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Side-channel collision attacks are more powerful than traditional side-channel attack without knowing the leakage model or
establishing the model. Most attack strategies proposed previously need quantities of power traces with high computational
complexity and are sensitive to mistakes, which restricts the attack e
ciency seriously. In this paper, we propose a multiple-bits
side-channel collision attack based on double distance voting detection (DDVD) and also an improved version, involving the error-
tolerant mechanism, which can �nd all 120 relations among 16 key bytes when applied to AES (Advanced Encryption Standard)
algorithm. In addition, we compare our collision detection method called DDVD with the Euclidean distance and the correlation-
enhanced collision method under di�erent intensity of noise, which indicates that our detection technique performs better in
the circumstances of noise. Furthermore, 4-bit model of our collision detection method is proven to be optimal in theory and in
practice. Meanwhile the corresponding practical attack experiments are also performed on a hardware implementation of AES-128
on FPGA board successfully. Results show that our strategy needs less computation time but more traces than LDPC method and
the online time for our strategy is about 90% less than CECA and 96% less than BCA with 90% success rate.

1. Introduction

Although modern cryptographic algorithms have been
proven to be safe mathematically, this does not mean that
the physical implementation is safe enough, where attacker
can obtain some physical information from side channel.
Side-channel attack (SCA) was proposed almost 20 years ago,
which was �rst put forward in 1996 by Kocher [1] and became
a powerful cryptanalysis technique. Power consumption
analyses are widely used in SCA, which utilizes the relation
between power consumption or electromagnetic signal of
the executing device and processed data in order to recover
the key value. Since Di�erential Power Analysis (DPA) was
proposed in 1997 [2], whose distinguisher is the di�erence of
the mean traces, various distinguishers have been designed
and improved to enhance attack ability and e
ciency, for
example, Pearson correlation coe
cient as a distinguisher for
Correlation Power Analysis (CPA)[3], mutual information
for Mutual Information Analysis (MIA)[4], and maximum
likelihood for Template Attack [5, 6] (TA) and Template
Based DPA [7]. However, the necessity of estimating and

establishing the leakage model has been a serious restriction
for SCA, which collision attack can ignore. Collision attack
was �rst proposed to analyze Hash algorithm [8] and has
become a branch of mathematical cryptanalysis, but it only
reveals relation between input and output without exploiting
internal information as SCA.

As a combination of SCA and collision attack, side-
channel collision attack can exploit the information of inter-
nal leakage without a large number of power traces as well as
the knowledge of the leakage model. Side-channel collision
attack showed strong ability of attack, when �rst presented
[9] against Data Encryption Standard (DES) by Schramm et
al., which was applied to AES [10] successfully later. 	en all
kinds of improved versions [11–17] of side-channel collision
attack sprang up, and most of these methods show high
sensitivity to errors, where the recovered key is totally wrong
even when error occurs only in 1 bit under the high noise
level circumstance, leading to a low e
ciency. Bogdanov
presented some voting detection methods that seemed to
be more practical [14], but they need too many traces in a
pro�ling phase and encrypting the same plaintexts repeatedly
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for decreasing the in�uence of noise may not be realistic. In
2010, Moradi proposed a correlation-enhanced method [15]
that improves the probability of collision, but it may need lots
of average power traces to process an attack and is sensitive
to errors. In 2011, Bogdanov proposed an attack strategy [17]
that uses the results of DPA to test chain separately. 	is
method can improve the success probability in a sense that it
cannot check themistakes in collision detection which highly
impact the attack results. 	en Gérard et al. combined Low
Density Parity Check (LDPC) decoding with correlation-
enhanced and Euclidean Distance detection method in 2012
[16], which can be a globally e
cient attack strategy in noisy
settings. Two side-channel collision attack procedures based
on bitwise collision detection were proposed, respectively,
by Ren et al [18] in 2015 and by Wang et al [19] in 2017,
which may have a poor performance on the detection
success rate with high level noise. However, e
ciency of
collision detection and lack of error-tolerant and checkmech-
anism are two main issues of existing side-channel collision
attack.

Our Contribution. In this paper, we propose a novel multiple-
bits collision attack framework. In particular, double distance
voting detection (DDVD) and the error-tolerant and check
mechanism are presented to ensure the high accuracy. In
addition, we compare our collision detection method called
DDVD with the Euclidean Distance and the correlation-
enhanced collision methods under di�erent intensity of
noise, which indicates that our detection technique has a
better performance in the circumstances of noise. Further-
more, 4-bit collision attack is proven to be optimal in theory
and experiments. Practical attack experiments are performed
successfully on a hardware implementation of AES in FPGA
board.

	e remainder of this paper is organized as follows. In
Section 2, for a better understanding, we introduce some
notations of our method as well as the basic linear collision
attacks and then review the binary and ternary voting detec-
tion methods, correlation-enhanced collision attack, and
LDPC decoding method in collision attack. In Section 3, a
novel framework of multiple-bits collision attack is presented
and we take the 4-bit model as an example to explain the
attack procedure. In Section 4, we propose an improved
version with an error-tolerant and check mechanism. In Sec-
tion 5, we compare our collision detectionmethod with other
widely used detection techniques under di�erent intensity
of noise and analyze our model, and the experiments as
well as the comparisons are also shown. Finally, we give the
conclusion in Section 6.

