-

ple [9]. Notably, these data originated from a different

technology platform (Illumina Human HT-12 V3,

Array-express: E-TABM-1140), adding variability

above that derived from a distinct tissue and poten-

tially limiting the classification process. The two gene-

chip technologies had 129 genes in common, and we ob-

served excellent classification of human skin age [n = 131,

area under the curve (AUC) = 0.85; Fig. 2]. The classifi-

cation success was similar for all three replicates (71–

78 raw classification success). Thus, the technical

performance of the 150-gene healthy ageing classifier

was excellent, providing accurate tissue classification

despite inter-laboratory technical variation, different

gene-chip platforms and antemortem issues. We were

able, therefore, to conclude that we have identified a

reliable multi-tissue RNA signature of healthy tissue

ageing in humans, something that has not been previ-

ously demonstrated [8, 9].

Fig. 1 Development, validation and clinical application of ageing

diagnostic. Overview of the selection process and use of RNA

probe-sets for the development and validation of the healthy

physiological age classifier. We identified useful probe-sets from a

possible starting number of ~54,000 during step one [e.g. probe-sets

with leave-one-out cross-validation (LOOCV) performance ≥ 90 %]. We

then evaluated the performance of the top-ranked 150 probe-sets

in a number of independent muscle, brain, and skin samples,

demonstrating that the signature was diagnostic for age. We then

applied the 150-probe-set healthy ageing signature to several clinical

studies, as illustrated at the end of the workflow. Key features included

discarding the training data set immediately after selecting the 150

probe-sets and relying on LOOCV and full external validation processes
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A healthy ageing gene score that is distinct from

chronological age and unrelated to lifestyle regulated

phenotypes in the ULSAM study

In order to examine specificity for ‘healthy ageing’, we

examined the relationship between the classifier genes,

chronological age and markers of lifestyle-associated

genes. We collapsed the expression pattern of all genes

into a single score for each sample (see “Materials and

methods”). The distribution of scores was examined

for ~70-year-old males (subjects born in Uppsala

within a 1-year period) and the gene ranking score

was also correlated with markers of lifestyle-associated

disease (Fig. 3). The gene expression profiles from 108

muscle samples from ~70-year-old male subjects from

the Uppsala Longitudinal Study of Adult Men

(ULSAM) cohort [51] were produced using Affymetrix

arrays (Human Exon 1.0 ST Array). We ranked each

subject for each of the 150 genes, taking the direction

of gene expression change from the original classifier

model into account (85 % down-regulated; see “Materials

and methods”). We then converted the individual gene

rankings into a summed median gene score for each sub-

ject. We demonstrated that despite all subjects being ~70

years of age at the time of the RNA sample, there was a

very wide distribution in gene score (Fig. 3a). Thus, the

healthy ageing gene score in muscle was very distinct from

chronological age. The healthy ageing gene score was

regressed against a variety of continuous clinical variables

(variables listed in Additional file 2). The gene score at

chronological age ~70 years was unrelated to conventional

lifestyle regulated biomarkers (e.g., blood pressure,

glucose, cholesterol, or renal function; Fig. 3b). This con-

firmed that the 150 gene expression markers were not

reflecting a variety of lifestyle regulated biomarkers and

diseases (e.g., exercise, diabetes) and tissue ‘healthy ageing

status’ could not be derived from a simpler clinical

biomarker.

Despite the limited sample size of the ULSAM co-

hort (n = 108), we were also able to demonstrate that

subjects with the highest muscle healthy ageing gene

score at age 70 years had significantly better renal

function 12 years later (at age 82 years, p = 0.009).

Remarkably, the healthy ageing gene score in muscle

at ~70 years was also independently related to 20-year

survival (p = 0.0295; Fig. S1a in Additional file 3) in a

logistic regression model that included factors listed

in Additional file 2). While this observation should be

interpreted cautiously, to illustrate the temporal rela-

tionship between the healthy ageing gene score and

death, we divided the gene score into quartiles and

applied a Cox-regression model (Fig. S1b in Additional

file 3) and found a significant difference between the

first versus the fourth quartile (p = 0.04). In contrast

to the healthy ageing gene score, a median gene rank

score based on inflammatory gene (GO:0006954) or

mitochondrial gene (GO:0005739) expression in

muscle demonstrated no relationship with health or

mortality (data not shown). The significant relation-

ship between the healthy ageing gene score and organ

function demonstrates that the gene expression pat-

tern most similar to the healthy 65-year profile in the

classifier model (i.e., the largest gene score in the

Fig. 2 ROC curves showing predictive performance of the healthy ageing classifier based on LOOCV (kNN = 5) for muscle, brain, and skin. Using

only the 150 probe-sets identified in the first stage of the project, this ‘healthy ageing classifier’ was able to correctly classify young and old samples

across independent data sets with an accuracy of ~96 %, 91 %, 85 %, and 78 %. We present two examples of independent muscle data [48, 50] and

one example each for human brain [50] and skin data [11] with areas under the curve of 0.99, 0.94, 0.78, and 0.85, respectively, reflecting

excellent separation of the age groups and hence accurate multi-tissue performance
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ranking system) was associated with better health in

the ULSAM cohort.

A greater healthy ageing gene expression score is

associated with better cognitive health

Neurocognitive pathology (e.g., AD) becomes more pro-

nounced with age and is often apparent in individuals

who are otherwise healthy. Our analysis of the relation-

ship between lifestyle factors and the healthy ageing

gene score in the ULSAM cohort suggested that the

gene score was robust to confounding effects of lifestyle

disease. We next examined whether the healthy ageing

gene score (median rank sum of the 150 RNA markers)

was selectively useful in relation to identifying neurocog-

nitive disease over lifestyle disease. To support this ana-

lysis, we utilized a large publically available gene-chip

data set derived from healthy human brain samples of

various ages [52]. The BrainEac.org gene-chip resource

[52] [GEO:GSE60862] comprises ten post-mortem brain

regions from 134 subjects representing 1231 samples

(Additional file 1). Using the same ranking approach as

applied to the ULSAM cohort, the median sum of the

rank score was calculated for each anatomical brain re-

gion (Fig. 4a). As before, in healthy older individuals the

Fig. 3 Distribution of healthy ageing gene score in ULSAM samples and its relation with clinical parameters. At the date of assessment (1992),

when the muscle biopsy was taken for subsequent gene-chip profiling, all subjects were considered in reasonable health for their age and

remained physically active. a Distribution of gene score based on the median rank for each of the 150 genes (see “Materials and methods”).

