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Abstract

An iterative solution method, in the form of a preconditioner for a Krylov sub-
space method, is presented for the Helmholtz equation. The preconditioner is based
on a Helmholtz type differential operator with a complex term. A multigrid itera-
tion is used for approximately inverting the preconditioner. The choice of multigrid
components for the corresponding preconditioning matrix with a complex diagonal is
made with the help of Fourier analysis. Multigrid analysis results are verified by nu-
merical experiments. High wavenumber Helmholtz problems in heterogeneous media
are solved indicating the performance of the preconditioner.

Keywords: Helmholtz equation, nonconstant high wavenumber, complex multigrid pre-
conditioner, Fourier analysis

1 Introduction

In this paper we present a novel preconditioner for high wavenumber Helmholtz problems
in heterogeneous media. The preconditioner is based on the Helmholtz operator, where
an imaginary term is added. This preconditioner can be handled by multigrid. This is
somewhat surprising as multigrid, without enhancements, has convergence troubles for the
original Helmholtz operator at high wavenumbers.

A part of this paper is therefore reserved for the analysis of the multigrid method
for Helmholtz problems with a complex zeroth order term. This is done, for constant
wavenumbers, by means of Fourier analysis. The preconditioned system leads to a favorably
clustered spectrum for a Krylov subspace convergence acceleration. As the preconditioner

∗This research is financially supported by the Dutch Ministry of Economic Affairs under the project
BTS01044 ”Rigorous modelling of 3D wave propagation in inhomogeneous media for geophysical and
optical problems”
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is not based on a regular splitting of the original Helmholtz problem, it must be used in
the setting of Krylov subspace methods. The particular example presented can be viewed
as a generalization of the work by Bayliss [3] from the eighties, where the Laplace operator
was used as a preconditioner for Helmholtz problems. This work has been generalized
by Laird [16], proposing a Helmholtz preconditioner with a positive sign in front of the
Helmholtz term. In [13] we have proposed a preconditioner with a purely imaginary shift
added to the Laplace operator. The method here is an improvement of that method.

In this paper we benefit from Fourier analysis in several ways. First of all, for idealized
(homogeneous boundary conditions, constant coefficients) versions of the preconditioned
system it is possible to visualize its spectrum for different values of the wavenumber, as
Fourier analysis provides all eigenvalues. Secondly, for analyzing multigrid algorithms
quantitatively Fourier smoothing, two- and three-grid analysis [6, 7, 21, 22, 27] are the
analysis tools of choice.

The outline of this paper is as follows. In Section 2 the Helmholtz problem is intro-
duced and the convergence difficulties of multigrid for this equation are detailed. The new
preconditioner is introduced in Section 3, where multigrid components for Helmholtz prob-
lems with a complex term (smoothing, operator-dependent prolongation) are presented.
Fourier analysis to obtain quantitative performance estimates of components and methods
is performed in Section 4. Numerical experiments on 2D high wavenumber heterogeneous
Helmholtz problems are presented in Section 5.

2 Helmholtz Equation, Standard Multigrid

Consider the Helmholtz equation for a wave problem in a heterogeneous medium

Aφ := −∂xxφ− ∂yyφ− (1 − αi)k2(x, y)φ = g(x, y), in Ω ⊂ R
2, (1)

Here, φ = φ(x, y) represents the solution, usually a pressure field, g the source term. The
medium is barely attenuative if 0 ≤ α << 1, with α indicating the fraction of damping in
the medium (i =

√
−1, the imaginary unit). In geophysical applications, that are of our

main interest, this damping can be set up to 5% (α = 0.05). Wavenumber k = ωf/c is
space-dependent because of a spatially dependent speed of sound c(x, y) in a heterogeneous
medium. With ωf := 2πf the angular frequency (f is the frequency), wavelength ℓ is
defined by ℓ = c/f . The number of wavelengths in a domain of size L equals L/ℓ. nw, the
number of points per wavelength, is typically chosen to be 10-12 points. Wavenumber k
can be large.

The dimensionless wavenumber k on a nondimensional [0, 1]2 domain is defined by
k = 2πfL/c. A dimensionless discretization step reads h = ℓ/(nwL) and therefore for
the angular frequency one finds ωf = 2π/(nwh) = 2πL/ℓ. With domain size L = 1, an
accuracy requirement for second order discretizations is that kh ≤ π/5(≈ 0.63) for nw = 10
points per wavelength, and kh ≤ 0.53 with nw = 12 points per wavelength. In Table 1, the
number of grid points used for several wavenumbers k is displayed. For each combination
we have kh = 0.625.
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k: 40 50 80 100 150 200 500 600
h: 1/64 1/80 1/128 1/160 1/240 1/320 1/800 1/960

Table 1: Number of grid points employed, related to the wavenumber, so that kh = 0.625.

Typically, boundary conditions at the boundary Γ = ∂Ω are in the form of first or
second order absorbing boundary conditions or a perfectly matched layer (PML). We use
Sommerfeld radiation boundary conditions for an incident plane wave. The well-known sec-
ond order radiation boundary condition [12], to avoid unphysical reflections at boundaries,
reads

AΓφ :=
∂φ

∂ν
− ikφ− i

2k

∂2φ

∂τ 2
= 0 on Γ, (2)

with ν the outward normal direction to the boundary, τ pointing in the tangential direction.
At the cornerpoints the suggestions in [2] to avoid corner reflections have been adopted.

If a discretization is applied to (1), (2), a linear system of the form

Aφ = g, A ∈ C
N×N , φ, g ∈ C

N , (3)

is obtained, where N is the number of unknowns in the computational domain Ωh. Matrix
A has complex components due to the discrete boundary operator (2) and the damping
term in (1). A is in general symmetric, with eigenvalues in the left and right halfplane,
non-Hermitian and, because of the accuracy requirements, also large for high wavenumbers.
However, A is also sparse; its sparsity pattern depends on the discretization method used.

We consider here, in stencil notation, the well-known O(h2) 5-point discretization sten-
cil,

Ah
∧
=

1

h2




−1

−1 4 − (kh)2(1 − αi) −1

−1


 . (4)

We use matrix and stencil notation simultaneously: Matrix A (3) relates to the discretiza-
tion of (1),(2) and discrete operator Ah (4) to the discretization of (1). The discrete solution
is represented by φ and φh, respectively. The eigenvalues (for problems with homogeneous
Dirichlet boundary conditions)

λℓ,m
h = λ̃ℓ,m

h − k2(1 − αi)

≡ 2

h2
(2 − cos ℓπh− cosmπh) − k2(1 − αi) (ℓ,m = 1, 2, ...,

√
N − 1) (5)

are not equal to zero as long as k2(1 − αi) is not equal to any of the eigenvalues of the

corresponding discrete Laplace operator λ̃ℓ,m
h . Otherwise, the matrix is singular and its

null-space is spanned by the eigenfunctions

vℓ,m
h = sin ℓπx sinmπy, (6)

with ℓ,m for which λℓ,m
h = 0.
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2.1 Multigrid Convergence for Helmholtz Equation