2. Preliminaries

In order to understand the strategy easily, AES is chosen as
the target block cipher to perform the attack method. As for
the hardware implementation of this paper, it operates each
of 16 S-boxes, which are used for the SubBytes operation,
sequentially one by one. 	e following proposed statements
and techniques can be successfully utilized in other crypto-
graphic symmetric algorithms.

2.1. Notations. For a better description of the proposed
method, we de�ne some notations as follows. First we use
letters k and p for 16-byte plaintext and �rst round subkey,
with subscripts indicating a particular byte:

� ≜ {�1, �2, �3, ⋅ ⋅ ⋅ , �16} ,
� ≜ {	1, 	2, 	3, ⋅ ⋅ ⋅ , 	16} .

(1)

	en we use the superscripts letters m and l for the 4 most
signi�cant bits and 4 least signi�cant bits separately, meaning

that ��� ≜ ��[7: 4], 	�� ≜ 	�[7: 4], ��� ≜ ��[3: 0], 	�� ≜	�[3: 0]. Next, the attacker is able to choose the value of
plaintext with key value all the same. 	e superscripts 
 �
and � 
 state that the 4 most signi�cant bits and 4 least
signi�cant bits are equal to values � and 
 in decimal format:

�� �� ≜ {��� = �} ,
�� �� ≜ {��� = 
} .

(2)

Each trace acquired corresponding to �rst-round encryption
contains 16 subtraces due to 16 sequential S-boxes, with
subscripts indicating a particular S-box and each subtrace
contains a number p of points, which are denoted by the
subscripts:

� ≜ {�1, �2, �3, ⋅ ⋅ ⋅ , �16} ,
�� ≜ {��,1, ��,2, ��,3, ⋅ ⋅ ⋅ ��,�} .

(3)

Furthermore, we use �� � (�� �) to denote the power trace
corresponding to the plaintext, where the value of 4 most
(least) signi�cant bits of all 16 bytes is f (
) in decimal format;

namely, {��� = �}16�=1 ({��� = 
}16�=1).
However, if the superscript is a certain digit, it shows that

the plaintext is this value or power trace is corresponding to

the plaintext with this value. For example,�1281 means that the

�rst byte of plaintext equals 128 in decimal format and �1281 is
denoted as the power trace of the �rst S-box operation with
the corresponding plaintext byte being 128. Meanwhile, we
use �(�) and �(�) for the nth acquisition of power traces and
plaintexts, respectively.

2.2. Linear Collision Attack. 	e internal collision was �rst
presented for attacking DES [9]. It is based on the fact that
if a collision on a key-dependent function can be detected,
the attacker can acquire some relations between the di�erent
inputs.

Linear collision is based on the internal collision. When
it is applied to AES, if a collision between two S-boxes
operations of the �rst round is detected (e.g., the collision
between the ith and the jth S-boxes in Figure 1), it is obvious
that (4) is tenable:

� ��� (�� ⊕ 	�) = � ��� (�	 ⊕ 		) (4)

	en one can obtain a linear equation about the relation
between plaintexts and �rst round subkey:

�� ⊕ �	 = 	� ⊕ 		 = Δ	�,	 (5)
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Online Stage:
(1) {�
 | � = 0, 1, 2, 3, ⋅ ⋅ ⋅ , �}← Plaintexts

(2) {�
 | � = 0, 1, 2, 3, ⋅ ⋅ ⋅ , �}← AcquireTrace({�
}�
=0)
O�ine Stage:

(3) {�1(�) | � = 0, 1, 2, 3, ⋅ ⋅ ⋅ , �}← CutTrace({�
}�
=0)
(4) {�2(�) | � = 0, 1, 2, 3, ⋅ ⋅ ⋅ , �}← CutTrace({�
}�
=0)
(5) {��1 | � = 0, 1, 2, 3, ⋅ ⋅ ⋅ , 255}← AverageTraces({�1(�)}�
=0)
(6) {��2 | � = 0, 1, 2, 3, ⋅ ⋅ ⋅ , 255}← AverageTraces({�2(�)}�
=0)
(7) for Δ ∈ {0, 1, 2, 3, ⋅ ⋅ ⋅ , 255}
(8) �(Δ)← Correlation({��1 }255�=0, {��⊕Δ2 }255�=0)
(9) end for
(10) return argmaxΔ�(Δ)

Algorithm 1: Correlation enhanced detection of S-box 1 and S-box 2.

 ⊕  ⊕

S_box( )⊕S_box(i i)⊕

S_box

Figure 1: Collisions between two S boxes.

If the attacker can �nd all possible relations among 16 key
bytes by detecting the collision of S-boxes, then he will
obtain an equation set about the key bytes of the �rst round
containing 15 linear equations:

	1 ⊕ 	2 = Δ	1,2
	2 ⊕ 	3 = Δ	2,3

...
	15 ⊕ 	16 = Δ	15,16

(6)

Note that all the equations in the set are relevant, and there
is only one free variable. 	us, this equation set only has

28 possible solutions, which means that we just need to
enumerate all 256 possible candidates of 1 key byte to recover
the whole key value.