b Clinical variables were determined as previously reported for ULSAM samples (chronological age = 69–70 years) [71, 101]. Linear regression was

used to examine the relationship between the healthy ageing gene score at ~70 years and a variety of clinical parameters at age ~70 years. No

relationship between baseline gene score and renal function (estimated from cystatin C, r2 < 0.001), systolic blood pressure (mmHg, r2 = 0.0013),

2 h glucose concentration following a standard oral glucose tolerance test (OGTT; mmol, r2 = 0.015) or total cholesterol (mmol, r2 = 0.002) was

observed. Gene score was also unrelated to resting heart rate or physical activity questionnaire, and thus habitual exercise status. In fact the

healthy ageing gene score was not correlated with any conventional risk factors (as listed in Additional file 2)
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‘age’ signature was ‘switched on’ (yielding a greater

ranking score) compared with younger subjects. Regu-

lation of the healthy ageing gene score increased in a

distinct manner across individual healthy brain regions

with chronological age, especially in the hippocampus

(p = 0.00000002), as well as other regions (putamen,

thalamus, substantia nigra, and the occipital, frontal,

and temporal cortex regions (all at least p < 0.002 by

Holm adjusted Mann–Whitney test).

Our primary hypothesis was that, compared with con-

trol subjects of similar chronological age and gender,

patients with AD would have a lower median healthy

ageing gene score, but the score would not distinguish

diabetes or vascular (i.e. lifestyle influenced) disease pa-

tients from matched controls. We used two independent

case–control studies of AD and two case–control studies

of lifestyle disease with RNA profiles derived from blood.

The first AD cohort has been previously used to study

disease pathway changes in blood [41, 53] and we have

deposited this data set (cohort 1 [GEO:GSE63060]) and

a second analysis (cohort 2 [GEO:GSE63061]) at the

GEO. We first used a maximum possible subset of

Fig. 4 The healthy ageing RNA signature in healthy human brain tissue and blood of AD patients and controls. There was robust regulation of

the healthy ageing RNA signature in human brain with healthy ageing and between control subjects and subjects with AD or MCI. a The healthy

ageing RNA signature was studied across brain regions in healthy individuals using BrainEac.org gene-chip resource [GEO:GSE60862]. Ten brain

regions from 134 subjects representing 1231 samples were individually ranked (see “Materials and methods”) and the median sum of the ranked

scores calculated. Regulation of the healthy ageing genes differed across brain regions with age, as determined by a Kruskal Wallis Test (hippocampus

p = 0.00000002, putamen p = 0.00000004, thalamus p = 0.00004, temporal cortex p = 0.0001, substantia nigra p = 0.0002, frontal cortex

p = 0.001, occipital cortex p = 0.001, white matter p = 0.01, medulla p = 0.06 and cerebellar cortex p = 0.51). Post hoc Mann–Whitney test,

with correction for multiple comparisons (Holm), confirmed a striking ‘increase’ of the healthy ageing score in the healthy older samples

(hippocampus, putamen, thalamus, substantia nigra, and the occipital, frontal, and temporal cortex regions; at least p < 0.002). b The

healthy ageing RNA signature was studied in blood samples from two independently processed case–control studies of AD. In cohort 1

the control median gene score was greater (p = 0.004) than AD samples and greater (p = 0.00005) than that of the MCI samples (Wilcoxon

rank sum test). In cohort 2 the median gene score of control samples was greater than that of AD samples (p = 0.009) and that of MCI

samples (p = 0.003). Data are median gene score and standard error
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subjects from each entire cohort, so that gender and

chronological age could be precisely balanced (~70

years) remove these as potentially confounding factors.

From cohort 1, 113 subjects were ranked for gene score,

while 111 subjects were ranked in cohort 2 (Table 1).

We checked for overlap between the 150 healthy ageing

gene markers and previous genomic and genetic disease

markers of AD (Additional file 1). Only three genes were

in common and none were from previously validated

AD diagnostics. Their inclusion or exclusion did not im-

pact our analyses.

Blood RNA from AD case–control cohort 1 was pro-

filed on Illumina HT-12 V3 bead-chips. We first mapped

the appropriate probes from Affymetrix to Illumina,

yielding 128 genes from the original 150-gene list. The

relative median rank score for AD patients was signifi-

cantly lower than for the age- and gender-matched con-

trols (p = 0.004; Fig. 4b) based on Wilcoxon rank sum

test. Blood RNA from the second AD case–control co-

hort was profiled on the Illumina HT-12 V4 platform

and in this case 122 genes were in common with the

150-gene healthy ageing gene signature. As before, the

median rank healthy ageing gene score for AD patients

in cohort 2 was significantly lower than in the control

group (p = 0.009; Fig. 4b). Furthermore, for both cohort

1 and cohort 2, the age-matched controls had a higher

median gene score than subjects diagnosed with MCI

(Fig. 4b; p = 0.00005 and p = 0.003 for cohorts 1 and 2,

respectively). It is important to note that the control

samples used for comparison with MCI overlapped with

those used for comparison with AD and that the MCI

analysis cannot, therefore, be considered a fully inde-

pendent observation. As expected from the ULSAM

analysis, the healthy ageing gene score was not related

to diabetes or vascular disease status using blood profiles

from 366 individuals (Additional file 4).

We formally evaluated whether the healthy ageing

signature could act as a diagnostic for AD using ROC

analysis and found that it had robust independent per-

formance (AUC = 0.66–0.73; Fig. 5). We have previ-

ously published a whole blood RNA-based prototype

AD diagnostic [41] consisting of 48 genes identified

using machine learning methods applied to cohort 1

samples. We demonstrated that this prototype ‘RNA

disease signature’ was independently validated in co-

hort 2 using LOOCV. Further, when we combined the

two independently produced and validated gene expres-

sion classifiers we yielded an improved AD diagnostic

(AUC = 0.73–0.86; Fig. 5) that matches best in class

[54] for blood-based AD diagnostics validated using in-

dependent data, while our RNA-based analysis uses a

technology platform more suited to reproducible high-

throughput diagnostics.

