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Abstract—We propose a novel multiple kernel learning (MKL)
algorithm with a group lasso regularizer, called group lasso reg-

ularized MKL (GL-MKL), for heterogeneous feature fusion and

variable selection. For problems of feature fusion, assigning a
group of base kernels for each feature type in an MKL framework

provides a robust way in fitting data extracted from different

feature domains. Adding a mixed norm constraint (i.e.,
group lasso) as the regularizer, we can enforce the sparsity at the

group/feature level and automatically learn a compact feature set

for recognition purposes. More precisely, our GL-MKL deter-
mines the optimal base kernels, including the associated weights

and kernel parameters, and results in improved recognition per-

formance. Besides, our GL-MKL can also be extended to address
heterogeneous variable selection problems. For such problems, we

aim to select a compact set of variables (i.e., feature attributes)

for comparable or improved performance. Our proposed method
does not need to exhaustively search for the entire variable space

like prior sequential-based variable selection methods did, and

we do not require any prior knowledge on the optimal size of the
variable subset either. To verify the effectiveness and robustness

of our GL-MKL, we conduct experiments on video and image

datasets for heterogeneous feature fusion, and perform variable
selection on various UCI datasets.

Index Terms—Feature fusion, multiple kernel learning, variable

selection.

I. INTRODUCTION

I N order to produce satisfactory results in many pattern

recognition and computer vision problems, one typically

needs to consider the combination of heterogeneous features,

i.e., features extracted from different domains for improved

performance. For example, object recognition using real-world

images deals with images with large intra and interclass vari-

ations plus background clutter presented. In such cases, using

a single type of features like SIFT [1] or HOG [2] is not able
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Fig. 1. Overview of feature fusion for video object classification. Note that the
features of interest are collected from heterogeneous domains, and thus each
feature type has a unique property and distribution.

to describe each object category well and thus the recognition

performance is limited [3]. Similar remarks apply to video

processing applications such as event recognition [4], [5], ac-

tion recognition [6], affective classification [7], [8] and object

detection [3], [9]. As illustrated in Fig. 1, it is common and

necessary to integrate different types of features observed from

the input video to address the corresponding recognition or

annotation problems (e.g., [5]).

While the use of heterogeneous features becomes more prac-

tical for real-world applications, how to properly integrate those

features is still one of themain research topics in the areas of pat-

tern recognition and machine learning. For feature-level fusion,

one can simply concatenate different types of features and ob-

tain a new feature representation for training and testing. On the

other hand, one can train a classifier for each type of features,

and the results predicted by different classifiers (and the associ-

ated features) will be combined via voting or averaging strate-

gies to reach the final output. This can be considered as classifier

or decision-level fusion. While these fusion techniques are easy

to implement and promising results have been reported (e.g.,

[10]), a simple concatenation of heterogeneous features will re-

sult in the increase of feature dimensionality. Moreover, there is

no guarantee that simple voting or averaging techniques would

produce improved performance. As pointed out in [3], rather

than adding features/classifers with similar performances, one

should combine those with complementary information in order

to achieve better recognition performance.

In this paper, we present a multiple kernel learning (MKL)

framework for heterogeneous feature fusion and variable se-

lection. Inspired by the recent success of MKL, our proposed

framework aims to select a compact set of features/varaibles

for improved recognition performance via the introduction of a

1520-9210/$31.00 © 2012 IEEE
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group lasso regularizer. Fig. 1 illustrates an example of video

object classification via combining features extracted from

different domains. Via the one-vs-rest learning strategy, our

method is able to select the class-specific weights for different

types of features, and thus is expected to outperform simple

feature and decision-level fusion methods. As we will show

later, this proposed framework can be easily extended to the

use of heterogeneous variable selection, which is also practical

in practical pattern recognition problems. Our experimental

results will verify the feasibility of our GL-MKL formulation

for both heterogeneous feature fusion and variable selection

problems, and we will show that our method outperforms

existing MKL based approaches in the above problems.

The remaining of this paper is organized as follows. Section II

discusses related works on feature fusion and variable selection

using MKL. We review the formulation for MKL and its use for

feature fusion and variable selection in Section III. Section IV

introduces our proposed MKL framework and details how we

apply it to address the above problems. We present experi-

mental results of heterogenous feature fusion for video and

image datasets in Section V, and the performance of variable

selection for several UCI datastes is reported in Section VI.

Finally, Section VII concludes this paper.

II. RELATED WORKS

Kernel methods such as support vector machines (SVM) [11]

have been shown to be very effective for data representation, di-

mension reduction, and classification. A more flexible learning

model using multiple kernels instead of one, which is known

as multiple kernel learning (MKL), has recently been proposed

[12]. Since MKL is able to better represent or discriminate be-

tween data using multiple base kernels, it has been shown to

improve the performance of many learning tasks, including fea-

ture fusion (e.g., [3], [6], [9]) and variable selection (e.g., [13],

[14]).