Textbook multigrid methods are typically set up so that a smoothing method reduces high
frequency components of an error between the numerical approximation and the exact
discrete solution, and a coarse grid correction handles the low frequency error components.
Whereas such methods are easily defined for elliptic Poisson-like equations, this is not the
case for the Helmholtz equation without any damping in (1), α = 0. Depending on the
particular value of k2, this equation gives rise to both smoothing and coarse grid correction
difficulties. The matrix has only eigenvalues in the right half plane as long as k2 is less
than the smallest eigenvalue of the Laplace operator, λ̃1,1

h . For k2 > λ̃1,1
h , the matrix does

not have only positive eigenvalues. Point-wise Jacobi iteration with underrelaxation does
not converge in that case, but since its smoothing properties are satisfactory, the multigrid
convergence will deteriorate only gradually for k2 increasing. By the time k2 approaches the
6th eigenvalue λ̃ℓ,m

h (k2 ≈ 150), standard multigrid diverges. The Jacobi relaxation now

diverges for smooth eigenfrequencies vℓ,m
h with λ̃ℓ,m

h < k2. Consequently, multigrid will
still converge as long as the coarsest level used is fine enough to represent these smooth
eigenfrequencies sufficiently. So, the coarsest level chosen limits the convergence. When
k2 gets larger more variables need to be represented on the coarsest level for standard
multigrid convergence. Eventually, this does not result in an O(N) iterative method.

In addition to this feature, the Helmholtz equation also brings a multigrid coarse grid
correction difficulty. Eigenvalues close to the origin may undergo a sign change after
discretization on a coarser grid. If a sign change occurs the coarse grid solution does
not give a convergence acceleration to the finer grid problem, but a severe convergence
degradation (or even divergence) instead. In [11] this phenomenon is analyzed and a
remedy for the coarse grid correction related to these problematic eigenvalues is proposed.
The efficient treatment in [11] is that multigrid is combined with Krylov subspace iteration
methods. GMRES is proposed as a smoother and as a cure for the problematic coarse grid
correction. The convergence results achieved are impressive. The method is, however, not
trivial to implement.

Standard multigrid will also fail for k2-values very close to eigenvalues. In that case
subspace correction techniques should be employed [9].

An advanced multigrid based solution method for the Helmholtz equation is the wave-
ray multigrid method [8]. The method has been adapted for a first-order system least-
squares version of the Helmholtz equation in [17]. Wave-ray multigrid has been developed
for Helmholtz problems with constant or smoothly varying wavenumbers. A thorough
overview for the numerical solution of the Helmholtz equation is presented in [23].

For the reasons mentioned above we develop a preconditioner that is not based on a
regular splitting of the Helmholtz operator.
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3 Shifted Laplace Preconditioner

To solve (3), iterative methods based on the Krylov subspace are of our interest. In
particular, we choose preconditioned Bi-CGSTAB. In [13], Bi-CGSTAB is preferred over
other Krylov subspace methods as the convergence for Helmholtz problems is reported
typically faster than that of GMRES or QMR. We have also tested advanced versions like
Bi-CGSTAB(2) [14] or GMRESR [25], but Bi-CGSTAB remains the method of choice,
especially for the Helmholtz equation without damping (α = 0). A preconditioner M ∈
C

N×N for A is developed such that the preconditioned system

AM−1ψ = g, ψ = Mφ, (7)

has better spectral properties than the original system. The preconditioner M proposed
here is based on the following operator

M ≡ −∂xx − ∂yy − (β1 − β2i)k
2(x, y), β1, β2 ∈ R, (8)

with (β1, β2) parameters that can be chosen freely, and i the imaginary unit. Boundary
conditions are set identical to those for the original Helmholtz problem (2). The basic
choice in this paper is (β1, β2) = (1, 1). Tuning of multigrid components is especially
necessary for β2 < 1, for example for β2 = 0.5, to be presented below. In [13] we have
proposed a positive purely imaginary shift (β1, β2) = (0, 1) to the Laplace operator for
a satisfactorily convergence. Preconditioner (8) is an improvement of this preconditioner
with β1 = 1.

We perform Fourier analysis to visualize the effect of the choice of (β1, β2) in the pre-
conditioner on the clustering of the eigenvalues of the preconditioned system. For this
we consider operator (7) with homogeneous Dirichlet boundary conditions, wavenumber k
constant, a discrete version of Helmholtz operator (1), Ah, and of preconditioner (8), Mh.
For both Ah and Mh we choose the 5-point stencil, as in (4). The components (6) are
eigenfunctions of these discrete operators with constant coefficients. With these eigenfunc-
tions AhM

−1

h is diagonalizable and the eigenvalues are easily determined. In the first tests
we do not include damping in Ah, α = 0 in (1), (4).

Figure 1 presents spectra of AhM
−1

h for (β1, β2) = (0, 0) (Laplace preconditioner),
(β1, β2) = (−1, 0) (Laird preconditioner [16]), (β1, β2) = (0, 1) (preconditioner from [13]),
(β1, β2) = (1, 1) (basic parameter choice), (β1, β2) = (1, 0.5) and (β1, β2) = (1, 0.3) (more
advanced parameters). The results are for k = 40 (k2 = 1600) and h = 1/64. Similar
eigenvalue distributions are observed for finer grids.

From the spectra presented with the new preconditioner the lower pictures of Figure 1
are favorable as their real parts vary between 0 and 1. The Laplace preconditioner in
Figure 1a exhibits large isolated eigenvalues; for the Laird preconditioner the eigenvalues
in Figure 1b are distributed between -1 and 1 on the real axis. The preconditioners with
complex Helmholtz terms give rise to a curved spectrum. Whereas the real part of the
spectrum in Figure 1c still includes a part of the negative real axis, this is not the case
for the (β1, β2)-preconditioners with β1 = 1. The difference between Figures 1d, 1e and 1f
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is that with a smaller value of β2 fewer outliers close to the origin are observed. This
is favorable for the convergence of the preconditioned Krylov method. The approximate
inversion of the preconditioner itself by multigrid, however, will shown to be harder for
smaller values of β2. In Figure 2 the spectra for k = 100(k2 = 104) are presented on a

(a) (b) (c)
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11−1 0 0−0.20−80
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0

1 0 1
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0 1

0
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−i −0.4i
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Figure 1: Spectral pictures of AhM
−1

h with α = 0 and different values of (β1, β2) in (8).
a) (β1, β2) = (0, 0), b) (−1, 0), c) (0, 1), d) (1, 1), e) (1, 0.5), f) (1, 0.3).

grid with h = 1/160 are presented for β1 = 1 and β2 varying between 1 and 0.3. The
spectra are very similar to those in Figure 1. More eigenvalues lie, however, in the vicinity
of the origin, due to the higher wavenumber and the correspondingly finer grid. Figure 3

(a) (b) (c)
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−0.5

0.5i ii

iii

Figure 2: Spectral pictures of AhM
−1

h for k = 100, h = 1/160 and α = 0;
a) (β1, β2) = (1, 1), b) (β1, β2) = (1, 0.5), c) (β1, β2) = (1, 0.3).

presents the distribution of eigenvalues for the case that 5% damping (α = 0.05) is set in
A. Parameters in the preconditioner are (β, β2) = (1, 0.5). Again the 5-point stencil as
in (4) is used for discretization. Figure 3a presents the spectrum for k = 40, h = 1/64, and
Figure 3b for k = 100, h = 1/160. An interesting observation is that now the eigenvalues
move away from the origin into the right halfplane. This is beneficial for iterative solution
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methods. From the spectra in Figure 3 it is expected that the Bi-CGSTAB convergence
in the case of damping will be considerably faster than for the undamped case. As the
circles have moved away from the origin it is possible to apply the classical theory of the
GMRES convergence [19, 20], for example. One can place an ellipse around the spectrum.
As it becomes a circle in the case of damping, it is expected that the resulting bounds for
the GMRES convergence will be sharp. The theoretical considerations will be subject of a
future theoretically-oriented paper.
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Figure 3: Spectral pictures of AM−1 with 5 % damping in A and (β1, β2) = (1, 0.5),
a) k = 40, h = 1/64, b) k = 100, h = 1/160.