Biological features of the healthy ageing diagnostic

We were interested in whether the healthy ageing diag-

nostic identified any particular biological processes that

might be open to therapeutic targeting. The 150-gene

list (Additional file 1) was evaluated using both Ingenu-

ity pathway analysis and R-based gene ontology (GO)

analysis. Ingenuity analysis (where a total of 127 genes

were annotated in the database) revealed a few marginal

functional associations (e.g., nervous system develop-

ment genes) but these did not remain significant follow-

ing Benjamini and Hochberg correction. The top ranked

database network (genes with published interactions)

was defined as ‘cell death and survival’ and contained 31

molecules. In Fig. 6a the density curves of p values for

Table 1 Clinical characteristics of batch 1 and batch 2 of case–control subjects that contributed to the blood gene-chip profiles

analyzed and presented in Figs. 4 and 5

Gender and age-matched cohorts Age Gender (F/M) MMSE CDR-SOB

Batch 1

ControlMCI (n = 67) 69.6 (±4.2) 41/26 (61 % F) 29.1 (±1.2) 0.07 (±0.18)

MCI (n = 39) 70.0 (±3.3) 24/15 (62 % F) 27.5 (±1.6) 1.24 (±1.60)

ControlAD (n = 64) 70.2 (±3.7) 41/23 (64 % F) 29.1 (±1.2) 0.08 (±0.18)

AD (n = 49) 69.8 (±4.4) 34/15 (69 % F) 21.8 (±4.5) 5.44 (±2.95)

Batch 2

ControlMCI (n = 71) 70.8 (±2.9) 44/27 (62 % F) 28.9 (±1.9) 0.15 (±0.57)

MCI (n = 31) 69.5 (±4.5) 23/8 (74 % F) 27.6 (±1.9) 1.34 (±1.86)

ControlAD (n = 71) 70.8 (±2.9) 44/27 (62 % F) 28.9 (±1.9) 0.15 (±0.57)

AD (n = 40) 69.9 (±4.3) 23/17 (58 % F) 21.0 (±5.6) 5.80 (±2.75)

The subjects are an age- and gender-balanced subset of the entire clinical cohort. MCImild cognitive impairment, AD Alzheimer’s disease. Age is in years (±standard

deviation). Gender is ratio of females (F) to males (M). MMSEmini-mental state examination involving a 30-point questionnaire. CDR-SOB the Washington University

Clinical Dementia Rating Scale (CDR) global and Sum of Boxes (SOB) score. Application of the healthy gene ranking score provided, post hoc, similar separation of the

groups with similarly robust statistical significance
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each one of 10,000 hypergeometric tests using a ran-

domly sampled gene set (n = 150 in size) are plotted

(black), along with the density curve of the p values from

the healthy ageing 150-gene set (red). The profile of

ontological enrichment in the healthy ageing diagnostic

was not different from a random sample of 150 genes

from the gene-chip, of which more than 99 % of the

54,000 probe-sets had no ability to discriminate tissue

age in our training model. Manual searching of PubMed

and the Online Mendelian Inheritance in Man (OMIM)

database yielded some plausible connections with age-

related and disease processes (Additional file 1) but such

Fig. 5 Validation of novel blood RNA classifiers as a diagnostic for Alzheimer’s disease. We used the independent batch 2 AD data set (see

“Materials and methods”) to test the predictive performance of our healthy ageing classifier and our previously published AD prototype

diagnostic. The performance of each was evaluated using ROC curves. The healthy ageing gene classifier generated independent AUCs of 0.73

and 0.66 for AD in cohorts 1 and 2, respectively. For the combined ‘healthy ageing’ plus ‘AD disease’ RNA classifier (150 + 48 probe-sets) we

obtained AUCs of 0.86 and 0.73 for AD without any attempt at optimization. The AD disease RNA classifier probe-sets were selected using

cohort 1

Fig. 6 Gene ontology profile and chromosomal positional enrichment analysis. Pathway analysis and GO analysis indicate that the 150 healthy

ageing genes are not related to a few specific biological processes but rather originate from across many biological processes. a Density curves

of raw p values for each of the 10,000 hypergeometric tests using randomly sampled probe-sets from the U133+2 gene-chip (n = 150 each time;

black) and the density curve of the raw p values from a hypergeometric test using the 150 healthy ageing gene classifier probe-sets (red). A similar

result was obtained when the top 670 genes were utilized as the input and compared with randomly generated gene sets of 670 genes. b Positional

gene enrichment analysis for the top 670 genes from the prototype classifier (670 probes from which the top 150 probes, with performance >90 %,

were selected) found over-representation at 7q22, 11q13 and 11q23. Results were consistent using positional gene enrichment analysis and

the ToppGene algorithm; both identified 3, 12 and 3 genes at each loci, respectively, with p < 0.001 or less. Those for 11q13 and 11q23 in particular

were most significant, and contained genetic variants that influence the age of onset of various cancers
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analysis is subjective and it cannot be concluded that

these biological functions appear in the ‘healthy ageing’

diagnostic more than by simple proportionality. We did

note that the 150 genes included some previously identi-

fied ‘ageing’ genes, for example, LMNA (linked with

Hutchinson-Gilford progeria syndrome), Unc-13 homo-

log (UNC13C; linked with beta-amyloid biology), as well

as COL1A1 (thought to change in skin ageing).

We also examined whether the 150 age-related genes

were over represented at genomic loci using positional

enrichment analysis [55] but found no significant associ-

ations. Using the top 670 genes from the first stage of

the project (>70 % success in the training model) there

were a number of significant findings (Additional file 1)

with three genes originating from the top 150. In this

analysis, 11q made a significantly greater contribution

(adjusted p value = 0.005–0.007) to the enlarged proto-

type classifier than would be expected by chance

(Fig. 6b), and there were a total of 15 genes from the

11q13 (ALDH3B1, CAPN1, CDC42EP2, CORO1B,

LTBP3, NRXN2, PPP1R14B, RCE1, RCOR2, SART1,

SYT12, and ZDHHC24; p = 0.0005) and 11q23 (FXYD2,

SCN2B, and TMPRSS13; p = 0.0009) over-represented

genomic locations. Interestingly, 11q23 is the location

for age-related genetic interactions, namely the apolipo-

protein A family [56, 57] as well as a region containing

genetic association single nucleotide polymorphisms

(SNPs) which modify the age of onset of colorectal can-

cer [58, 59]. Furthermore, 11q13 harbors SNPs associ-

ated with age of onset of renal cell carcinoma and

prostate cancer and modulating age-related disease

emergence by 5 years [60–62]. While the lack of an ap-

parent specific biological dialogue may be considered

disappointing, the extensive independent clinical results

strongly support that the novel 150-gene healthy ageing

signature is an important marker of healthy ageing in

humans. Therefore, regulation of this gene expression

program may in time reveal itself to be an important

mechanism for maintaining human health and thereby a

new opportunity for target development.