For feature fusion, MKL has been used for visual classifica-

tion tasks such as object classification [3], [6], [9], [15], [16].

The conventional MKL framework combines multiple features

(e.g., appearance, texture, shape, etc.) by constructing base ker-

nels for each type of feature. The optimal weights for each base

kernel are determined by MKL, and they indicate the contribu-

tion/importance of the associated features. Several variants of

MKL for feature fusion have also been proposed for improving

the performance [3], [6], [9]. Yang et al. [9] introduced an inter-

mediate representation “group”, which collects images within

each category. Images within a group shared the same weights

to combine features, and these weights are determined byMKL.

Since its performance is highly dependent on the grouping re-

sults, it is not easy for one to select an appropriate clustering

algorithm without prior knowledge. Gehler et al. [3] integrated

MKL and boosting techniques to learn the weights for feature

combination. However, the learned weights were not jointly op-

timized with the data instances (in terms of support vectors), so

there is no guarantee that their approach would always produce

the best fusion results (as shown in our experiments later). Cao

et al. [6] proposed a logistic regression model with multiple ker-

nels to perform feature fusion and instance selection for video

action recognition. While they chose to impose a group Lasso

regularizer (as we do) on their framework, their work aims at re-

moving irrelevant samples. Since our goal is to address general

classification problems, we do not consider the case in which

there exist irrelevant instances. Therefore, it is not easy to ex-

tend their work for these problems.

Different from feature fusion, variable selection (also known

as feature selection) focuses on the use of a single type of

feature. It aims at identifying a subset of relevant features for

improved or comparable recognition performance. Prior works

such as [13], [14] have applied MKL for variable selection

problems. Dileep et al. [13] proposed to learn the optimal base

kernels, while each is built from each feature attribute/dimen-

sion. As a result, this can be regarded as an extreme case of

feature fusion. Although an improved MKL-based variable

selection method was recently proposed by Xu et al. [14], the

user needs to specify the preferable size of the feature subset

in advance, which typically cannot be known in practice.

Moreover, these prior MKL-based methods treat all features

equally important, and none of them addresses the problem

of heterogeneous variable selection (i.e., the feature attributes

are collected from different domains, and thus each feature

dimension has a unique property and distribution).

In this paper, we propose a novel MKL-based method for het-

erogeneous feature fusion and variable selection. We extend the

standard MKL formulation and impose a mixed and norm

constraint as the group lasso regularizer, which will determine

the optimal weights for each base kernel and thus achieve the

goal of feature selection fusion and variable selection. In our

framework, each heterogeneous feature (or variable) is associ-

ated with multiple base kernels and is considered as a group.

The imposed group lasso regularizer tends to maintain sparsity

between different groups, while the associated weights of the se-

lected kernels for each group need not be sparse. This allows our

MKL algorithm to select more than one base kernel for each het-

erogeneous feature (or feature dimension), while a compact set

of groups will be enforced due to the added sparsity at the group

level. Since we associate each heterogeneous feature (or feature

dimension) with multiple base kernels with different kernel pa-

rameter (e.g., width of the Gaussian kernel), our MKL has the

capability to deal with heterogeneous data. Using our approach,

the associated weights and kernel parameters can be learned au-

tomatically and simultaneously.

III. MULTIPLE KERNEL LEARNING

A. Review of MKL

The support vector machine (SVM) [17] has been known to

be an effective binary classifier due to its generalization ability.

It learns an optimal separating hyperplane to distinguish data

between two different classes without any assumption on data

distribution. However, a single kernel function might not be suf-

ficient to model the data of interest and thus produce a satis-

factory separating hyperplane. As a result, multiple kernels are

recently applied for this purpose, and this is referred to as mul-

tiple kernel learning (MKL) [12]. More precisely, one can re-

place the single kernel by a linear combination of base kernels,
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while each kernel describes a different property of the data of in-

terest (i.e., different feature spaces or distributions). Thus, MKL

is expected to provide improved generalization ability for the

learning model.

Similar to SVM, one can approach MKL by formulating and

solving its primal form. This process can be considered as de-

scribing the data in multiple feature spaces using different norm

vectors . Let be a feature mapping function, in

which is the input space and is a dot product space asso-

ciated with the inner product . Note that we have

, which computes the inner product be-

tween the transformed feature vectors and , and

is a positive semidefinite kernel function. According to [18], the

primal form of MKL is thus formulated as the following opti-

mization problem:

(1)

where , and is the number of feature

spaces (i.e., number of base kernels). Similar to SVM, in

(1) is the trade-off between the generalization of MKL and its

training errors . From the above formulation, we see that the

primal form of MKL restricts the weight of the norm vector

with the constraint of and , which

tends to produce a sparse solution for . In (1), it can be ob-

served that if vanishes, then the corresponding

should be zero; otherwise, the value of the objective function

will be unbounded. In [18], Rakotomamonjy et al. have shown

that as , which prevents the objective

function value from approaching infinity. Therefore, the use of

the sparsity constraint would still produce a valid and

sparse solution for .