4 Multigrid for the Preconditioner

4.1 Multigrid Components

Geometric multigrid converges satisfactorily for the Helmholtz operator (8) for certain
choices of β1 and β2 (assumed in [15]). In this section, we detail the multigrid components
that can be specified for approximately inverting a discrete version of M in (8). We consider
a 5-point discretization and denote the equation for the preconditioner by Mhφh = ψh.
Standard multigrid coarsening, i.e., doubling the mesh size h in every direction is chosen.

For smoothing the point-wise Jacobi relaxation with underrelaxation, ω-JAC, is chosen.
This smoother is well-parallelizable, which is an important aspect for our research (w.r.t.
a generalization to 3D). In principle, one can choose the underrelaxation parameter ω ∈ C,
but the Fourier analysis indicates that there is no real benefit for the problems considered.
So, we choose ω ∈ IR.

The coarse grid correction components are also based on established operators. For the
discrete coarse grid operators M2h,M4h, . . . the Galerkin coarse grid operator is used,

M2h := R2h
h MhP

h
2h, M4h := R4h

2hM2hP
2h
4h , etc.

In the Fourier analysis to follow this discretization will be compared to a direct coarse
grid discretization of (1). The Galerkin coarse grid discretization is a natural choice
for heterogeneous problems. Also with boundary conditions containing first and second
derivatives it is convenient to choose the Galerkin coarse grid discretization, as it de-
fines the appropriate coarse grid boundary stencils automatically. The transfer operators
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in building the coarse grid operators are the same as those used for transferring coarse
and fine grid quantities to fine and coarse grids, respectively. The prolongation operator
considered is an operator-dependent interpolation, based on de Zeeuw’s transfer opera-
tors [28]. Originally, this prolongation was set up for general (possibly unsymmetric)
real-valued matrices with a splitting of matrix M into a symmetric and an antisymmetric
part, Ms = 1

2
(M + MT ), Mt = M −Ms in [28]. However, since the discretization here

leads to a complex symmetric matrix, the prolongation is adapted and briefly explained
for such matrices with nine diagonals. The numbering in a stencil for the explanation of
the prolongation is as in Figure 4 (left side). The right picture in Figure 4 shows one
coarse and four fine grid cells with indices for the explanation of the interpolation weights.
Capital letters denote coarse grid, lower case letters fine grid points. Operator element
mw

p , for example, denotes the west element of operator Mh at point p on the fine grid. The

sw s se

nennw

e

D

BA

C

cw

p

rq

Figure 4: Left: Nine point stencil with numbering, Right: Coarse grid cell and four fine
cells (Coarse grid indices by capital and fine grid indices by lower case letters).

corrections from the coarse to the fine grid are obtained by interpolation among nearest
coarse grid neighbors. The operator-dependent interpolation weights, w, to determine the
fine grid correction quantities eh are derived with the following formulas:

• for fine grid points p in Fig. 4: eh,p = wAeH,A + wBeH,B.
wA = min(1,max(0, ww)); wB = min(1,max(0, we)),

where

dw = max(|msw
p +mw

p +mnw
p |, |msw

p |, |mnw
p |) (9)

de = max(|mse
p +ms

p +mne
p |, |mse

p |, |mne
p |) (10)

ww =
dw

dw + de

, we =
de

dw + de

(11)

• for fine grid points q in Fig. 4: eh,q = wAeH,A + wCeH,C .
wA = min(1,max(0, ws)); wC = min(1,max(0, wn)),

with

dn = max(|mnw
q +mn

q +mne
q |, |mnw

q |, |mne
q |) (12)

ds = max(|msw
q +ms

q +mse
q |, |msw

q |, |mse
q |) (13)

ws =
ds

ds + dn

, wn =
dn

ds + dn

(14)
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On the remaining points the prolongation is defined as follows

On fine grid points that are also coarse points: eh(A) = e2h(A) (15)

On points r: eh(r) is determined so that MhP
h
2he2h = 0 at r, (16)

The interpolation weights are the same as in [28], but especially tailored to the symmet-
ric complex Helmholtz equation. |.| denotes the modulus, in this case. As for symmetric
problems with jumping coefficients, the prolongation operator by de Zeeuw [28] is very
similar to the original operator-dependent prolongation in [1]. In [1], for dw, for example,
the lumped sum of three elements, msw

p + mw
p + mnw

p is chosen. For satisfactorily con-
vergence it is, however, important to consider the modulus of the operator elements, as
in (9), (10), (12),(13) in the definition of the interpolation weights. This prolongation is
also valid at boundaries.

As the restriction operator the full weighting (FW) operator is employed. So, we
do not choose for the adjoint of the prolongation operator, which is commonly used but
not absolutely necessary (as already stated in [1] and an example where the restriction
is not the adjoint of the prolongation operator has been given in [10]). We choose the
combination of a full weighting restriction and the operator-dependent interpolation, as it
brings a robust convergence for a variety of Helmholtz problems with constant and non-
constant coefficients. For constant coefficients and mildly varying wavenumbers, bilinear
interpolation also gives very satisfactorily convergence results, but for strongly varying
coefficients, as in the Marmousi problem discussed in Section 5.3, a robust and efficient
convergence on different grid sizes and for many frequencies is observed for the combination
of the transfer operators chosen.

4.2 Fourier Analysis

Fourier smoothing and two-grid analysis, two classical multigrid analysis tools, have been
used for quantitative estimates of the smoothing properties and of the other multigrid
components in a two-grid method [5, 6, 7, 21, 22]. Consider a discretization of (7), (8),
Mhφh = ψh, where φh represents the exact discrete solution. The error wl

h = φl
h − φh after

the l-th iteration is transformed by a two-grid cycle as

wl+1

h = T 2h
h wl

h, T
2h
h = Sν2

h K
2h
h Sν1

h , K
2h
h = Ih − P h

2h(M2h)
−1R2h

h Mh. (17)

Mh, M2h correspond to discretizations of (8) on the h-, 2h-grid, Sh is the smoothing
operator on the fine grid, Ih the identity operator. νl (l = 1, 2) represents the number
of pre- and postsmoothing steps, R2h

h and P h
2h denote the restriction and prolongation

operator, respectively. In the analysis we assume an equidistant grid with
√
N points in

each direction.
The O(h2) discrete complex Helmholtz operator from (8) belongs to the class of sym-

metric stencils. For these stencils it is possible to apply Fourier analysis on the basis of
discrete sine-eigenfunctions vℓ,m

h , ℓ,m = 1, . . . ,
√
N − 1 (6), instead of the local Fourier
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analysis with exponential functions. For problems with symmetric stencils and homoge-
neous Dirichlet boundary conditions, this analysis can predict h-dependent convergence
factors. From the discussion of multigrid for the original Helmholtz equation it seems nec-
essary to gain insight into the h-dependency of the multigrid methods developed also for
the complex Helmholtz operator. (The definition of the operator-dependent prolongation
and the Galerkin coarse grid stencils in Section 4.1 also lead to symmetric operators, that
can be analyzed within this framework.)