The molecular mechanisms that define healthy ageing

remain elusive in both human and animal models [63].

Many of the molecular mechanisms which extend the

lifespan of laboratory animals also appear to extend

health-span or disease-free ageing in these models [64].

However, it remains unclear whether any of these mech-

anisms are central to human ageing [8, 9, 65] or define

healthy ageing in humans. Our approach was novel be-

cause we first sought to define a set of genes associated

with healthy ageing in ‘normal’ 65-year-old subjects

rather than gene expression associated with disease or

extreme longevity. This is an important distinction —

ageing is thought to be a continuous physiological

process that could be expected to have a gene expression

signature distinct from lifestyle related (e.g., type II dia-

betes) or mutation driven (e.g., cancer) pathologies, thus

explaining its independent prognostic rather than spe-

cific diagnostic capacity. It is however of potential im-

portance that regulation of the healthy ageing signature

in human brain is most evident in those regions associ-

ated with neurodegeneration. In contrast, it is thought

that the cerebellar cortex is not subject to substantial

age-related anatomical changes [66] and this was con-

sistent with our new model of human healthy ageing

(Fig. 4a).

The 65-year-old subjects used to build the RNA model

were in good health despite leading a normal sedentary

lifestyle. Rather than using individual differential expres-

sion values to define discriminatory genes, we selected a

group of genes that would act together to make a ‘major-

ity vote’. Indeed, we were able to demonstrate that the

150 healthy ageing genes are consistently modulated in

several tissue types, but to very differing degrees in

people of the same chronological age (e.g., Fig. 3a).

Thus, the healthy ageing gene score fulfilled the first

main criteria for being a novel diagnostic of healthy

(or biological) ageing. Including the ULSAM analysis

(males only), we have demonstrated in three independent

clinical cohorts that greater healthy ageing gene score as-

sociates with better health in men and women, suggesting

that promotion of this gene expression profile may be

beneficial and could reflect an adaptive compensatory

response. The present RNA diagnostic could be used to

facilitate the evaluation of anti-ageing-related treatments

in middle-aged humans, screen for long-term safety dur-

ing drug development, or augment clinical decision-

making that currently inputs chronological age rather than

‘biological’ age into treatment algorithms. Future efforts

should focus on discovering strategies to modulate the

healthy ageing gene signature to establish if it is causally

determining health or just acting as a robust biomarker of

a more complex set of molecular interactions.

The multi-tissue healthy ageing gene score is predictive

of health in older subjects

Exceptional longevity is driven by a measurable genetic

contribution [67, 68], while being active and healthy at

age 65 years is a more common occurrence, likely to

reflect complex molecular factors [64, 69], and is less

obviously linked to only variations in DNA sequence.

We profiled RNA from healthy members of the ULSAM

cohort at age 70 years and analyzed follow-up data over

two decades. In 1992, these 70-year-old Swedish men

had normal levels of physical activity ‘for their age’ and

most demonstrated longevity to 90 years, which is not

exceptional in the Swedish population [70]. The healthy

ageing score demonstrated a four-fold range (Fig. 3a)

while chronological age varied by no more than one year
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across the group. A greater gene score was associated

with better cognitive function, and better renal function

across a 12 year span and both cognitive decline and

renal function are important determinants of all-cause

mortality [71, 72]. A concurrent reduction in cognitive

and renal function is clinically observed, suggesting both

are subject to a general age-related decline in organ

function [73]. It is perceived that lifestyle-regulated dis-

eases, such as type II diabetes, causally increase AD [74].

This relationship did not appear causal when the rates of

emergence of diabetes (or not) and number of emerging

cases of AD were compared in the Framingham or Balti-

more Age studies [75, 76]. This suggests that risk of devel-

oping type II diabetes and AD may share some concurrent

risk factors, e.g., aerobic capacity [77]; a physiological cap-

acity defined by a large genetic and gene–environmental

interaction [78]. Additionally, type II diabetes and AD

may share epigenetic or genetic risk factors. Interpretation

of such associations is further complicated by the inter-

action between type II diabetes, vascular disease, and

other types of dementia (which complicate the diagnosis

of AD).

Neurological decline is predicted to contribute sub-

stantially to the economic burden of healthcare in the

coming decades. AD is a multi-factorial disease [79] with

around 22 genetic loci potentially associated with disease

risk or progression of symptoms. The strongest and

most reproducible genomic association, APOE-ε4, is a

modifier of risk, contributing to the variance in age of

onset of the disease by 3.7 % [80]. The remaining

approximately nine reproducible risk loci for late-onset

AD (the most common form) contribute a further 2.2 %

of the variance in age of onset [80]. In short, these DNA

sequence variants will not be clinically useful for diag-

nosing or managing AD or even assessing risk in the

majority of people. Differential gene expression analysis

and molecular classification have found disease-related

RNA markers of AD, using patient materials to build the

model [35]. However, such diagnostics can be biased by

unknown features of the training data (the data used to

select the RNA markers). In contrast our healthy ageing

genes were selected via a hypothesis-driven strategy that

then relied on a validation process that included seven

independent tissue cohorts including multiple RNA

detection technologies (so ruling out some unknown

technology platform bias). Thus, our healthy ageing gene

expression signature has the key advantage of being a

signature built using a paradigm and samples entirely

distinct from AD case–control samples.