However, under the noisy experiment setting, the colli-
sion detection method may detect wrong collisions, which
lead to some incorrect equations in (6). For all equations
in (6) are relevant, even if only one bit error occurs in any
equation, the equation system will have no solution. 	us,
in this paper, we propose a detection method called DDVD
which is to ensure a high detection success rate.

2.3. Voting Detection Methods. In [14], Bogdanov proposed
the voting detection containing binary voting test and ternary
voting test. Both binary and ternary voting tests are based
on Euclidean Distance. For binary voting test, if an attacker
can acquire a lot of power traces of the same plaintexts, he
will calculate the Euclidean Distance between two trace pairs
of di�erent plaintexts. 	en the attacker should calculate the
total number of the trace pairs whose distance is less than

a predetermined threshold. When the total number is more
than the predetermined voting value, it can be con�rmed
that one collision is detected. However, the basic strategy
of ternary voting test is the same as binary voting test, but
instead of calculating the Euclidean Distance directly, this
method requires calculating the distance between each of
the obtained power traces with certain plaintexts and the
reference power traces that are obtained during a pro�ling
phase preparing a set of reference traces without knowing
related encrypting values.

2.4. Correlation-Enhanced Collision Attack. Correlation-en-
hanced collision attack was one of the last major advanced
detection techniques proposed by Moradi et al in 2010 [15].
	is method compares the correlation coe
cient between
two sets of power traces corresponding to two di�erent S-
boxes rather than detecting the collision between two single
power traces.

As can be seen in Algorithm 1, we take the detection
between S-box 1 and S-box 2 as an example. In the online
stage, an attacker should obtain N power traces correspond-
ing to N plaintexts. When in o�ine stage, the attacker cuts
the power trace into 16 sections based on the operation
of 16 S-boxes and takes the section for S-box 1 and S-box
2. 	en �1(�) is divided into 256 groups according to the
plaintext byte value and the attacker can get the averaged

power traces of each group ({��1 }255�=0), which is the same for

S-box 2. Next, for each value of Δ ∈  !(28), the attacker
rearranges {�2} based on the value of � ⊕ Δ and calculates

correlation coe
cients �(Δ) between {��1 }255�=0 and {��⊕Δ2 }255�=0.
If Δ = 	1 ⊕ 	2, the correlation �(Δ) shall reach a maximum
value; otherwise, it should have a pretty low value.

2.5. LDPC Decoding Problem in Collision Attack. In [16],
Gérard et al. proposed a uni�ed and optimized collision
attack method. 	e proposed method rewrote the linear
collision attack as a LDPC decoding problem, according to
the linear relationship:

Δ	�1 ,�2 ⊕ Δ	�2 ,�3 = Δ	�1,�3 (∀1 ≤ $1 < $2 < $3 ≤ 16) (7)
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Figure 2: Framework of multiple-bits (n bits) collision attack.

(1) {�(�) | � = 1, 2, 3, ⋅ ⋅ ⋅ , 16�} ← ChoosePlaintexts()
(2) {�� 	(�) | � = 1, 2, 3, ⋅ ⋅ ⋅ , �}15	=0 ← AcquireTrace({P(n)}16Nn=1 )
(3) {�� 	� | 1 ≤ $ ≤ 16}15	=0 ← PreProTrace({Tm j(n) | 0 ≤ n ≤ N}15j=0)
(4) for each ({($1, $2) | 1 ≤ $1 < $2 ≤ 16})
(5) Δ	�1 ,�2 ←DDVD({�� 	�1 }15	=0,{�

� 	
�2 }15	=0)

(6) end for
(7) Recoverkey(Δ i1 ,i2 (1 ≤ i1 < i2 ≤ 16))

Algorithm 2: Multiple-bits side-channel collision attack.

	e vector ΔK = (Δ	1,2, Δ	2,3, ⋅ ⋅ ⋅ , Δ	15,16) can be seen as
an LDPC codeword whose dimension is 15 and length is
120. Finding the right key value is just to decode the LDPC
code. Furthermore, in order to make the attack method
have a better performance in the noisy settings, actual
posteriori probability value of each code was used for LDPC
decoding, which is called so� decision decoding. Unlike so�
decision decoding, hard decision decoding uses bit value for
decoding. Compared to so� decision decoding, the e�ect of
hard decision decoding is worse in a noise setting but the
computation complexity is lower.

In this paper, for the error-tolerant and checkmechanism,
we choose top three possible values for each Δ	�1 ,�3 as
candidates and �nd the likeliest value based on (7). It may be
seen as a kind of hard decision decoding procedure. However,
due to the DDVD, the detection success rate may remain in a
high level in some noisy settings.

3. A Novel Framework of Multiple-Bits
Collision Attack

In this section, a framework ofmultiple-bits side-channel col-
lision attack is presented.As can be seen in Figure 2, plaintexts

need to be chosen based on multiple-bits (n-bits) model and
then we prepare the power trace. Double distance voting
detection is the important part of the framework ensuring the
high success probability along with high e
ciency. However,
the principal part of the framework is based on a circulation.
Each iteration stands for an attack, where we obtain only n-
bits of a byte relation between all key bytes. A�er several
iterations, the whole byte value of Δ between all key bytes can
be acquired, which will be utilized to recover the key value.