For the point-wise Jacobi smoother, the vℓ,m
h (6) are also eigenfunctions of the smoothing

operator. This is not true for the two-grid iteration operator T 2h
h . However, 4-dimensional

linearly independent spaces, the harmonics:

Eℓ,m
h =

[
vℓ,m

h , v
√

N−ℓ,
√

N−m
h , −v

√
N−ℓ,m

h , −vℓ,
√

N−m
h

]
for ℓ,m = 1, . . . ,

√
N
2

(18)

are invariant under these operators. One can show [21, 22] that

Mh : span [vℓ,m
h ] → span [vℓ,m

h ], (M2h)
−1 : span [vℓ,m

2h ] → span [vℓ,m
2h ],

Sh : span [vℓ,m
h ] → span [vℓ,m

h ],

I2h
h : Eℓ,m

h → span [vℓ,m
2h ], Ih

2h : span [vℓ,m
2h ] → Eℓ,m

h ,

and T 2h
h : Eℓ,m

h → Eℓ,m
h (ℓ,m = 1, ...,

√
N
2

). Therefore, the representation of T 2h
h with

respect to Eℓ,m
h leads to a block-diagonal matrix, T̃ 2h

h ,

T 2h
h

∧
=

[
T̂ 2h

h (ℓ,m)
]

ℓ,m=1,...,
√

N

2

=: T̃ 2h
h . (19)

Here the blocks T̂ 2h
h (ℓ,m) are 4 × 4 matrices if ℓ,m <

√
N
2
, 2 × 2 (1 × 1) matrices if either

ℓ =
√

N
2

or m =
√

N
2

(ℓ =
√

N
2

and m =
√

N
2

). The two-grid convergence factor is defined as

ρ2g := max
1≤ℓ,m≤

√

N

2

ρ
(
T̂ 2h

h (ℓ,m)
)
. (20)

Thus, the spectral radii of at most 4 × 4 matrices T̂ 2h
h (ℓ,m) have to be determined, and

their maximum with respect to ℓ and m has to be found.
The definition of the smoothing factor µ is closely related. The smoothing factor

measures the reduction of high frequency error components by an iterative method. It
is based on a coarse grid correction operator that annihilates the low frequency error
components completely and keeps the high frequency components unchanged. K2h

h is
replaced by a projection operator Q2h

h mapping onto the space of high frequencies, i.e., a

block diagonal matrix with Q̂2h
h at most 4 × 4-diagonal blocks defined by diag(0, 1, 1, 1).

So, µ is computed as ρ2g (20) with K̂2h
h in T̂ 2h

h replaced by Q̂2h
h .

Recently, three-grid Fourier analysis is proposed in [27]. An issue that can be analyzed
in some more detail with a third grid is the coarse grid correction. If a large difference occurs
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between the two-grid and the three-grid convergence factors, ρ2g and ρ3g, this is an indica-
tion for a problematic coarse grid correction. For the complex Helmholtz preconditioner it
is important to analyze the coarse grid correction carefully. The error transformation by a
three-grid cycle is given by

wl+1

h = T 4h
h wl

h with
(21)

T 4h
h = Sν2

h K
4h
h Sν1

h and K4h
h = Ih − P h

2h(I2h − (T 4h
2h )γ)(M2h)

−1R2h
h Mh.

Here T 4h
2h , defined by (17), reads T 4h

2h = Sν2

2h(I2h − P 2h
4h (M4h)

−1R2h
4h)S

ν1

2h. M4h corresponds
to 4h-grid discretization of (8), S2h is the smoothing operator and I2h the identity on the
2h-grid, R4h

2h and P 2h
4h are transfer operators between the different grids. The 2h-equation

is solved approximately in a three-grid cycle (21) by performing γ two-grid iterations T 4h
2h

with zero initial approximation, see also [21, 27].
The three-grid analysis is a recursive application of the two-grid analysis. Not only in

the transition from h- to 2h-grid but also in the transition from the 2h- to the 4h-grid,
four frequencies are coupled. Thus the three-grid error transformation operator couples
16 Fourier frequencies. As a consequence, T 4h

h is unitarily equivalent to a block diagonal

matrix T̃ 4h
h with at most 16 × 16 blocks, T̂ 4h

h (ℓ,m). The block matrices are composed of
the Fourier symbols from the two-grid analysis, which is due to the recursive application
of the two-grid analysis. One may compute the three-grid factor ρ3g, as the supremum of

the spectral radii from the 16 × 16 block matrices, T̂ 4h
h (ℓ,m).

For more details about the three-grid analysis, we refer to [27]. Three-grid Fourier
analysis software, based on the exponential functions, is freely available, see
http://www.mgnet.org/mgnet-codes-wienands.html.

4.3 Fourier Analysis and Multigrid Results

We first compare the numerical multigrid convergence with asymptotic convergence factors
µ, ρ2g, ρ3g from Fourier analysis. For this, we consider here solely the preconditioner M (8).
(The behavior of the complete solution method will be considered in the next section.)
Wavenumber k is taken constant here and a squared domain with an equidistant grid is
used. The second order Sommerfeld boundary conditions (2) are set in the numerical
experiments to mimic reality.

An interesting aspect is that almost identical convergence factors are obtained, both
from the analysis and from the actual experiments, for constant values of kh. They are set
as in Table 1. The results are validated from k = 40 up to k = 600 (the highest wavenumber
tested, k2 = 3.6 × 105). During testing the following abbreviations are used: ‘ω-JAC’
is the Jacobi smoother with underrelaxation, the Galerkin coarse grid discretization is
‘galerkin’ and a direct coarse grid discretization of the PDE ‘direct’. ‘direct’ has not been
implemented in the numerical code, but it can be used in the analysis framework.

Multigrid coarsening is continued until fewer than 10 × 10 points are processed on the
coarsest grid. The number of levels is h- and therefore also k-dependent, as kh is kept
constant on the finest grid, and varies between 5 and 9 grids.
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The F-cycle is always used in the numerical tests; the V-cycle’s performance was gener-
ally too poor and the W-cycle is considered too expensive on the very fine grids processed
at high wavenumbers. In the three-grid analysis, γ = 2, the W-cycle analysis, is used.

Remark: The Fourier analysis applied directly to the Helmholtz equation (1) with α = 0
and the specified meshsizes gives a satisfactory smoothing factor, but the two- and three-
grid analysis convergence factors and also the actual multigrid results show a strong diver-
gence, as expected.