The healthy ageing gene score allowed us to demon-

strate that patients diagnosed with AD have an altered

healthy ageing RNA expression signature in blood that

demonstrates significant association with disease. Fur-

thermore, the muscle or blood gene score was unrelated

to lifestyle diseases such as type II diabetes and thus

may be more clinically specific than earlier AD biomarkers

[20, 22–26, 41, 81], most of which did not replicate in in-

dependent clinical studies. We were able to provide inde-

pendent validation for our earlier AD-related ‘disease’

diagnostic [41]; like many AD disease biomarkers [35],

however, it includes pro-inflammatory markers and oxida-

tive stress, features that can be common to several dis-

eases and thus it may not be specific in clinical practice.

Nevertheless, when we combined the Lunnon et al. [41]

AD biomarker (even after removing the eight genes we

found to be regulated in blood by diabetes or vascular dis-

ease) with the healthy ageing genes we yielded an im-

proved diagnostic for AD over and above either diagnostic

alone (Fig. 5). Ultimately, formal diagnosis of AD will

continue to rely on a combination of diagnostics, in-

cluding invasive cerebrospinal fluid sampling, positron

emission tomography (PET) imaging and magnetic res-

onance imaging (MRI). However, given the scale of

screening required (e.g., more than 1 million people in

2015/2016 to deliver sufficient numbers of at-risk sub-

jects for AD clinical trials [82]) a blood-based diagnostic

will be extremely useful for pre-screening ahead of inva-

sive and costly follow-up analysis. Enrichment of pre-

vention trials with asymptomatic people most at risk for

AD is required to ensure that event rates are sufficiently

high to evaluate the multitude of drug trials being con-

sidered for AD [20].

Like many genomic diagnostics, the full clinical utility

of ours will only emerge when combined with add-

itional data and clinical insight. While we could also

demonstrate that patients with MCI had a significantly

lower healthy ageing gene score it remains to be shown

that this can be converted into a diagnostic for future

cognitive health (i.e., a blood sample from older healthy

subjects or those with recently diagnosed MCI com-

bined with 5–10 years of follow-up data to prove they

did or did not develop AD). Epidemiological efforts to

build long-range (~36 year) forecasting of dementia

risk (AD or vascular) using clinical demographics [83]

(CAIDE score) provide assessment of risk at middle-

age (~45 years and over) and can assign patients into a

low (9 %) or high (29 %) risk with un-validated ROC

AUC = 0.74. In diabetes patients, age is by far the more

powerful predictor of future dementia rather than

severity of the diabetes measured using glycosylated

hemoglobin A1 (HbA1) [84] and it will be informative

to replace age with our healthy ageing gene diagnostic

for many conditions. These examples highlight that,

clinically, various decision trees exist and our healthy

ageing score could be integrated to help decide which

middle-aged subjects could be offered entry into a pre-

ventative clinical trial many years before the clinical

expression of AD.
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As can be observed in Fig. 5, we obtained an inde-

pendently validated ROC AUC of 0.73 using default clas-

sification settings. This is not an optimized or over-fitted

model, in that it is most likely possible to tune ROC

parameters to yield an improved performance using the

same list of genes or a subset thereof. Some previous

authors have reported ROC AUC scores of >0.8, but as

mentioned these do not represent valid scores, being de-

rived from data over-fitted to a single data set [33–40].

High ‘scores’ encompass shared technical variance in the

‘test’ and ‘validation’ data. For example, a microRNA de-

mentia diagnostic (relying on 2–17 microRNA real-time

PCR assays) was validated in samples used to build the

initial model, yielding inflated specificity and sensitivity

values [40]. Other practical factors must be considered,

such as the complexity of the laboratory test and costs.

Cheng et al. [39] used a complex process to isolate

serum exosome microRNAs and a split-cohort partial

validation approach. Their best AD model (16 micro-

RNAs) was 87 % sensitive and 77 % specific but could

not diagnose MCI. DiaMir Inc. claimed 95 % specificity

and sensitivity for MCI (their model did not work in

AD) but this failed to replicate in a second study [40].

During the past 5 years several projects have worked

with whole-blood mRNA and produced 20–225-gene as-

says to classify samples during the training phase, com-

paring controls with patients (MCI or AD). The RNA

classifier from DiaGenic A/S used TaqMan assays and

this remains the only replicated blood-based AD diag-

nostic performing to a similar level as the present study

[33], while there were no genes in common with our

own ‘AD disease’ or ‘healthy ageing’ RNA signatures. To

date, few blood-based protein and metabolite diagnostics

have been replicated using a fully independent process.

Doecke et al. [27] combined a panel of eight protein

markers with age, gender, and APOE genotype in the

Australian Imaging, Biomarkers and Lifestyle (AIBL) co-

hort and found an AUC of 0.84 using a subset of the

Alzheimer's Disease Neuroimaging Initiative (ADNI) co-

hort. However, their protein markers were a priori

known to be regulated in the ADNI cohort, and it re-

mains unclear how many of the eight protein markers

contribute to the model, including age, gender, and

genotype, in the validation process.

Comparison with known markers of human ageing or

longevity

Other approaches have been utilized in humans to

understand the molecular determinants of human age-

ing, but not ‘healthy’ ageing. Genome-wide association

analysis has shown 281 DNA variants linked with excep-

tional longevity, and collectively explaining 17 % vari-

ance in humans [68] with an AUC value of 0.6. This

remains to be replicated and this list of genes did not

overlap with our healthy ageing gene list. In addition,

long-lived humans appear to have a similar genetic bur-

den for common DNA disease variants, suggesting the

human exceptional longevity model may not be reflect-

ive of the processes that determine average longevity

[63]. There have been several linear molecular models of

chronological age [5, 8, 11, 14] but the variance captured

by these across chronological age is limited and the dis-

ease status of samples used to build or validate the

model unclear; thus, it is uncertain if such models reflect

ageing or age-related disease and drug treatment. There

was no overlap between the genes in our healthy ageing

RNA classifier and the quasi-linear methylation model

derived by Horvath et al. [13].

Conclusion
We found four genes in common between our healthy

ageing RNA classifier and the two gene lists identified by

Hannum et al. in separate DNA methylation models of

ageing (n = 94 and n = 326): one gene from their pri-

mary model (PKM2) and three genes from their RNA

methylation association analysis (ANKRD13B, RUNX3,

and TCF3) [14]. Neither the Horvath nor the Hannum

models generate sufficient distinction from chrono-

logical age to provide a useable ‘size effect’ when consid-

ering longevity [15]. Passtoors et al. [5] reported that a

set of 21 RNA molecules ‘marked out’ familial longevity

in blood RNA, but this was a weak correlation with no

discriminatory capacity as a diagnostic, possibly because

it reflects a mixture of ageing, disease, and drug therapy.