Similar to the SVM, one can also convert the above formula-

tion and derive the dual form for MKL. With the constraint on

, the minimization problem (1) can thus be transformed into

the following min-max problem:

(2)

where are the Lagrange coefficients. Comparing (2) to SVM,

multiple base kernel functions (i.e., ) are applied in

(2) while only a single kernel is used in SVM. Since the con-

straint tends to result in a sparse solution of , this

learning process can be viewed as the removal of redundant ker-

nels among the base ones. Simply speaking, the MKL formu-

lation in (2) aims to determine an optimal and compact linear

Fig. 2. Illustration of MKL for feature selection. Each feature constructs a base
kernel, and theMKL determines weight coefficients for each base kernel with
a sparsity constraint.

combination of base kernels for improved recognition perfor-

mance, and this is achieved by learning the best weights for

the base kernels and the predictors for the associated data

(for classification). For a test input , the decision function of

MKL can be computed as

(3)

B. MKL for Feature Fusion and Variable Selection

As mentioned in Section II, it has been shown that feature fu-

sion via MKL can improve the performance for many learning

and vision tasks [3], [6], [9]. As shown in Fig. 2, the standard

MKL framework constructs base kernels for each type of fea-

ture, and their optimal weight coefficients (i.e., ) are deter-

mined by solving (2). However, the standard MKL needs to pre-

determine the parameters for each kernel, such as the bandwidth

of Gaussian kernels, and this parameter selection procedure

either requires prior knowledge or results in increased compu-

tational complexity due to the need to perform cross-validation.

MKL also has recently been applied for variable selection

[3], [13], [14]. Existing methods typically approach this type

of problem as solving a task of learning the optimal weights

for each feature variable/attribute. More specifically, MKL uses

each feature variable to construct a corresponding kernel. As

shown in Fig. 2, it determines the weight coefficients for each

for improved performance while those weights indicate the rele-

vance of the associated features for the learning task. Although

the weighted sum of these kernels calculated from individual

variable is expected to improve the classification performance,

results reported in previous works such as [13] did not achieve

significant improvements on several benchmark datasets. More-

over, existing variable selection methods usually regard all vari-

ables from the same domain, and the distributions of each vari-

able are assumed to be the same with some data normaliza-

tion techniques applied. In other words, they did not address

the problem of heterogeneous variable selection as we do. In

the next section, we will detail our proposed MKL framework,

which van be applied to both heterogeneous feature fusion and

variable selection problems.
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Fig. 3. Illustration of our GL-MKL for heterogeneous feature fusion. Different
from Fig. 2, multiple kernels constructed for each heterogeneous feature form
a group, and we enforce the group-lasso constraint on the weights of each base
kernel for feature fusion purposes. Since different types of heterogeneous fea-
tures should be associated with their preferable kernels, our GL-MKL allows
the existence of nonsparsity for the kernel weights within each group.

IV. GROUP LASSO REGULARIZED MKL

A. Algorithm of GL-MKL

To address the problems mentioned in the previous section,

we propose a novel MKL with a group lasso regularizer, called

group lasso regularized MKL (GL-MKL), which constrains the

coefficient with a norm. Suppose that we have types of

feature paired with different kernel choices (e.g., different

choices if using Gaussian kernels). There is a total of base

kernels in our group lasso regularized MKL. That is, we have

,

which are associated with base kernels as shown in Fig. 3. Our

mixed constraint imposed on will maintain sparsity be-

tween different groups (i.e., different feature types), while the

associated values in each group need not be sparse (see

Fig. 3). More precisely, we enforce the sparsity constraint at

the feature space level (for feature fusion), and we allow our

MKL to select more than one kernels for each feature to im-

prove overall performance (to handle heterogeneous features).

With these kernels and the corresponding coefficient

, the primal form of our GL-MKL is formulated

as follows:

(4)

where . We also apply the same set-

ting in [19] and relax the equality constraint

to due to the convexity of the optimiza-

tion problem. More specifically, assigning ( , ) or

( , ) will convert our algorithm back to or reg-

ularized MKL problem, which can be considered as two spe-

cial cases of our proposed MKL. In practice, one can choose

different numbers of kernels for each feature using our MKL,

while we fix this number in this paper. From (4), we have

as in our GLMKL formula-

tion. As discussed in Section III-A, this property prevents the

value of the objective function in (4) from approaching infinity,

and thus a valid solution with group-wise sparsity will be ob-

tained.