The Case (β1,β2)= (0, 1) We start with (β1, β2) = (0, 1), as in [13]. This case is
not of the highest interest as a preconditioner, as the Bi-CGSTAB convergence for the
corresponding preconditioned system is worse than with β1 = 1 (shown in the next section).
This case (β1, β2) = (0, 1) serves as a reference for the comparison between Fourier analysis
and numerical convergence. Underrelaxation parameter ω is set to ω = 0.8, as this is the
optimal choice for the Laplace operator [22]. The agreement between the smoothing, two-
and three-grid Fourier analysis results with one and two smoothing iterations and the
numerical convergence is excellent, presented in Table 2. The results obtained are very

(ν1, ν2) µ ρ2g ρ3g, γ = 2 ρh, F-cycle
(1,0) 0.60 0.60 0.60 0.58
(1,1) 0.36 0.36 0.36 0.34

Table 2: Comparison of asymptotic convergence from Fourier analysis with numerical
multigrid convergence, (β1, β2) = (0, 1). µ is the smoothing factor; ρ2g, ρ3g are the two-
and three-grid convergence factor from Fourier analysis; ρh is the numerical multigrid
convergence factor. The smoother is ω-JAC with ω = 0.8.

similar to the convergence factors for the Laplace operator with ω-JAC.
Remark: For the case (β1, β2) = (0, 1), one can adopt the well-known multigrid compo-

nents: direct PDE coarse grid discretization and red-black Gauss-Seidel relaxation. This
gives ρ3g = 0.16 for γ = 1 and ρ3g = 0.08 for γ = 2 with two smoothing iterations, very
similar to the Laplace situation. Red-black Gauss-Seidel is, however, not as robust as the
ω-JAC relaxation for the β1 = 1 cases. Furthermore, the cost in CPU time on a Linux PC
of one red-black Gauss-Seidel iteration is about twice that of a Jacobi iteration.

The Case (β1,β2)= (1, 1) The second test is for (β1, β2) = (1, 1). In this test we
employ ω-JAC smoothing with ω = 0.7 in an F(1,1)-cycle (ν1 = ν2 = 1). It is necessary
to adapt the relaxation parameter ω for satisfactorily numerical convergence. We compare
the Galerkin discretization with the direct coarse grid PDE discretization. Analysis results
with two smoothing iterations are shown in Table 3 and they are compared to the numerical
F(1,1) multigrid convergence.

Convergence factors well below 0.5 are obtained with the F(1,1)-cycle, and ω-JAC relax-
ation with ω = 0.7. The Fourier analysis results with the Galerkin coarse grid discretization
are very similar to those obtained with a direct coarse grid PDE discretization.
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coarse discr. µ ρ2g ρ3g, γ = 2 ρh, F(1,1)
galerkin 0.47 0.47 0.47 0.45
direct 0.47 0.47 0.47 -

Table 3: Comparison of convergence (β1, β2) = (1, 1), Fourier analysis convergence (γ = 1),
ω-JAC, ω = 0.7 and F(1,1)-cycle. Coarse grid discretizations are compared. (The direct
discretization has not been implemented)

The Case (β1,β2)= (1, 0.5) The preconditioner of choice in this paper is based on the
parameters (β1, β2) = (1, 0.5). For this parameter set it is possible to define a converging
multigrid iteration by means of an F(1,1)-cycle, ω-JAC relaxation with ω = 0.5, and a
Galerkin coarse grid discretization. The underrelaxation parameter needs to be adapted
for a robust convergence for a variety of heterogeneous Helmholtz problems. For values
β2 < 0.5 it is very difficult to define a satisfactory converging multigrid F(1,1)-cycle with
the components at hand. They are therefore not considered.

Table 4 compares the Galerkin with the direct PDE coarse grid discretization. Also
here, the operator-dependent interpolation and full weighting restriction are chosen and
two smoothing iterations are applied. The smoothing, two- and three-grid factors are very

coarse discr. µ ρ2g ρ3g, γ = 2 ρh, F(1,1)
galerkin 0.60 0.60 0.60 0.61
direct 0.60 0.60 0.60 -

Table 4: Fourier analysis convergence factors compared to multigrid convergence (β1, β2) =
(1, 0.5). The smoother is ω-JAC with ω = 0.5. (The direct discretization has not been
implemented)

similar, which is an indication for the proper choice of coarse grid correction components
for the problems under investigation. The numerical convergence with the F(1,1)-cycle is
again very similar to the Fourier results.

In the following three remarks we explain the satisfactorily convergence with standard
multigrid for the complex Helmholtz equation and β1 = 1 with some heuristic arguments.

Remark: Smoothing. The Fourier symbol of ω-JAC for the complex Helmholtz equation
reads

Sh = 1 − ω

4 − (β1 − β2i)(hk)2

(
4 − (β1 − β2i)(hk)

2 − 2 cos ℓπh− 2 cosmπh
)
,

ℓ,m = 1, . . . ,
√
N − 1.

We consider the case k = 40, h = 1/64 and take ω as in the previous experiments. Ta-
ble 5 presents smoothing factors on four consecutive grids for (β1, β2) = (1, 0) (original
Helmholtz equation) and for (β1, β2) = (0, 1), (1, 1) and (1, 0.5). For simplicity, a direct
PDE discretization on the coarse grids has been used. From Table 5, one confirms that
for h = 1/16 ω-JAC diverges for the original Helmholtz operator (also found with other
relaxation parameters). This is in accordance with the remarks in [9, 11], that smoothing
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(β1, β2) ω in ω-JAC h :
1/64 1/32 1/16 1/8

(1, 0) 0.7 0.47 0.75 2.31 0.18
(0, 1) 0.8 0.36 0.32 0.13 0.05
(1, 1) 0.7 0.47 0.56 0.35 0.13
(1, 0.5) 0.5 0.60 0.77 0.81 0.32

Table 5: Smoothing factors µh for ω-JAC on different coarse grids and various (β1, β2)-
values.

problems do not occur on the very fine or the very coarse grids, but on the intermediate
grids. Furthermore, it can be observed that the (β1, β2) = (0, 1)-preconditioner resembles a
Laplace-type situation, with excellent smoothing factors on all grids. The preconditioners
with β1 = 1 give smoothing factors less than one on every grid. The (1,1)-preconditioner
exhibits better smoothing factors than the set (β1, β2) = (1, 0.5), which represents a limit
case for which smoothing factors are still below one.

Remark: Simplified coarse grid analysis. Some insight into the coarse grid correction
can be gained from the so-called ‘simplified coarse grid analysis’ or first-differential-approximation
analysis [7, 9, 22]. As in [11] we apply this analysis for a 1D Helmholtz operator. Assum-
ing that transfer operators do not have any effect on the lowest frequencies, the quantity
1−λℓ

h/λ
2ℓ
2h (ℓ small) gives some insight into the relation between the discrete fine and coarse

grid operators. This quantity should be close to zero and is an indication of the suitability
of a coarse grid operator in multigrid. For the original 1D Helmholtz equation and α = 0
(no damping) this quantity reads [11]:

1 − λℓ
h/λ

2ℓ
2h =

sin4 (ℓhπ/2)

sin2 (ℓhπ/2) cos2 (ℓhπ/2) − (kh/2)2
, ℓ = 1, . . . , N.