Furthermore, none of those age-related blood RNA

changes were consistently correlated with age in human

brain or muscle [8, 85], indicating that these 21 RNAs

do not represent universal markers of human ageing

(they were also not part of our 150 healthy ageing gene

list). We did not note any significant ontology pathway

enrichment within our healthy ageing diagnostic gene

lists (Fig. 6a). Thus, we cannot neatly place the genes

that contribute to the healthy physiological age diagnos-

tic into a convenient canonical signaling pathway.

Materials and methods

Informed consent was obtained from all volunteers and

ethical approval received from Institutional Research

Ethics Committee as reported in primary clinical publi-

cations [8, 9, 31, 44, 46–50, 52] and all studies included

in this work were conducted under the auspices of the

declaration of Helsinki. For new gene-chip tissue profiles

and hence new GEO deposits, the Institutional Research

Ethics Committee approvals were as follows: ULSAM

(Regional Ethical Review Boards Uppsala Ethical applica-

tions 09-154M/2010/400), STRRIDE (Duke Medical

School IRB, Pro00012628) and AddNeuroMed/DCR

(SLaM/IOP 30/07/2006/SLaM/IOP 30/04/2008).
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A summary of the analysis strategy was as follows.

The first aim was to generate a reliable RNA classifier of

healthy older muscle tissue (healthy ageing gene score).

We utilized k-nearest neighbor (kNN) classification

methods because they capture data features that share

non-linear interactions and have robust performance

using methods consistent with the Microarray Quality

Control Consortium [43]. The probe-set level intensities

of each set of independent microarrays were normalized

using the Robust Multi-array Analysis (RMA) method

implemented within the R statistical software environ-

ment using the ‘affy’ package, and then scaled and cen-

tered (Bioconductor project [86, 87]). When Affymetrix

gene-chips originated from independent laboratories,

we used Frozen Robust Multi-array Analysis (fRMA)

[88, 89]. Having identified a healthy ageing gene score

comprising 150 RNA markers (probe-sets), we estab-

lished that these 150 RNAs could reliably classify mul-

tiple independent sets of human muscle and brain

tissue using external validation. External validation uses

independent training and validation data sets. Finally,

we examined if the healthy ageing gene score in blood

was related to cognitive health, alone or in combination

with our prototype blood marker of early AD. Figure 1

presents the project analysis scheme.

Production and independent external validation of the

healthy ageing gene score

We identified 150 RNA markers of muscle ageing using

samples [31, 44] and gene-chip profiles [GEO:GSE59880]

from 15 young (aged 19–28 years) and 15 older subjects

(aged 59–77 years) free from metabolic and signs of car-

diovascular disease and validated this observation in more

than 500 independent samples. The older subjects were

sedentary (did not do any regular sport/exercise) but

nevertheless were free of diabetes and had good levels of

aerobic capacity, a marker of general health into older age

[90]. The RNA markers were selected using a nested-loop,

holding out two arrays at any one time to estimate two pa-

rameters from the data. The first of these was the conven-

tional classification result; i.e., was the ‘unknown’ sample

correctly classified, yes or no? The second parameter was

used to calculate the performance of the probe-sets

contributing to the decision. We selected 200 probe-sets

during each of the inner-most loops by ranking gene

expression differences using an empirical Bayesian statistic

(implemented as eBayes in the ‘limma’ package) [91]. Fol-

lowing iterative assessment of all probe-sets and all sam-

ples, involving ~180,000 permutations, a list of ~800

probe-sets was identified as having good performance

(>70 % correct). We removed probe-sets that targeted

multiple genomic loci and selected the top ranked 150

probe-sets (involved in >90 % correct decisions) for

further study. Classifier performance was assessed using

ROC analysis and the R package ROCR [92].

We implemented fully independent external validation

of the 150-probe-set healthy ageing classifier, a process

that requires both independent ‘known samples’ to de-

fine the expression space and independent test gene-

chips [93]. When combined with LOOCV methods, this

represents a gold standard approach to validation of a

classification model. A new set of young and old muscle

profiles (selected from the Campbell data set; n = 66

chips [47]; [GEO:GSE9419]) was used to represent the

new expression space of known samples. We then car-

ried out evaluation of sets of independent gene-chip pro-

files from young and old human muscle (all Affymetrix

U133+2) normalized using fRMA. The various fully

independent samples were obtained from GEO or pro-

duced from our own clinical samples [94]. For each

dataset a subset of samples were selected to belong to

either the young (~25 years) or older group (~65 years)

from a larger collection of samples. The sets of young

and older samples were selected from the Trappe [48]

[GEO:GSE28422]; n = 48), Hoffman [49] [GEO:GSE38718];

n = 22), Derby [8] [GEO:GSE47881]; n = 26) and Kraus

[GEO:GSE47969]; n = 33) data sets. For the Kraus data set

total RNA was extracted from frozen muscle biopsy

samples (vastas lateralis) using TRIzol reagent and

in vitro transcription was performed using the Bioarray

high yield RNA transcript labeling kit (P/N 900182,

Affymetrix, Inc.) as previously described [95]. For all

data sets, arrays were examined using hierarchical clus-

tering and normalized unscaled standard error (NUSE).

In cases where we identified a small number of gene-

chips (two to three) that had evidence of technical

defects, these were removed prior to any analysis.

To assess if human brain and skin also demonstrated

the same 150 age-related gene expression signature as

healthy older muscle, we used young and old samples

from the brain-bank array source (n = 120; [GEO:

GSE11882]) and the MuTHER cohort skin data set

(n = 279, which includes a subset of three replicates,

n = 131, n = 124, and n = 24). The skin data were

produced using the Illumina Human HT-12 V3 Bead

chip (Array-express: E-TABM-1140) and log-2 trans-

formed signals were normalized using quantile

normalization. The 150 Affymetrix probe-sets were

mapped to the Illumina platform (giving 129 probes).