We see that, if is fixed in (4), our GL-MKL formulation

becomes a Lagrangian function of variables , b, and

(5)

where and are the Lagrangian multipliers. Setting the

derivatives of (5) to zeroes with respect to the primal variables,

we have the following conditions:

(6)

Substitute the above conditions to (5), we then transform (4) into

the following min-max optimization problem:

(7)

The above min-max problem can be solved by gradient based

methods (e.g., [12], [18]). Alternatively, we can formulate (7)
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as a semiinfinite programming (SIP) problem [20] and search

for the best and iteratively. To be more specific, we fix

and solve the maximization problem of (7) with respect to ;

we note that this procedure can be addressed using any regular

SVM solver such as libSVM [21], which solves (7) with fixed

. Once the variables are determined in an iteration, we fix

and solve the minimization problem of (7) with respect to

. Suppose that is the optimal solution in (7), we have the

objective value and for all . Thus,

by fixing , we convert (7) into the following SIP problem (as

suggested by [19]) which minimizes to its lower bound

(8)

In our implementation, we use the function fmincon in

MATLAB to solve (8). By iteratively solving the above two

types of optimization problems (with respect to or ), the

optimal solution of (7) is thus determined. The pseudo code

of our GL-MKL is described in Algorithm 1, and the decision

function of GLMKL is calculated as

(9)

Algorithm 1: Our Group Lasso Regularized MKL

Input: Data matrix , label , kernel function

Output: and

begin

; ; ; ;

while do

solve (7) with fixed ;

;

solve (8) with all fixed ;

B. GL-MKL for Heterogeneous Feature Fusion

When using our proposed GL-MKL for heterogenous feature

fusion, we associate multiple types of kernels (with different

kernel parameters) with each type of feature and consider them

as a group, as illustrated in Fig. 3. The weight coefficients of

each kernel, denoted by , are constrained by our group lasso

regularization (see (7)), and thus our feature fusion framework

maintains sparsity across but allows nonsparsity within .

We note that the above sparsity among different groups (fea-

ture types) is preferable, since it meets the goal of feature fu-

sion (i.e., an emphasis of effective features). On the other hand,

our group lasso constraint allows the nonsparsity within each

group of base kernels; this is to accommodate the presence of

heterogeneous data, which will require different (and possibly

multiple) kernels with distinct kernel parameters to describe the

data in different feature spaces at the same time. Therefore, the

use of our GL-MKL provides additional flexibility in fitting het-

erogeneous data, and this cannot be easily achieved by standard

MKL methods.

C. GL-MKL for Heterogeneous Variable Selection

For heterogeneous variable selection problems, it has been

observed that each variable prefers a different set of base ker-

nels which best represent its property/distribution for recogni-

tion purposes [22]. As a result, the use of our proposedGL-MKL

can be extended for variable selection purposes. We associate

multiple types of kernels (with different kernel parameters) with

each variable and consider them as a group; that is to say, we

consider the use of each variable to construct base kernels, and

the learning process is to determine the associated weight for

each kernel. If the weight is zero, the corresponding feature is

redundant or trivial and thus it is discarded. Similar to the above

fusion framework, The sparsity among different groups (fea-

tures) meets the goal of variable selection (i.e., a compact set

of variables is desirable), and the nonsparsity within each group

of base kernels provides additional flexibility in fitting hetero-

geneous data. Another advantage is that we do not require the

prior knowledge on the preferable/optimal size of the variable

subset to be selected. This cannot be easily achieved by sequen-

tial-based feature selection methods. In the next section, we will

evaluate our GL-MKL feature fusion and variable selection on

a variety of datasets and show the effectiveness of our proposed

method.

V. EXPERIMENTS: FEATURE FUSION

A. Video Object Classification

1) Web Video Dataset: For our experiments on video object

recognition with feature fusion, we collect a Web video dataset

fromYouTube, in which the videos are captured by uncontrolled

and free-moving cameras, and the moving objects of interest are

present in cluttered background. Significant scale and viewpoint

variations of the objects can be observed, and the resolution

of a large portion of videos in this dataset is low. We consider

six different moving object categories: Airplane, Ambulance,

Race Car, Fire Engine, Helicopter, andMotorbike. Each object

category has 25 to 30 video sequences, and each sequence has

one moving foreground object presenting in it. We randomly

select 10 from each class for training, and the remaining for

testing. Fig. 4 shows some video frames of each object category

as an example of our dataset.

We subsample 20 frames from each of the video sequence. In

order to preprocess our video data, we apply our recently pro-

posed Consensus Foreground Object Template (CFOT) [10] to

identify the region of interest (i.e., the foreground object with

dominant motion information). We multiply the CFOT masks

on the training and test video data, and we extract the associ-

ated visual features within the CFOT regions for training and
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Fig. 4. Example videos in our Web video dataset.

testing. Note that only the visual features extracted from the

training data are used to design the classifiers. For audio fea-

ture, in order to produce the same number (20) of each type of

features, we uniformly divide each video clip into 20 segments

and average the Mel-frequency cepstral coefficients (MFCC) to

obtain 20 audio features. To classify a test video input, we first

predict the label of each of the 20 subsampled frames from that

input sequence, and we use amajority vote to determine the final

object label for this input video. In our experiments, we consider

the one-against-all strategy for classifier designs.