Due to the fact that the 4-bit collision attack leads to
the highest e
ciency, which will be proven and veri�ed in
Section 5, we take the 4-bit model as an example to explain
our attack method. According to our attack framework, for
4-bit model, 2 iterations are enough to recover the key value,
whereof one is for the four most signi�cant bits and the other
is for the four least signi�cant bits. In the rest of this paper, we
only describe the strategy for the four most signi�cant bits
of one byte. 	e remaining four least signi�cant bits can be
found using the same technique.

3.1. 	e Idea in a Nutshell. For a better understanding, we
describe the main �ow of our attack strategy in Algorithm 2.
As our description is based on 4-bit model, all the following
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Input: the total number of plaintexts 16N
Output: 16N plaintexts: {P(n)} (1 ≤ n ≤ 16N)
(1) for & = 0: 15
(2) for ℎ = 1: �
(3) �(16& + ℎ) = {�� | ��� = &, ��� = *-�/�
(16)}16�=1

(random(n) is to generate an integer ranging from 0 to n-1)
(4) end for
(5) end for
(6) return {�(�)} (1 ≤ � ≤ 16�)

Algorithm 3: ChoosePlaintexts.

Input: 16 sets of power traces:{Tm j(n) | n = 1, 2, 3, ⋅ ⋅ ⋅ ,N}15j=0
Output: 16 averaged traces:{Tm j}15j=0 = {tm j

i | i = 1, 2, 3, ⋅ ⋅ ⋅ , 16}15j=0
(1) for & = 0: 15
(2) �� 	 = (1/�)∑�
=1 �� 	(�)
(3) Cut �� 	 into 16 sub-traces: �� 	 = {�� 	� | $ = 1, 2, 3, ⋅ ⋅ ⋅ , 16}
(4) end for

(5) return {�� 	}15	=0 = {�� 	� | $ = 1, 2, 3, ⋅ ⋅ ⋅ , 16}15	=0

Algorithm 4: PreprocessTraces.

statements can be applied to our multiple-bits models. For
example, some parameters of 4-bit model are 15 or 16, which
can be interpreted as 24 − 1 or 24, and thus for other n-bits
model, the parameters should be 2
 − 1 or 2
.

Like most of other attack strategies, our method also �rst
gets some traces and proceeds with some preprocessing, seen
from Steps1, 2, and 3. Double distance voting detection is the
core of our method combining enhanced Euclidean Distance
detection and voting detection, which ensures our success
rate. Finally, based on the main idea in Section 2.2, when we
�nd all possible relations among 16 key bytes, the brute force
way is able to �nd the right key value quickly, for we only need
to enumerate 256 key values. Some details will be presented
in the following sections.

3.2. Choose Plaintexts. According to our attack strategy, we
assume that the attacker is able to choose the plaintext. 	e
4-bit side-channel collision attack model aims to detect the
collision of 4 bits between 2 di�erent S-boxes, and in this
situation other 4 bits are the noise for the detection. It is
important for improving the e
ciency of our method to

determine how to choose the value of {��� }16�=1. Algorithm 3
presents the strategy of plaintexts choice, which can generate

16N plaintexts. For {��� }16�=1 equal to each of the values

belonging to  !(24), N plaintexts can be obtained with the

other 4 bits ({���}16�=1) being random. Due to the fact that the

value belonging to  !(24) ranges from (0000)2 to (1111)2,
16N plaintexts should be obtained.

3.3. Acquire Traces and Preprocess Traces. We can obtain 16N
power traces of the �rst round operation corresponding to
16N plaintexts.	e obtained power traces can be divided into
16 sets according to the values of {��� }16�=1. For the values of

{��� }16�=1 are the same all the time ranging from 0 to 15 referred
to Section 3.2 and each value corresponds toN random value

for {���}16�=1, the number of the sets is 16 and each set contains
N power traces.

	is can be easily expanded to the attack for the four least

signi�cant bits with {���}16�=1 ranging from 0 to 15 and {��� }16�=1
being random.

As for preprocessing the power traces, the detailed proce-
dures are stated in Algorithm 4. For each of the trace sets, we
can average all N power traces in this set to a single averaged
trace. Each of the averaged power traces is composed of 16
subtraces corresponding to 16 sequential S-boxes operations
and can be cut into 16 subtraces. 	us, we can obtain 16
averaged power traces containing 16 subtraces.

3.4. Double Distance Voting Detection. Double distance vot-
ing detection is the core of our attack technique ensuring
the high success rate and stability. As is seen in Algorithm 5,
DDVD is composed of enhanced Euclidean Distance detec-
tion and voting detection. For a better understanding of
our DDVD technique, a diagrammatic sketch is shown in
Figure 3. Taking S-boxes $1 and $2 as an example, there shall

be 16 subtraces {tm j1
i1

}15j1=0 and {t
m j2
i2

}15j2=0 for S-boxes $1 and $2,
respectively, a�er the former operation. Each single trace t

m j1
i1

of {tm j1
i1

}15j1=0 should operate the enhanced EuclideanDistance
detection with the trace set {tm j1

i1
}15j1=0 with 16 traces, which is

seen as a decision making unit.
For example, we compute the Euclidean distance between

t
m 6

i1
and each trace of {tm j2

i2
}15j2=0, and if theminimumdistance

is between t
m 6

i1
and t

m j2
i2

, this decision making unit generates

one of the possible values for Δ	��1,�2 , namely, Δ 6 = (0110)2 ⊕
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Figure 3: Flow of double distance voting detection.