It may give rise to a problematic coarse grid correction in the range where

sin2 (ℓhπ/2) cos2 (ℓhπ/2) ≈ (kh/2)2

and ℓ is associated with a smooth mode. For a 1D version of the complex Helmholtz
operator, this quantity reads

1 − λℓ
h/λ

2ℓ
2h =

sin4 (ℓhπ/2)

sin2 (ℓhπ/2) cos2 (ℓhπ/2) − (kh/2)2(β1 − β2i)

=
sin4 (ℓhπ/2)

(
sin2 (ℓhπ/2) cos2 (ℓhπ/2) − (kh/2)2(β1 + β2i)

)
(
sin2 (ℓhπ/2) cos2 (ℓhπ/2) − (kh/2)2β1

)2
+ (kh/2)2β2

2

, ℓ = 1, . . . , N.

This expression for the complex Helmholtz operator is close to zero for the (β1, β2)-sets
under consideration: the denominator does not reach zero, and the numerator contains the
term sin4 ℓhπ/2 which is very small for smooth eigenmodes.

Remark: h-ellipticity. When a Galerkin coarse grid discretization is used, it is difficult
to gain insight into the coarse grid correction, as the coarse grid stencil elements are
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constructed with nontrivial formulas. Therefore, we discuss here for the case (β1, β2) =
(1, 0.5) two coarse grid discretizations. With h = 1/64, k = 40, α = 0 in (4), we obtain by
direct PDE discretization similar coarse grid stencils as the fine grid stencil with grid sizes
2h or 4h, respectively. In that case, only the central stencil element contains an imaginary
contribution. When the Galerkin coarse grid operator is employed, the imaginary part
is distributed over all entries. With operator-dependent interpolation and full weighting
restriction we find,

A2h
∧
=




−282.9 + 15.3i −665.8 + 80.6i −282.9 + 15.3i

−665.8 + 80.6i 2164.5 + 461.2i −665.8 + 80.6i

−282.9 + 15.3i −665.8 + 80.6i −282.9 + 15.3i


 ,

A4h
∧
=




−129.5 + 43.0i −290.1 + 135.0i −129.5 + 43.0i

−290.1 + 135.0i −101.4 + 483.2i −290.1 + 135.0i

−129.5 + 43.0i −290.1 + 135.0i −129.5 + 43.0i


 . (22)

The h-ellipticity measures, indicating the suitability of the stencils for point-wise smooth-
ing [7, 22], are 0.28 and 0.18. For the direct PDE discretization the h-ellipticity measures
are 0.13 and 0.45 for the 2h- and 4h-discretization, respectively. The fact that these qualita-
tive measures are not close to zero means that point-wise smoothers can be constructed for
these stencils. From these complicated coarse grid stencils it is, however, difficult to judge
between the different smoothers, relaxation parameters etc. but the three-grid Fourier
analysis helps to some extent. We obtain very satisfactorily multigrid convergence with
simple multigrid components, although the coarse grid discretization (22) seems awkward.
At least it does not spoil the h-independent multigrid convergence. One merely needs to
choose the underrelaxation parameter in the smoother with some care.

4.4 Multigrid for the Preconditioner

One multigrid iteration is taken for approximating the inverse of the operator in (8). After
some experimentation it was found that it is sufficient to employ a multigrid iteration
with a convergence factor ρh ≈ 0.6 for the preconditioner. This can also be observed
qualitatively from spectral pictures obtained by Fourier analysis as follows. Starting with
a regular splitting of Mh:

Chφ
l+1

h = (Ch −Mh)φ
l
h + ψh, or: φl+1

h = (Ih − C−1

h Mh)φ
l
h + C−1

h ψh. (23)

This splitting is considered to represent a multigrid iteration, with iteration matrix (Ih −
C−1

h Mh) and C−1

h an approximation of M−1

h . T 2h
h in (17) represents the two-grid version of

a multigrid iteration matrix. Therefore, we equate T 2h
h = Ih −C−1

h Mh. Matrix T̃ 2h
h in (19)

is a block matrix related to T 2h
h : T̃ 2h

h = UhT
2h
h U−1

h , where Uh is a unitary matrix with four
consecutive rows defined by the orthogonal eigenvectors related to (6). Uh transforms the
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two-grid iteration matrix into the block diagonal matrix T̃ 2h
h . Clearly,

T̃ 2h
h = Ih − UhC

−1

h MhU
−1

h , and

UhC
−1

h MhU
−1

h = UhC
−1

h U−1

h UhMhU
−1

h =: C̃−1

h M̃h

is in block diagonal form. We have C̃−1

h M̃hM̃
−1

h = (Ih − T̃ 2h
h )M̃−1

h . So, the expression for

the block diagonal form ÃhC̃
−1

h (C̃−1

h the approximation of M̃−1

h ) from (7) reads

ÃhC̃
−1

h = Ãh(Ih − T̃ 2h
h )M̃−1

h (24)

As all the symbols of the operators in the right-hand side of (24) can be formed easily
with Fourier two-grid analysis, the corresponding eigenvalues can be visualized for various
multigrid cycles. These spectra can be compared to those in Figure 1, where operator
Mh from (8) is inverted exactly. Figure 5, for example, presents the spectrum of the
(β1, β2) = (1, 1)-preconditioned system where a two-grid iteration is used for precondition-
ing, for wavenumber k = 40 (h = 1/64). The left-side picture shows the spectrum for one
ω-JAC (ω = 0.7) smoothing iteration for which ρ2g ≈ 0.7, whereas the right-side picture
shows the two-grid spectral picture with two ω-JAC smoothing iterations, ν1 + ν2 = 2,
and operator-dependent interpolation, full weighting restriction, Galerkin coarse grid dis-
cretization (ρ2g = 0.45). The right-side picture shows a spectrum that coincides well with
the spectrum related to the exact inversion in Figure 1d, whereas in the left-side picture
eigenvalues are also outside the circle obtained with the exact inversion.
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Figure 5: Spectral pictures of preconditioned system with one two-grid iteration used for
preconditioning (β1, β2) = (1, 1), k = 40, h = 1/64, (a) one ω-JAC relaxation, (b) two
ω-JAC relaxations, ω = 0.7 (the eigenvalues with the exact inversion lie at the circles).

Figure 6 presents the spectra with a two-grid iteration for the (β1, β2) = (1, 0.5)-
preconditioner and Galerkin coarsening, ω-JAC relaxation (ω = 0.5). The left-side picture
is for ν = 1; the right-side picture for ν = 2. Also for this approximate inversion of the pre-
conditioner the spectrum obtained in the right-side picture compares well with the exact
inversion in Figure 1e, indicating that one multigrid iteration with two ω-JAC smoothing
steps may be sufficient for approximating M−1

h .
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Figure 6: Spectral pictures of preconditioned system with one two-grid iteration used for
preconditioning (β1, β2) = (1, 0.5), k = 40, h = 1/64, (a) one ω-JAC relaxation, (b) two
ω-JAC relaxations, ω = 0.5 (the eigenvalues with exact inversion lie at the circles).

5 Applications

In this section the overall solution method, preconditioned Bi-CGSTAB for the indefinite
heterogeneous Helmholtz problems (1) with the complex Helmholtz (β1, β2)-preconditioner
is evaluated. One multigrid F(1,1)-cycle is used for approximately inverting preconditioner
equation with the complex Helmholtz operator. Three problems of increasing difficulty are
discussed.