Due to differences in gene-chip technology, a LOOCV ap-

proach was used to classify the age of each skin sample,

using only the 150 probes selected at the start of the pro-

ject. For skin, individuals aged 45 years or less were de-

fined as young, and those aged 70 years or older as old to

ensure balanced numbers of young and old samples

existed to fairly assess the classifier performance. The

three sets of technical replicates were analyzed separately
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and confirmed the intra-study technical reproducibility of

the classifier using repeated RNA profiles of a single clin-

ical sample (data not shown).

The healthy muscle ageing gene score differs

substantially from chronological age

We used a set of tissue samples from a birth cohort of

men, such that the same chronological age (~70 years)

could be contrasted with the variation in healthy ageing

gene score. The ULSAM cohort comprises men born in

1920–1924 and living in Uppsala, Sweden and was used

to compare a constant chronological age (and similar en-

vironment) with the healthy muscle age gene score

across individuals [51]. Dual-energy X-ray absorpti-

ometry (DXA) scan measurements were performed during

the last decade of the study and muscle mass status varied

between −15 % to +10 % between age 70 years and

88 years and was unrelated to physical activity scores

(recorded at 82 years and 88 years of age, with 80 %

being recorded as being moderately active). Renal

function was estimated using cystatin C, which is a

marker of glomerular filtration rate [4]. We had access to

129 skeletal muscle biopsies taken at age 70 years

(in 1992) and we processed these in 2012 with the

majority having excellent NUSE plot profiles. Total

RNA was extracted from frozen muscle biopsy samples

(vastas lateralis) using TRIzol reagent as previously de-

scribed [95]. A total of 113 samples provided sufficient

RNA and 50 ng total RNA was amplified using Ambion’s

WT expression kit to produce cDNA. The cDNA was

fragmented and labeled with GeneChip WT Terminal

labeling kit (Affymetrix, Inc.). Unincorporated nucleotides

from the in vitro transcription reaction were removed

using an RNeasy column (QIAGEN Inc.). Hybridization,

washing, staining, and scanning of the arrays were per-

formed according to the manufacturer’s instructions

(Affymetrix, Inc. Santa Clara, USA).

One hundred and eight samples passed gene-chip

quality control procedures (see above). A cumulative

gene ranking-based score was calculated using each of

the 150 gene expression values for each of the 108 male

subjects and the final score was compared in a linear

fashion with a number of clinical parameters. For an

RNA down-regulated in the original training classifica-

tion data set (i.e., down-regulated between 25 years to

65 years) the ULSAM subject with the highest expres-

sion was assigned a score of 1 and the subject with the

lowest expression 108. For genes up-regulated in the ori-

ginal age classification model, the opposite strategy was

used. Thus, both feature selection (genes) and direction

of regulation were taken from the original model. The

median sum of these rank scores (reflecting the 150

probe-sets) was calculated and that represented the

healthy ageing gene score for each individual in the

ULSAM cohort. Median rank ensured each gene pro-

vided equal weighting and regression analysis was used

to study the variation in gene score in these men, all of

who had approximately the same chronological age.

The relationship between the gene score at age 70

years and a number of clinical features was carried out

using multi-factor models. Model selection was executed

using a forward selection approach, with p > 0.1 as stop

criterion (backwards elimination yielded identical re-

sults). Clinical variables, previously reported [51], were

added to the baseline model one at a time, and selected

based on p value [96] (Additional file 2). Over the obser-

vation period mortality rate was 18 % (19 events) and

the relationship between mortality and gene score was

analyzed as a continuous variable. Both the Cox-

regression and the logistic regression model were im-

plemented in R. For the Cox model we used the latest

‘survival package’ whereas the logistic regression model

was estimated using the glm (generalized linear model)

function and ‘logit’ model, which models the log odds

of the outcome as a linear combination of the predictor

variables. For the Kaplan–Meier plots, gene score was

divided into quartiles and the plot was produced using

the plot-survfit function in the survival package. All

three approaches yielded consistent results.

Relationship between the healthy ageing gene score in

blood and disease status using age- and gender-matched

case–control analysis

Demonstration that the healthy ageing gene score was

clearly demonstrable in neuro-muscular tissue suggested

that it might also relate to cognitive health. Indeed, to

provide additional support for the observations in human

brain, we used the BrainEac.org gene-chip resource [52],

which comprises ten post-mortem brain regions from 134

subjects representing 1,231 samples [GEO:GSE60862]

(Additional file 1). For each brain region, and for a down-

regulated gene in the original model, the subject with

highest expression was assigned a score of 1 and the sub-

ject with the lowest expression was assigned a score of

134 (upper and lower score depends on total number of

samples; Additional file 1). The median sum of the rank

score was calculated for each anatomical brain region in

the same manner as described above, with the ULSAM

cohort. The healthy ageing gene score differed across the

brain regions with chronological age, as determined by a

Kruskal–Wallis test. A Kruskal–Wallis test was used as

we were comparing unequal observations per age group

(Additional file 1). Post hoc Mann–Whitney test with cor-

rection for multiple comparisons (Holm) was used to con-

firm regulation of the ageing signature genes in each

region.

We used blood RNA profiles from subjects from the

AddNeuroMed consortium, a large cross-European AD
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biomarker study and a follow-on Dementia Case Register

(DCR) cohort in London. Patient selection, design, and

clinical data have been reported previously [53, 97]. AD

data sets have been deposited under accessions

[GEO:GSE63060] and [GEO:GSE63061]. A summary of

the cohort characteristics can be found in Table 1.

Briefly, subjects were excluded from the study if they

had neurological or psychiatric illness other than AD,

unstable systematic illness or organ failure, or a geriat-

ric depression rating scale score ≥ 4/5. AD was diag-

nosed using the National Institute of Neurological and

Communicative Disease and Stroke and Alzheimer’s

disease (NINCDS-ADRDA) and Diagnostic and Statis-

tical Manual of Mental Disorders (DSM-IV) criteria for

possible or probable AD. All MCI subjects reported

problems with memory, corroborated by an informant,

but had normal activities of daily living as specified in

the Petersen’s criteria for amnestic MCI [41, 97]. All

subjects underwent a structured interview and a battery

of neuropsychological assessments, including the mini-

mental state examination (MMSE). Control and MCI

subjects were further assessed using the CERAD bat-

tery and detailed information on subject recruitment

and assessments can be found in other published stud-

ies describing the AddNeuroMed consortium [54, 97].