Input: 2 sets of sub-traces:{tmj1
i1
}15j1=0, {t

mj2
i2
}15j2=0

Output: the 4 most signi�cant bits of Δki1 ,i2 : Δk
m
i1 ,i2

Enhanced Euclidean Distance Detection:
(1) for (0 ≤ &1 ≤ 15)
(2) for (0 ≤ &2 ≤ 15)
(3) :$;�-�>?(&1 ⊕ &2) = ∑��=1(��	1�1 ,� − �

�	2
�2 ,� )
2

(4) end for
(5) Δ 	1 = argmin	1⊕	2:$;�-�>?(&1 ⊕ &2)
(6) end for
Voting Detection:
(7)�@

 = 0(0 ≤ � ≤ 15)
(8) for (0 ≤ & ≤ 15)
(9) for (0 ≤ � ≤ 15)
(10) if (Δ 	 = �)
(11) �@

 = �@

 + 1
(12) else
(13) �@

 = �@


(14) end if
(15) end for
(16) end for
(17)Δ	��1 ,�2 = argmax
�@


(18) return Δ	��1 ,�2

Algorithm 5: Double distance voting detection.

&2. 	is must be done for all 16 single traces of {tm j1
i1

}15j1=0;
therefore there shall be 16 decisionmaking units generating 16

possible values {Δ 	1}15	1=0 for the candidates of Δ	��1 ,�2 . During
voting detection stage, the value that occurs the maximum

times among {Δ 	1}15	1=0 will be voted as the �nal value ofΔ	��1,�2 .

4. Improved Framework

In this section, we propose an improved framework of

multiple-bits side-channel collision attack, where we modify

our double distance voting detection and insert the error-
tolerant and check mechanism. As is shown in Figure 4, in

this new framework, the modi�ed double distance detection

works with the error-tolerant and check mechanism, which

leads to a remarkable promotion in the success rate as well as

the attack e
ciency.

We still take the 4-bit model as an example to describe the

improved attack framework of our method. 	e procedure

is shown in Algorithm 6. Like Section 3, we only care about

the four most signi�cant bits, with the four least signi�cant

bits being almost the same. Algorithms of ChoosePlaintexts,

AcquireTrace, and PreprocessTrace are all the same. In the
rest of this section, we only explain the modi�ed double
distance voting detection and the fresh error-tolerant and
check mechanism.

4.1.Modi
edDoubleDistance VotingDetection. 	emodi�ed
detection method is shown in Algorithm 7. Just like the
original one, the input of the DDVD is still 2 sets of subtraces
corresponding to 2 di�erent S-boxes, but the output changes
from a single value to a 1×3 matrix including 3 candidate
values of Δ	��1 ,�2 . Euclidean Distance between each subtrace

of a certain S-box and a set of subtraces of another S-box also
should be calculated �rst. 	en, instead of choosing n with
the maximum number as the result, we prefer three values
whose number is in the top three Δ	��1,�2 where $1 and $2 range
from 1 to 15.
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(1){�(�)|� = 1, 2, 3, ⋅ ⋅ ⋅ , 16� ← ChoosePlaintexts()}
(2){��	(�) | � = 0, 1, 2, 3, ⋅ ⋅ ⋅ , �}15	=0 ← AcquireTrace({�(�)}16�
=1 )
(3){��	� | 1 ≤ $ ≤ 16}15	=0 ← PreProcessTrace({��	(�) | 0 ≤ � ≤ �}15	=0)
(4) for each ({($1, $2) | 1 ≤ $1 < $2 ≤ 16})
(5) Δkmi1 ,i2 [1: 3] ← DDVD({��	�1 }15	=0, {�

�	
�2 }15	=0)

(6) end for
(7){Δkm[1: 15], �-;;} ← Error tolerant(Δkmi1 ,i2 [1: 3] | 1 ≤ $1 < $2 ≤ 16})
(8) if (pass=1)
(9) Recoverkey (Δkm[1: 15])
(10) else
(11) Back to (1)
(12) end if

Algorithm 6: Improved framework.

N

Y

Y

N
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First n bits of

all key bytes

Choose Plaintexts for
n bits

Acquire Trace
Preprocess Trace

Enhanced Euclidean Distance Detection

Improved Voting Detection Part bits of DeltaKey

Cover all bits ?
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End

Improved

Double

Distance

Voting

Detection

Next n bits Error-tolerant and

check mechanism

Passing the
mechanism? Error-tolerant

and check

mechanism

Figure 4: Improved framework with error-tolerant mechanism.

4.2. Error-Tolerant and CheckMechanism. Error-tolerant and

check mechanism is presented in Algorithm 8. 	ree candi-

date values ensure the error-tolerant mechanism. 	e main

thought of the error detection and tolerance is based on (6),

which provides a way to �nd errors occurring in collision

detections.

In order to recover the key value correctly, 15 delta

values (Δ	1,2, Δ	2,3, . . . , Δ	15,16) should be right. 	us, for

each candidate of Δ	
,
+1, any exiting relations in (7) should

be checked. If there exists a candidate of Δ	
,
+1 that can pass
the check, it will be the �nal result of Δ	
,
+1; otherwise this
attack is considered to have failed and should start from the
beginning again.