2) Features and Parameters: We consider five types of fea-

tures collected from audio and visual domains for feature fusion.

We now describe the setting for each below.

� MFCC

We convert audio signals of each video sequence nito a

stream of 19-dimensional Mel-frequency cepstral coeffi-

cients (MFCCs) using a 32-ms Hamming-windowed frame

with 10-ms shifts.

� SIFT

For visual appearance information, we use SIFT (scale-in-

variant feature transform) descriptors [1]. The dense SIFT

visual features are extracted from 16 16 pixel patches

from a video frame, and the horizontally and vertical

spacing between adjacent patches is 6 pixels.

� HOG

We capture shape information by HOG (histogram of ori-

ented gradients) descriptors [2]. We consider a dense 8 8

pixel grid of uniformly spaced cells and extract gradient

histograms, and only one scale in an octave of the pyramid

is used.

� Gabor

As for texture information, we extract the image texture

by the Gabor filter [23], [24] at four different scales and

with six orientations. We calculate the mean and standard

deviations of these 24 output values, which result in a total

dimension of this feature as 48.

� EDH

TABLE I
PERFORMANCE COMPARISONSWITH SVM-BASED FUSIONMETHODS ON OUR
WEB VIDEO DATASET. WE CALCULATE THE MEAN AVERAGE PRECISION
(MAP) FOR EACH APPROACH AND FEATURE NORMALIZATION TECHNIQUE

The edge information is analyzed by an EDH (edge direc-

tion histogram) descriptor [24], [25]. A Canny filter is ap-

plied to detect edges within the region of interest. We then

use a Sobel filter to calculate the gradient of each edge

point, and quantize this result into a 72-bin descriptor.

For the descriptors extracted from the visual domain, we

apply sparse coding [26] techniques to convert them into a

bag-of-words (BOW) model. In our implementation, we use

the software package developed by Mairal et al. [27] to learn

the dictionaries (one for each type of features), and to encode

the associated sparse feature descriptor. The size of each dic-

tionary is set to 225, and we have controlling the

sparsity of the encoded coefficient vector in our experiments.

After obtaining the encoded sparse coefficient vectors for all

features, we use the max pooling strategy to covert the encoded

coefficients into a -dimensional feature vector for each video

frame.

3) Discussion: In our experiments, we compare our pro-

posed GL-MKL with existing SVM and MKL-based feature

fusion methods. Gaussian kernels are used for nonlinear map-

ping in SVM and all MKL-based methods. In all methods

considered, the regularization parameter is selected by 5-fold

cross validation. For the standard SVM, the bandwidth in

Gaussian kernel is also fine tuned by 5-fold cross validation.

To deal with the heterogeneous audio and visual features

using our GL-MKL, we allow each feature type to build 6

different base Gaussian kernels as a group, and the value

for each Gaussian is determined by the standard deviation

of the Euclidean distance between each pair of training

instances. As a result, the six values for our base kernels are

.

We first compare the performance of our GL-MKLwith those

produced by SVM-based feature fusion methods. The results in

terms of mean average precision (MAP) are shown in Table I.

The first two SVM classifiers are linear and nonlinear SVMs,

which are trained using concatenated audio and visual features.

The other three methods considered can be considered as de-

cision-level fusion using SVMs trained on individual features.

They are sum rule, major vote, and Adaboost. To show that

our GL-MKL does not require to explicitly normalize the fea-

tures due to the use of multiple kernels, we also evaluate all

methods with three normalization strategies: without normal-

ization, zero-mean,and max-min. For zero-mean, we normalize

features into a normal distribution . On the other hand,

we linearly normalize all features into the same range for

max-min. From Table I, it is clear that our GL-MKL signifi-

cantly outperforms other SVM-based fusion methods in most

cases. It shows that the direct concatenation of heterogenous
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TABLE II
PERFORMANCE COMPARISONS WITH MKL BASED FUSION METHODS ON OUR WEB VIDEO DATASET. WE CALCULATE THE MEAN AVERAGE
PRECISION (MAP) FOR EACH APPROACH AND FEATURE NORMALIZATION TECHNIQUE. NOTE THAT THE DECISION FUNCTIONS AND THE

REQUIRED PARAMETERS TO LEARN ARE LISTED FOR EACH METHOD

features directly might suffer from the dominant features and

thus affect the performance.