RNA was obtained from whole venous blood and it was

collected from the subjects who had fasted 2 hours

prior to collection into a PAXgene™ Blood RNA tube

(Becton & Dickenson, QIAGEN Inc., Valencia, CA,

USA). The tubes were frozen at −20 °C overnight prior

to long-term storage at −80 °C. RNA was extracted

using PAXgene™ Blood RNA Kit (QIAGEN) according

to the manufacturer’s instructions.

We used two independently produced gene-chip data

sets from the AddNeuroMed/DCR consortia, one data-

set produced in a UK gene-chip facility and another pro-

duced in the USA. Gene expression data was produced

using Illumina Human HT-12 v.3 Expression BeadChips

for the first case–control study (USA; cohort 1) and Illu-

mina Human HT-12 v4 Expression BeadChips for the

second case–control study (UK; cohort 2). cDNA was

synthesized from 200 ng total RNA using the TotalPrep™

RNA Amplification Kit (Ambion), which was followed

by amplification and biotinylation of cRNA and

hybridization. The expression data were first trans-

formed using variance stabilization and then quantile

normalized using the LUMI package in R. The 150

probe-sets were mapped from the Affymetrix platform

to the Illumina platform. For our primary analysis, con-

trol subjects were matched in a manner that created the

largest possible group with the same chronological age

and gender balance as the AD or MCI groups. Thus, our

analysis was carried out on a subset of subjects depos-

ited at the GEO, with each case–control group having a

similar median chronological age as the ULSAM cohort.

In total 297 samples were utilized (batch 1 Control = 67,

MCI = 39, AD = 49; batch 2 Control = 72, MCI = 30,

AD = 40). Retrospective inclusion of the entire cohort

(n = 717) did not alter the outcome of our analysis.

We also utilized two additional large gene-chip clinical

studies; one comparing blood RNA in type II diabetes

with control [98] and the other from our laboratory

comparing blood RNA in people with and without cor-

onary artery disease [99]. For each case–control com-

parison the ranking metric was computed in the exact

same manner as for the ULSAM subjects and AD pa-

tients (see above). A Wilcoxon rank sum test from the R

stats package was used to test if the median gene score

ranks between groups were significantly different or not.

For data presentation, ranking scores were scaled to the

total number of samples being ranked to ensure each

data plot was on the same scale.

The bioinformatics tool Ingenuity Pathway Analysis

(IPA) [100] was used to explore the biology of the age

classifier genes. HUGO gene name identifiers were

uploaded into IPA and queried against the verified IPA

knowledge database. To establish the GO profile of the

150 genes, we generated a null distribution of GO en-

richment p values by randomly sampling 10,000 lists of

150 probe-sets from the hgu133plus2 chip and testing

each list for the GO term molecular function using the

GOstats package in R. The entire population of probe-

sets on the hgu133plus2 microarray was used as the

background population for these tests. The resulting

p values for each tested probe-set list were corrected

using the method of Benjamini and Hochberg. The

150 healthy ageing genes were then tested for GO

term molecular function and the p values Benjamini

and Hochberg corrected. Positional gene enrichment

analysis was used to identify whether the classification

genes (or the classifier network genes) were significantly

enriched within given chromosomal regions [55] as previ-

ously implemented [8].

Additional files

Additional file 1: An Excel spreadsheet containing data related to

our study with six tabs: 1) analysis of the top 150 genes from age

prototype classifier in PUBMED; 2) the top 670 genes from the first

stage of the project; 3) phenodata for the training data set and

validation data sets in our study; 4) a list of prior markers in the

literature for Alzheimer’s disease; 5) positional gene enrichment

analysis; 6) sample information for the BrainEac study. (XLSX 221 kb)

Additional file 2: Table S1. Clinical regression data from the ULSAM

cohort. (DOCX 127 kb)

Additional file 3: Figure S1. A cumulative ranking metric of the healthy

ageing metric was prognostic for mortality over a 20-year follow-up

period. One-hundred and eight subjects provided a healthy tissue biopsy

in 1992 that was suitable for RNA profiling and the fully annotated

mortality data, covering 2009–2011, was retrieved from the Swedish
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national health registry. a The rank score for healthy ageing gene expression

was calculated from the top 150 genes of the healthy ageing prototype

classifier (n = 108, male subjects all ~70 years of age). Logistic regression

analysis performed using the cumulative ranking metric of the top 150

genes from original prototype was prognostic for mortality. It showed that

those subjects with the lowest median healthy ageing gene score had a

much higher probability of death during the 20-year follow-up period

(p = 0.0295). In contrast, members of the inflammatory response

(GO:0006954) and mitochondrion (GO:0005739) gene ontology families -

selected from ENSEMBL (BioMart) - showed no significant relationship with

health during the 20-year follow-up period (p = 0.34 and p = 0.17). b The

rank score for healthy ageing gene expression was calculated from the top

150 genes of the healthy ageing prototype classifier (n = 108, male subjects

all ~70 years of age) and Kaplan–Meier plots were used to illustrate the

temporal pattern of survival. Gene score was divided into quartiles and the

plot was produced using the plot-survfit function in the R survival package.

The plot allows us to compare overall survival rates between the four quartiles

for gene score. The third and fourth quartiles differed from the first

quartile (p < 0.04). (PDF 46 kb)

Additional file 4: Figure S2. Diabetes and vascular disease plots. The

healthy aging signature activation was studied in blood samples from

two independent large case–control studies of diabetes and vascular

disease. Applying a Wilcoxon rank sum test, neither diabetes nor vascular

disease was related to the healthy ageing gene score. This is consistent

with our original hypothesis, and methods, that the healthy ageing gene

score is not related to lifestyle factors and it is also consistent with the

results observed in the ULSAM cohort (Fig. 3). a The diabetes data (94

controls versus 50 cases, group mean age = 66 years) originates from

Tabassum et al. [98] (using Illumina Human HT.12.V4 arrays). b The

vascular disease data (112 controls and 110 cases, group age = 53.3

years) originates from Sinnaeve et al. [99] (using Affymetrix HG-U133A

arrays). (PDF 44 kb)
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