5. Model Analysis and Experiments Results

5.1. Comparison of Detection Success Rate under Noise. Col-
lision detection technique has played an important role in
side-channel collision attack. In this section, we compare
double distance voting detection (DDVD) proposed in this
paper with other two widely used detection techniques,
which are correlation-enhanced detection[15] and traditional
Euclidean Distance detection with dimension reduction[17],
respectively.

	e detailed procedure of correlation-enhanced detec-
tion is already proposed in Section 2.4. In [17], Bogdanov
presented a collision attack method based on Euclidean Dis-
tance combining DPA. However, according to the method, if
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Input : 2 sets of sub-traces:{tm j1
i1

}15j1=0, {t
m j2
i2

}15j2=0
Output: the 4 most signi�cant bits of Δk�i1 ,i2 : Δkm

i1 ,i2 (1 × 3 matrix)
Enhanced Euclidean Distance Detection:
(1) for (0 ≤ j1 ≤ 15)
(2) for (0 ≤ j2 ≤ 15)
(3) Distance(j1 ⊕ j2) = ∑��=1(�� 	1�1 ,� − �

� 	2
�2 ,� )
2

(4) end for
(5) Δ j1 = argminj1⊕j2Distance(j1 ⊕ j2)
(6) end for
Improved Voting Detection:
(7) numn = 0(0 ≤ � ≤ 15)
(8) for (0 ≤ & ≤ 15)
(9) for (0 ≤ � ≤ 15)
(10) if (Δ j = n)
(11) �@

 = �@

 + 1
(12) else
(13) �@

 = �@


(14) end if
(15) end for
(16) end for
(17)Δ	��1 ,�2 [1] = argmax
�@


(18)Δ	��1 ,�2 [2] = argmax
�@

 (� ̸= Δ	��1 ,�2 [1])
(19)Δkmi1 ,i2 [3] = argmax
�@

 (� ̸= Δ	��1 ,�2 [1], Δ	��1 ,�2 [2])
(20) return Δ	��1 ,�2

Algorithm 7: Double distance voting detection (modi�ed).

Input : 3 candidates for each Δk�i1 ,i2 : {Δkm
i1 ,i2 [1: 3] | 1 ≤ i1 < i2 ≤ 16}

Output: Δkm[1: 15], pass
(1) for (1 ≤ i1 ≤ 14)
(2) i2 = i1 + 1
(3) for (1 ≤ t ≤ 3)
(4) if (existing � ∈ Δ	��2 ,ℎ[1: 3] -�/ B ∈ Δ	��1 ,ℎ[1: 3]($2 < ℎ ≤ 16)

satisfying Δkm
i1 ,i2 [t] = x ⊕ y)

(5) Δkm[i1] = Δkmi1 ,i2 [�] �-;; = 1
(6) else
(7) �-;; = 0 exiting all loops
(8) end if
(9) end for
(10)end for

Algorithm 8: Error-tolerant.

collision detection generates incorrect results, DPAmakes no
sense for recovering the right key value.	erefore, the success
rate of Euclidean Distance detection for that method is the
key part.

	e power traces are obtained from an AES hardware
design implemented on a SAKURA-G board. Each trace shall
be averaged by four power traces with the same input. 	e
noise of the traces usually comes from both electronic noise
mainly containing power supply noise, clock generator noise,
conducted emissions, and radiated emissions and algorithm
noise which are the power assumption of other uncorrelated
operations. For SAKURA-G is a dedicated board that may
be far from being noisy, we can add the Gaussian noise

of di�erent intensity into the averaged traces to model the
noise, which can be used for an initial analysis of e
ciency
of di�erent detection techniques [14]. SNR (signal-to-noise
ratio) is used for indicating the intensity of the noise, which
is de�ned as follows:

��C = 10 log10
����
��
�
����

(8)

	e comparison result is shown in Figure 5. Detection
technique proposed in this paper is marked with DDVD, and
correlation-enhancedmethod in [15] and Euclidean Distance
in [17] are denoted as CE and ED, respectively. 	e value
of SNR ranges from 0 dB to 30 dB. Each technique is done
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Figure 5: Comparison of detection success rate.

for 1000 times to calculate the success rate. As is shown in
Figure 5, our detection technique performs better under the
noise.

5.2. How Many Bits Are Best for Multiple-Bits Model. In this
paper, we propose a multiple-bits collision attack model, and
all the statements are based on the 4-bit model, which can
be expanded to other n-bits (n ranging from 1 to 8) models.
However, one question we should �gure out is howmany bits
are best for the multiple-bits model of our attack method.

What matters in our attack strategy is the necessary
number of power traces to reach a given success rate, which
re�ects the attack e
ciency. 	erefore, we will analyze the
necessary number of power traces for di�erent model both
in theory and in experiment.