Next, we compare our GL-MKL with existing MKL-based

fusion methods, including the standard MKL [13], nonsparse

MKL (or NS-MKL in short) [19], and LP_B and forMKL

[3]. Besides, we consider two baseline MKL approaches which

combine the base kernels by average or product. By a five-fold

cross validation, we select the best value for all base Gaussian

kernels jointly with the regularization parameter for these

two baseline methods. For the standard MKL and NS-MKL.

we construct 6 base Gaussian kernels for each type of features

and thus also have a total of 30 base kernels (5 audio/visual

features available) to learn the associated MKL classifier. We

note that we apply the same parameter setting for LP_B and

in [3]1 for a fair comparison. The decision functions for

each MKL-based method and the required parameters to learn

are shown also in Table II, where is the offset, is the support

vector coefficients (for data instances), and or are the kernel

weights for each feature type.

Table II lists the recognition performance in terms of

MAP of our GL-MKL and other MKL-based fusion methods

on the Web video dataset. It can be seen that all results of

learning-based MKL approaches (i.e., those with the learning

of kernel weights) are superior to those of simple fusion base-

line methods (i.e., average and product). It confirms that an

appropriate weighting scheme can achieve better performance

for feature fusion, especially for the case of heterogenous

features. Among the approaches with kernel weight learning,

our proposed GL-MKL yields the best performance with either

nonnormalization or zero-mean normalization. This verifies

that assigning each heterogeneous feature with multiple base

kernels with a group structure provides a more flexible way in

fitting/representing data. In other words, our proposed is more

robust and adaptive to features collected from heterogeneous

1The code used to produce the results of LP_B and [3] is available at
http://www.vision.ee.ethz.ch/ pgehler/

TABLE III
COMPUTATION TIME OF KERNEL BASED FUSION

METHODS ON WEB VIDEO DATASET

domains even without a carefully normalization procedure, and

thus an improved recognition performance can be achieved.

Table III shows the computation time for training and test

phases for MKL-based methods. It can be observed that our

GL-MKL required comparable computation time as the stan-

dard MKL and NS-MKL did. Note that all runtime estimates

are performed on a personal computer with Intel Core 2 Duo

CPU 2.66 GHz and 4 G RAM. We did not list the computa-

tion time for LP_B and , since we simply applied their

software package (programmed in C++) for our experiments.

However, as noted in [3], their computation time is comparable

to that of MKL. Therefore, it can be confirmed that our com-

putational cost is comparable to other MKL-based methods,

while we achieve an improved recognition performance in fea-

ture fusion.

In order to visualize the contribution of each feature type in

such a MKL-based fusion scheme, we plot the kernel weights

of the base kernels for MKL and our GL-MKL in Fig. 5(a) and

the first row of Fig. 5(b), respectively. Note that we only list

three binary classifiers (airplane, ambulance, and race car) for

simplicity. From Fig. 5(b), we see that our GL-MKL selected

more than one base kernel for each feature type, while the stan-

dard MKL tends to select sparse base kernels for feature fusion.

Take the categories of ambulance and race car for examples, the

audio feature is important for both categories, but the weights

for the six audio kernels were very different. However, for the

standard MKL, it only selected very few base kernels for recog-

nition purposes, while the kernel weights for the audio feature

for both categories were very low (see Fig. 5(a)). This is an ex-

ample showing that our GL-MKL provides more flexibility in

selecting kernels for improved recognition.
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Fig. 5. Weights determined for each base kernel and the corresponding feature type byMKL. The -axis is the index of (6 Gaussian kernels for each feature
type and shown in different colors), and the -axis indicates the associated weights. The class-wise recognition rates with feature fusion are also noted. (B) The
weights determined for each base kernel and the corresponding feature type by GL-MKL. Note that we sequentially remove the features with least importance
and observe comparable performance (and similar kernel weights) from the first row to the fourth row. (A). MKL. (B). GL-MKL.

Fig. 6. Example images in the UIUC Sport Event dataset.

To further evaluate the robustness of our GL-MKL, we ob-

serve the change of the kernel weights when removing the least

significant feature types sequentially. The kernels weights for

the above cases are shown in the second to the forth rows of

Fig. 5(b). We found that, when we removed the least significant

features according to our original observation/selection result,

the kernel weights for the remaining features (with more im-

portance) remained the same, and the recognition rates did not

vary remarkably (see the recognition rates noted in Fig. 5(b)).

These results support that our proposed GL-MKL is very effec-

tive for heterogeneous feature fusion, while it is able to identify

the features with greater importance with proper feature/kernel

weights.

B. Image Classification

1) Datasets and Features: We now conduct feature fu-

sion experiments for image classification on two benchmark

Fig. 7. Example images in the Scene-15 dataset.

datasets: Scene-15 [28] and UIUC Sport Event datasets [29].

The Scene-15 dataset is collected from COREL collection,

Google Image Search, and personal photographs (see example

images shown in Fig. 7). Each class has 200 to 400 images, and

the average image size is about 250 300 pixels. We randomly

choose 100 images per categories for training and the rest for

testing. We repeat this process 5 times and report the average

results. For the UIUC Sport Event dataset, there is a total of

eight sport event categories available (see Fig. 6 for examples),

and each class has 137 to 250 high-resolution images with sizes

varying 800 600 to thousands of pixels. We randomly choose

70 images per category for training and the rest for testing. We

also repeat this process 5 times and report the average results.