5.1 Constant Wavenumber

For constant wavenumbers k the Bi-CGSTAB convergence for the Helmholtz equation with
the three preconditioners is presented. We consider a squared domain Ω = (0, 1)2. A point
source is located at the center of the domain and an incident plane wave is assumed. The
boundaries satisfy the second order Sommerfeld conditions (2). In these experiments the
finest grid size for each wavenumber is as in Table 1. The numerical solution corresponding
to k = 50 is presented in Figure 7. Unphysical reflections at the boundaries are not present
due to the boundary treatment.

A zero initial guess has been used during the computations. The Bi-CGSTAB iteration
is terminated as soon as the initial residual is reduced by 7 orders of magnitude. Note that
each Bi-CGSTAB iteration involves two preconditioning steps.

For all three preconditioners, (β1, β2) = (0, 1), (1, 1) and (1, 0.5), the method chosen
to approximately invert the preconditioner consists of the multigrid F(1,1)-cycle with ω-
JAC, operator-dependent interpolation plus full weighting as the transfer operators and a
Galerkin coarse grid discretization. The only difference is the value of the underrelaxation
parameter in ω-JAC, which is ω = 0.8 for (β1, β2) = (0, 1), ω = 0.7 for (β1, β2) = (1, 1) and
ω = 0.5 for (β1, β2) = (1, 0.5). The results for different values of k and (β1, β2) = (0, 1) are
presented in the upper part of Table 6. In the middle part of Table 6, the Bi-CGSTAB
convergence with the (β1, β2) = (1, 1)-preconditioner is presented. In the lower lines of

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 7: Numerical solution at k = 50 for the model problem with k constant.

Table 6 the (β1, β2) = (1, 0.5)-preconditioner is employed. Next to the results for the
Helmholtz equation without any damping (α = 0) we also show the convergence with
2.5% (α = 0.025), and 5% (α = 0.05) damping. The number of Bi-CGSTAB iterations
are presented as well as the CPU time on a Pentium 4 PC with 2.4 Ghz and 2 Gb RAM.
From the results in Table 6 we conclude that the preferred methods among the choices are
the preconditioners with β1 = 1. This was already expected from the spectra in Figure 1.
Fastest convergence is obtained for (β1, β2) = (1, 0.5). The components of the multigrid
iteration for this preconditioner have been defined with the help of the Fourier analysis.

k :
(β1, β2) α from (1) 40 50 80 100 150

α = 0 57 (0.44) 73 (0.92) 112 (4.3) 126 (7.7) 188 (28.5)
(0, 1) 2.5% damping 48 (0.38) 61 (0.77) 84 (3.3) 93 (5.6) 121 (18.5)

5% damping 45 (0.35) 55 (0.70) 69 (2.7) 75 (4.7) 97 (14.9)
α = 0 36 (0.30) 39 (0.51) 54 (2.2) 74 (4.5) 90 (13.9)

(1,1) 2.5% damping 33 (0.27) 37 (0.48) 44 (1.8) 51 (3.2) 61 (9.6)
5% damping 28 (0.24) 30 (0.39) 36 (1.5) 41 (2.6) 49 (7.5)
α = 0 26 (0.21) 31 (0.40) 44 (1.8) 52 (3.3) 73 (10.8)

(1,0.5) 2.5% damping 24 (0.20) 26 (0.35) 33 (1.4) 39 (2.5) 47 (7.3)
5% damping 21 (0.18) 23 (0.32) 28 (1.2) 32 (2.1) 37 (5.8)

Table 6: Number of prec. Bi-CGSTAB iterations and CPU time in seconds (in brackets)
to reduce the initial residual by 7 orders. Damping parameter α is varied in the Helmholtz
problem.

Table 6 shows that the Bi-CGSTAB convergence with some damping in the Helmholtz
problem is considerably faster than for α = 0. This was already expected from the spectra
in Figure 3. Furthermore, the number of iterations in the case of damping grows only
slowly for increasing wavenumbers, especially for the (β1, β2) = (1, 0.5)-preconditioner.

The difference between the two preconditioners with β1 = 1 is more pronounced if
we compute higher wavenumbers. The Bi-CGSTAB convergence and CPU time for the
higher wavenumbers, without and with damping in the Helmholtz problem are presented
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in Table 7. Also for the higher wavenumbers damping in the Helmholtz problem by means

k :
(β1, β2) α in (1) 200 500 600

α = 0 114 (30.8) 291 (515) 352 (890)
(1,1) 2.5 % damping 74 (20.2) 125 (227) 145 (372)

5 % damping 56 (15.5) 95 (174) 80 (205)

α = 0 92 (25.4) 250 (425) 298 (726)
(1,0.5) 2.5 % damping 57 (15.2) 91 (164) 102 (252)

5 % damping 44 (11.9) 64 (115) 66 (165)

Table 7: High wavenumbers, number of Bi-CGSTAB iterations and CPU time in seconds
(in brackets) to reduce the initial residual by 7 orders with and without damping in the
Helmholtz problem.

of α 6= 0 improves the convergence significantly. Very satisfactorily convergence is found
for high wavenumbers on fine grids.

5.2 The Wedge Model

A problem of intermediate difficulty is the wedge model. It is used to evaluate the precon-
ditioner’s behavior for a simple heterogeneous medium. The problem is adopted from [18].
The domain is defined to be a rectangle of dimension 600 × 1000 m2. The second order
Sommerfeld boundary conditions (2) are set, and a point source is located at the center of
the upper surface (which is assigned to be y = 0) with frequency, f = kc/(2π)L, varying
from 10 to 60 Hz (with c is the speed of sound). The corresponding values of the local
dimensionless wavenumbers k vary between 20 (smallest for 10 Hz) and 240 (biggest for 60
Hz). For the problem at 10 Hz approximately 18 points per wavelength are used. Figure 8a
presents the domain, the wedge and the variation of c in the medium. The variation of
c is due to the different local properties of the medium. The real part of the numerical
solution for the wedge problem at 30 Hz and 50 Hz is plotted in Figures 8b and 8c.

In the preconditioner with the complex Helmholtz equation wavenumber k(x, y) is cho-
sen as in the original problem. Also the boundary conditions in the preconditioner are
as for the original problem. The number of Bi-CGSTAB iterations with one multigrid
iteration for the preconditioner with (β1, β2) = (0, 1), (1, 1) and (1, 0.5) are displayed in
Table 8 for frequencies ranging from 10 to 60 Hz on corresponding grid sizes. Results
with and without damping in the Helmholtz problem are presented. The only difference
in the multigrid methods for the preconditioner is the value of the relaxation parame-
ter: for (β1, β2) = (0, 1) ω = 0.8, for (β1, β2) = (1, 1) ω = 0.7, for (β1, β2) = (1, 0.5)
ω = 0.5. A zero initial guess has been used as starting approximation. The convergence
results for (β1, β2) = (1, 0.5) are best, also without any damping in the original problem.
The convergence with the (1,0.5)-preconditioner is about 1.5 times faster than with the
(1,1)-preconditioner and about 3 times faster than with the (0,1)-preconditioner. The Bi-
CGSTAB convergence for the wedge problem for α = 0 and different frequencies are also
visualized for (β1, β2) = (1, 0.5) in Figure 9.
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5.3 The Marmousi Problem

This example is a part of the full Marmousi problem which mimics subsurface geology [4],
see also [18]. The domain is rectangular with a dimension of 6000×1600 m2. The Sommer-
feld conditions are imposed at the boundaries, and a point source is placed at the center
of the upper surface. The values of speed of sound c are irregularly structured throughout
the domain, see Figure 10a. The minimum number of points per wavelength equals 17.
The frequency is varied between 1 and 30 Hz.