In Section 5.1, the performance of our detection method
in noise environment is presented; thus, for a simple analysis
in this section, we assume that the noise for an n-bits model
only comes from the operation of other 8-n bits and all 2

decisionmaking units in Figure 3 are independent. So, for the
n-bits model, when preparing the power traces (Sections 3.2
and 3.3), we need h power traces of each byte to obtain the
averaged traces. When we compute the Euclidean Distance
between two single averaged traceswhose n-bits can cause the
collision (e.g., ��1[� − 1: 0] ⊕ ��2[� − 1: 0] = Δ	�1�2[� − 1: 0]),
the probability that these two averaged traces have the least
Euclidean Distance is

�* = 1 − D
ℎ
28−� × Dℎ28−�−ℎ
Dℎ28−� × Dℎ28−�

(9)

where letter C is denoted as combinatorial number, n equals
the number of bits in the model, and h equals the number of
traces for calculating the average. Due to the fact that 8 n-bits

of one byte are random, there are a total of Dℎ28−� ×Dℎ28−� kinds
of choices to determine these two averaged power traces.

Table 1: 	e necessary number of original attacks to reach 90%
success rate.

n-bits 1 2 3 4 5 6 7 8

Number 288 160 168 128 192 256 512 256

Table 2: 	e necessary number of improved attacks to reach 90%
success rate.

n-bits 1 2 3 4 5 6 7 8

Number No 128 120 96 140 256 256 256

Since there shall be only one corresponding plaintext of one
bytewhich can cause a collisionwith each plaintext of another

byte, there are a total of Dℎ28−� × Dℎ28−�−ℎ kinds of choices that
include no collision plaintext pair.

	e probability of successful detection for the method
proposed in Section 3 and the improved method presented
in Section 4 is calculated separately as follows:

�* /?� = 1 −
2�

∑
�=2�−1

D�2� × (1 − �*)� × �*2
�−� (10)

�* $
�*� = 1 −
2�

∑
�=2�−2�−2

D�2� × (1 − �*)� × �*2
�−� (11)

where Pr is equal to (9) and n is the number of bits in the
model. From the illustration of Figure 3, there are 2
 decision
making units for the n-bits model. According to the rules
of voting detection that the value that occurs the maximum
times is chosen as the �nal result, if more than half of the
decision making units generate the wrong answer, the voting
detection shall fail. Result of all 2
 decision making units
can be seen as the binomial distribution, so the probability
that more than half of the units generate wrong result is

∑2��=2�−1 D�2� × (1 − �*)� × �*2
�−�. Analysis for the improved

method in Section 4 is similar, and if more than three-
quarters of the decision making units generate the wrong
answer, the voting detection shall fail.

As for the necessary number of the power traces, it can be
calculated as follows:

�*->? �@
�?* = 2
 × ℎ × ⌈8�⌉ (12)

where ⌈�⌉ stands for the minimum integer that is larger than
n. According to our attack strategy, for each n-bits model,
we should get 2
 averaged power traces and each trace is
averaged by h original power traces. Obviously, the method
should be operated for ⌈8/�⌉ times.

According to (9), (10), (11), and (12), we estimate the
necessary number of the power traces to reach a 90% success
rate for the basic attackmethod in Section 3 and an improved
version in Section 4, shown in Tables 1 and 2, respectively.	e
1-bitmodel only has twopossible results, so improvedmethod
makes no sense for it. It is obvious that, in theory, 4-bit model
collision attack needs the least number of traces with high
e
ciency, which will be veri�ed later in experiments.
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Figure 6: Necessary number of traces for MBDD to reach 90%
success rate.
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Figure 7: Necessary number of traces for MBDD-ET to reach 90%
success rate.

Furthermore, the practical experiments have been carried
out to �nd howmany bits are best for the proposed multiple-
bits model. Figure 6 shows the necessary number of power
traces to reach a 90% success rate for the original approach
presented in Section 3 (denoted as MBDD), while Figure 7
shows the he necessary number of power traces for the
improved version proposed in Section 4 (denoted as MBDD-
ET). As can be seen in Figures 6 and 7, it is veri�ed that 4-
bit model (in black) is the best choice when operating the
proposed attack strategy.

5.3. Experiments and Results. 	e attack method and the
improved method with error-tolerant mechanism have been
performed successfully in practice against a hardware design
with an 8-bit data path of AES, where 16 S-boxes are sequen-
tially operated in every round operation. 	e target AES is
implemented on a Xilinx SPARTAN-6 FPGA of a SAKURA-
G circuit board. An Agilent MSO-X 9104A oscilloscope is

employed to collect original power traces. In our case, each
power trace obtained contains about 32365 points.

For a better understanding, operation on 	�1 and 	�2
corresponding to S-box 1 and S-box 2 is taken as an example
to present the process of double distance voting detection.
Without loss of generality, 	�1 and 	�2 are �xed as

	�1 = (1101)2 ,
	�2 = (0110)2 ,

Δ	�1,2 = (1011)2 .
(13)

Two corresponding sets of subtraces are denoted as {�� 	11 }15	1=0
and {�� 	22 }15	2=0. Figure 4 shows square of di�erence between

each subtrace �� 	11 of {�� 	11 }15	1=0 and the trace set {�� 	12 }15	1=0
with 16 traces. Figures 8(a)–8(p) are like 16 decision making
units in Figure 3 corresponding to &1 ranging from 0 to 15.
	e accumulation of all points’ square of di�erence between
two subtraces is the value of Euclidean Distance.

We take Figure 8(a) as an example to describe itsmeaning.