For image classification, we consider five different types of

visual features/descriptors. We first choose to extract PACT

descriptors [30], which can be considered as a variant of the

CENTRIST [30] descriptors and are known to be among the
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TABLE IV
PERFORMANCE COMPARISONS ON THE SPORT EVENT AND SCENE IMAGE

DATASET. WE CALCULATE THE MEAN AVERAGE PRECISION (MAP) AND THE
ASSOCIATED STANDARD DEVIATION FOR EACH METHOD

stat-of-the-art features especially for scene image recognition.

We follow the setting in [30] and extract a 2-level PACT

descriptor for an input image, and thus a 1302 dimensional

feature vector will be obtained for each. The self-similarity

descriptor [31] which measures the similarity between visual

entities describing the structural information is the second type

of visual feature considered. We use 5 5 pixel patches and set

the correlation radius equal to 10 pixels in our experiments. The

dimension of the resulting feature vector is encoded by a code-

book of 600 visual words constructed by k-means clustering.

Grey-scale dense SIFT descriptors [1] are extracted from each

image to describe the image appearance information. The fea-

ture vectors are encoded by a codebook with 100 visual words

(also learned from k-means clustering). For SIFT descriptors

with the spatial pyramid matching (SPM) strategy [28], we

consider the descriptors pooled from three different scales

and with the same weights. To extract textural information,

we extract local binary pattern (LBP) [32] as another visual

feature, and the histograms of uniformly rotation-invariant

are calculated. Finally, HOG descriptors [2] (with 40

bins) are extracted to describe the shape information presented

in images.

2) Discussions: We compare our GL-MKL with

SVM/MKL-based fusion methods, and the MAP perfor-

mance is listed in Table IV. The settings for , LP_B and

the standard SVM with Gaussian kernel are identical to those in

our web video experiment. For MKL, NS-MKL and GL-MKL,

we construct 3 different base Gaussian kernels for each feature

type. The sigma values are determined by the mean of the

Euclidean distance between all pairs of training instances, and

we have as the sigma values for the

Gaussian kernels.

From this table, we can see that our GL-MKL is among

the best of the MKL-based fusion methods. It is worth noting

that, as pointed out in [30], the PACT descriptor exhibited

promising discriminating ability especially for scene image

data. Using the nonlinear SVMs with Gaussian kernels, it was

reported in [30] that the use of PACT achieved about 83% and

78% MAP accuracies for the Scene-15 and UIUC Sport Event

datasets, respectively. From our experiments, we observed that

our GL-MKL automatically chose PACT as the most dominant

feature after the feature fusion and learning stage, and thus

a comparable performance at 83.54% was achieved for the

Scene-15 dataset. As for the UIUC Sport Event dataset, in

which both scene (i.e., places, courts, environments, etc.) and

object (i.e., athletes, sport equipments, etc.) information are

TABLE V
SELECTED UCI DATASETS FOR OUR EXPERIMENTS ON

HETEROGENEOUS VARIABLE SELECTION

presented in images, our GLMKL considered features besides

PACT also describing representative information, and thus a

better performance at 81.11% was obtained. From the above

experiments on both video and image datasets, we successfully

verify the effectiveness of our GL-MKL for heterogeneous

feature fusion.

VI. EXPERIMENTS: VARIABLE SELECTION

In this section, we evaluate the performance of variable se-

lection on four UCI datasets2 (see Table V for detailed descrip-

tions). Among the datasets we consider, all contain heteroge-

neous variables except for the Ionosphere dataset. Besides, the

Wine dataset contains multiple classes to be recognized.

A. Comparisons With MKL-Based Variable Selection Methods

For the first part of the experiments on variable selection,

we compare our proposed GL-MKL with SVM (using all fea-

tures), standard MKL [13], and NS-MKL [19]. Gaussian ker-

nels are used for nonlinear mapping in SVM and all MKL-based

methods. To deal with heterogeneous variables, we allow our

proposed GL-MKL to choose among four different Gaussian

kernels (with different ) for each variable in the -dimensional

data space, so that our GL-MKL has a total of 4 base ker-

nels. We then group these kernels at feature level to enforce the

group lasso constraint. Recall that, since our approach learns

the optimal kernels for variable selection, we do not require any

validation data to select . For all our tests, we randomly select

80% of the data for training, and the remaining as the test set

data. Each experiment is repeated with 5 random trials, and we

present the average recognition rate and the average size of the

selected variable subset for each case, as shown in Tables VI

and VII.