Preconditioning consists of one multigrid iteration for the complex Helmholtz equa-
tion with the multigrid components prescribed. The underrelaxation parameter in ω-JAC
is varied as usual depending on (β1, β2). In the preconditioner again the wavenumbers
k(x, y) are as in the original problem. Also the boundary conditions are as in the original
problem. Table 9 presents the number of Bi-CGSTAB iterations to solve the indefinite
Helmholtz Marmousi problem with in brackets the CPU times required. Results are pre-
sented for α = 0, 0.025 and 0.05. A zero initial guess has been used. The (β1, β2) = (1, 0.5)-
preconditioner shows a satisfactorily and robust convergence, also for this problem with
irregularly varying wavenumbers. For α = 0.05 the number of iterations increases only
very slowly for increasing frequencies. With the (β1, β2) = (1, 0.5)-preconditioner the CPU
time is reduced with a factor 3, compared to the performance of the (β1, β2) = (0, 1)-
preconditioner for the challenging problems. The difference with the (β1, β2) = (1, 1) is
less pronounced, but still significant.
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Figure 8: Wedge problem: (a) Problem geometry with velocity profile indicated, (b) Real
part of numerical solution at 30 Hz, (c) Real part of numerical solution at 50 Hz.
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(β1, β2)
f (Hz) Grid damping (0,1) (1,1) (1,0.5)

0.0% 52 (1.2) 30 (0.67) 19 (0.42)
10 75 × 125 2.5% 48 (1.1) 27 (0.62) 17 (0.39)

5.0% 42 (0.91) 25 (0.57) 16 (0.38)

0.0% 91 (8.8) 45 (4.5) 27 (2.8)
20 149 × 249 2.5% 75 (7.2) 39 (4.0) 23 (2.4)

5.0% 65 (6.3) 35 (3.5) 20 (2.1)

0.0% 128 (30.6) 64 (15.8) 37 (9.4)
30 232 × 386 2.5% 94 (22.8) 49 (12.3) 29 (7.5)

5.0% 86 (21.0) 42 (10.7) 25 (6.6)

0.0% 161 (66.1) 80 (33.5) 49 (20.8)
40 301 × 501 2.5% 116 (48.0) 60 (25.4) 35 (15.2)

5.0% 91 (37.9) 46 (19.8) 28 (12.4)

0.0% 205 (134.5) 98 (65.5) 58 (38.7)
50 376 × 626 2.5% 135 (89.0) 67 (45.5) 37 (24.8)

5.0% 99 (66.5) 54 (37.1) 32 (22.0)

0.0% 232 (247.3) 118 (127.6) 66 (71.9)
60 481 × 801 2.5% 147 (159.1) 74 (81.1) 42 (47.1)

5.0% 110 (119.6) 58 (64.5) 32 (36.7)

Table 8: Bi-CGSTAB convergence for the wedge problem with and without damping and
the three multigrid based (β1, β2)-preconditioners compared. Number of Bi-CGSTAB it-
erations and CPU time in seconds (in brackets).

The real parts of the solutions at 20 Hz for α = 0 and α = 0.025 are presented in
Figure 10b and 10c. The effect of damping of the solution is significant, as can be deduced
from these global pictures. However, in the actual applications, some damping is present.
The right side picture may therefore be a more realistic solution for the real application.
An adaptation of the solution method presented to a variant of the Helmholtz problem in
which the damping parameter α is varying locally will be an easy generalization.

6 Conclusions

In this paper a complex Helmholtz preconditioner has been proposed for handling indefinite
Helmholtz problems in heterogeneous media. In the preconditioner we advocate to use a
Helmholtz operator with a negative real term, as in the original Helmholtz problem, plus a
positive imaginary Helmholtz part. Multigrid is proposed for approximately inverting the
complex Helmholtz operator in the preconditioner. As the original Helmholtz problems are
defined on squared domains with a structured grids (a common choice for many geophysical
applications), a geometric multigrid method based on Cartesian grids can be defined for
the complex Helmholtz preconditioner. Extension of geometric multigrid to the complex
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Figure 9: Bi-CGSTAB convergence plot for (β1, β2) = (1, 0.5) for the wedge problem at
different frequencies, α = 0.

Helmholtz operator is straightforward. We can employ very similar multigrid components
as for the Laplace operator, with some variation of the underrelaxation parameter in the
point-wise Jacobi smoother and an operator-dependent prolongation operator to deal with
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Figure 10: Marmousi problem (not to scale). a) Velocity distribution in meter/s, b) real
part of the solution for f = 20 Hz, no damping, c) real part of the solution for f = 20 Hz,
2.5 % damping.
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(β1, β2)
f (Hz) Grid damping (0,1) (1,1) (1,0.5)

0.0% 74 (37.5) 54 (27.6) 38 (19.7)
1 751 × 201 2.5% 67 (34.1) 55 (28.2) 32 (17.0)

5.0% 64 (32.5) 53 (27.3) 31 (16.5)

0.0% 180 (89.2) 84 (42.4) 47 (24.2)
10 751 × 201 2.5% 119 (59.4) 59 (30.1) 33 (17.5)

5.0% 96 (48.3) 48 (24.8) 28 (15.0)

0.0% 414 (832.3) 168 (308.7) 104 (212.1)
20 1501 × 401 2.5% 203 (410.8) 88 (179.9) 55 (115.3)

5.0% 145 (294.7) 64 (133.4) 37 (79.3)

0.0% 458 (1724.8) 211 (799.4) 136 (519.4)
30 2001 × 534 2.5% 197 (745.6) 94 (361.1) 58 (226.8)

5.0% 119 (455.3) 61 (238.4) 38 (151.9)

Table 9: Bi-CGSTAB convergence for the Marmousi problem with and without damping
and the three multigrid based (β1, β2)-preconditioners. Number of Bi-CGSTAB iterations
and CPU time in seconds (in brackets).

highly varying wavenumbers. These components are validated by Fourier analysis tools.
The smallest size of the β2-parameter in front of the imaginary Helmholtz term in the
preconditioner, for which the multigrid method can be successfully employed has been
determined.

Bi-CGSTAB, preconditioned with a multigrid iteration for the complex Helm-holtz op-
erator shows to be an efficient and robust iterative solution method to solve heterogeneous
high wavenumber Helmholtz problems. The applications ranged from constant wavenum-
ber to irregular heterogeneity structures in a medium. The multigrid components have
been chosen such that the solution method is well parallelizable. The method proposed
and the corresponding analysis are easily generalized to three dimensions. This is currently
being done.
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