Figure 8(a) shows the result of (�� 01,� − �� 	22,� )
2
for each point �

ranging from 1 to 32365 and each value of &2 ranging from
0 to 15. 	e black curve represents the square of di�erence

between each point of �� 01,� and �� 0⊕Δ��1,22,� , which are two traces

corresponding to a collision in theory. However, square of

di�erences between �� 01,� and other traces in the trace set

{�� 	12 }15	1=0 is marked by grey curves. If the black curve is lower

than any other grey curves, the decision making unit will
generate the right candidate. An initial and rough conclusion
can be drawn that when in situations like Figure 8(a), whose
black curve is close to zero, two traces corresponding to
a collision may have the lowest distance, meaning that the
corresponding decision making unit generates the right can-
didate, but in some exceptional situations such as Figure 8(p),
whose black curve is higher than some grey curves, collision
cannot be assured by minimum Euclidean Distance and
the unit generates the wrong candidate. 	erefore, voting
detection works to determine the �nal value of Δ	�1,2. As is
shown in Figure 9, (1011)2 occurs the maximum times, and
voting detection chooses it to be the �nal result.

5.4. Comparison. In this section, we compare our improved
attack version denoted as MBDD with correlation-enhanced
collision attack [15], bitwise collision attack [19], and LDPC
method with Euclidean Distance detection [16] denoted as
CECA, BCA, and LDPC, respectively. Comparisons are done
from three aspects, which are relation between success rate
and necessary number of traces, relation between success rate
and online time, and relation between o�ine time and online
time. Each compared method was performed 1000 times for
calculating an actual success rate.

In this section, ��V� is used for indicating the total time
that the oscilloscope spends on capturing and averaging one
power trace in real time, and �� is for indicating the time that
the oscilloscope spends on acquiring and saving one trace.
Taking Agilent MSO-X 9104A oscilloscope that we use for
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Figure 8: Square of di�erence between each subtrace in set {��	11 }15	1=0 and all subtraces in set {��	12 }15	1=0.
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Figure 9: Result of the voting stage.

acquiring power traces as an example, �� is about 50 times of
��V�. 	e number of power traces used to obtain one averaged
power trace in oscilloscope is denoted as q, and the number of
saved averaged power traces is n. 	erefore, the online time
denoted as ��� can be written as

��� = � (K��V� + ��) = � (0.02K + 1) ��. (14)

And we �x K = 6 for this experiment, so

��� = 1.12���. (15)

Figure 10 presents the relations between success rate and
number of traces. As can be seen from Figure 10, LDPC
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Figure 10: Relations between success rate and number of traces.

has a better performance. To get a high given success rate,
LDPC needs less number of traces. However, in Figure 11, the
success rate is as a function of the total online time rather
than the number of original power traces. As is mentioned
above, we can decrease the online time due to the fact that
the time an oscilloscope spends on averaging one trace is
much less than saving one trace. It is obvious in Figure 11 that
the performance of MBDD with error-tolerant mechanism
got a promotion under this setting. Due to the fact that the
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Figure 11: Relations between success rate and online time.

4-bit model of MBDD can �nd all 120 relations among 16
key bytes with 32 averaged power traces, the fact that the
oscilloscope spends less time on averaging traces does a favor
for MBDD to have a higher success rate with the same online
time. Meanwhile, it seems that LDPC method does not have
a remarkable promotion asMBDDwith the help of averaging
traces.	e reasonmay be that the collision detectionmethod
of LDPCwill needmore averaged traces to detect all collisions
occurring among 16 key bytes, even if traces are far frombeing
noisy. However, the results of Figures 10 and 11 can re�ect that
LDPC is more tolerant to noise because the performance of
LDPC in a noisy setting is almost the same as that in a less
noisy setting.

Finally, we show the relation between o�ine time and
online time for LDPC and MBDD. 	e o�ine time, which
re�ects the computational complexity, was estimated by
MATLAB. As is shown in Figure 12, LDPC is more costly
in terms of computation time than MMBD. However, the
increased time overhead is slight. For LDPC, the o�ine time
decreases as the online time increases, which indicates that
the number of iterations for LDPC decoding decreases. For
MBDD, the o�ine time increases as the online time increases,
and it quickly converges to a certain value.

From these comparisons, it can be con�rmed that LDPC
with so� decision decoding has less trace overhead but more
computation time overhead than MBDD, which can be seen
as a kind of hard decision decoding procedure. In addition,
the necessary number of traces for our method is 90% less
than CECA and 96% less than BCA.

6. Conclusion

In this paper, we proposed a basic multiple-bits side-channel
collision attack framework based on double distance voting
detection. 	en an improved version with modi�ed double
detection as well as error-tolerant and mechanism is pre-
sented.	e 4-bit model is proven to be the optimal choice for
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Figure 12: Relations between success rate and online time.

the novel attack strategy in both theory and practice. Practical
attack experiments are performed successfully on a hardware
implementation of AES on SAKURA-G circuit board with
Xilinx SPARTAN-6. Results show that our detection method
performs steadily in noisy environment. We compare our
methods with other attacking methods; our method needs
less computation time but more traces than LDPC method,
and to reach 90% success rate, the necessary number of traces
for our method is 90% less than CECA and 96% less than
BCA. 	e novel framework proposed in this paper can be
utilized in other cryptographic symmetric algorithms.
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