We note that none of the MKL-based methods assume that

the optimal number of variables are known in advance, which is

practical for variable selection. For different datasets and vari-

able selection methods, the averaged recognition performance

and the size of the selected variable subset are presented in

Table VI.While the nonlinear SVM does not have the capability

of selecting discriminating variables, it is used as the baseline

classifier for comparisons. From Table VI, it can be observed

that the recognition rates reported by nonsparse MKL, MKL,

and our heterogenous variable selection method are statistically

comparable to each other. However, it is worth noting that our

GL-MKL resulted in the most compact variable subset for each

dataset, as shown in the last column of Table VI. Therefore,

these results verify the use of our method for variable selection

with comparable recognition performance achieved.

2The UCI datasets are available at http://archive.ics.uci.edu/ml/
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TABLE VI
PERFORMANCE COMPARISONS. FOR EACH DATASET AND FEATURE SELECTION APPROACH, THE AVERAGE RECOGNITION ACCURACY (%) AND ITS STANDARD
DEVIATION ARE PRESENTED, FOLLOWED BY THE AVERAGE SIZE OF THE SELECTED FEATURE SUBSET NOTED IN (). WHILE COMPARABLE RECOGNITION RATES
AMONG DIFFERENT APPROACHES ARE OBSERVED IN THIS TABLE, OURMETHOD SELECTS THE SMALLEST FEATURE SUBSET FOR EACH DATASET (HIGHLIGHTED

IN BOLD), AND THUS PRODUCES PREFERABLE FEATURE SELECTION RESULTS

Fig. 8. Weights determined for each base kernel and the corresponding vari-
able. The -axis is the index of (out of for each dataset), and
the -axis is the associated weight. Each grid in the figure indicates a variable of
interest, and the four components (red bars) in each grid represent the selected
kernel weights.

Fig. 8 shows the weight for each base kernel and the as-

sociated variable using our GL-MKL. For each variable (i.e.,

each grid in Fig. 8), we assign a total of base kernels, and

the variable selection results are depicted by their weights (i.e.,

red bars in Fig. 8). It can be seen that our approach selected a

compact variable subset (e.g., only 3 out of 31 variables were se-

lected inWpbc, as shown in Fig. 8), while the associated kernels

need not be sparse. These results support that our approaches is

able to provide a sparse yet discriminating variable subset, and

achieves comparable performance as standard methods do.

B. Comparisons With Sequential-Based Selection Methods

We also compare our results with IFFS [33], and SFFS [34],

which are state-of-the-art sequential-based variable selection

methods and are popular due to its simplicity in implemen-

tation. The major concern of this type of approaches is that

it needs to exhaustively search for the entire variable space

for variable selection. Since these two methods need the prior

knowledge of the variable subset size, we use the number of

variables selected by our GL-MKL (determined in Table VI),

and compare the recognition performance using the same size

of the variable subset.

From Table VII, we see that our method outperforms SFFS

and IFFS in terms of recognition on both heterogeneous or

homogeneous variable data. Comparing with sequential-based

variable selection methods, our method exhibits excellent

ability in automatically determining the least number of vari-

ables when producing satisfactory recognition performance.

To make the comparisons more complete, we also search for

the entire variable space on heterogeneous datasets using SFFS

TABLE VII
PERFORMANCE COMPARISONS WITH SEQUENTIAL-BASED VARIABLE

SELECTION METHODS. NOTE THAT BOTH SFFS AND IFFS USE ABOUT THE
SAME NUMBER OF VARIABLES SELECTED BY OUR METHOD

Fig. 9. Recognition performance of SFFS and IFFS onWdbc andWine datasets
using different numbers of variables. The one reported by our GL-MKL is de-
noted by in the figure, which achieves the best or comparable performance
with the smallest numbers of variables.

and IFFS, and we plot their corresponding averaged recogni-

tion rates in Fig. 9. It can be seen that, if the user does not

specify the preferable number of variables to be selected, one

will need to exhaustively search for the optimal size of the vari-

able subset using sequential-based methods. When using our

GL-MKL, the optimal number of variables can be selected au-

tomatically, while we achieve improved or comparable recog-

nition performance (marked by black in Fig. 9) as the sequen-

tial-based methods do.

VII. CONCLUSION

A novel group lasso regularized MKL (GL-MKL) was pro-

posed in this paper to address both heterogeneous feature fu-

sion and variable selection problems. To deal with such hetero-

geneous data, we proposed to assign a group of base kernels
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for each feature type or feature attribute. In order to automat-

ically determine the kernel weights and parameters for above

cases, we introduced a mixed norm constraint (i.e., group

lasso) into the existing MKL algorithm. This regularizer would

enforce the sparsity at the group level, while nonsparsity can

be preserved for base kernels within the same group, which al-

lows the MKL model to better describe the feature/variable ex-

tracted from different domains. It is worth noting that we do

not need to explicitly choose any particular normalization tech-

niques in the above problems, and we do not assume that the

size of the variable subset to be known (or search for the en-

tire variable space) as sequential-based selection methods do.

Our experimental results on both video and image datasets (for

heterogeneous feature fusion) and several UCI datasets (for het-

erogeneous variable selection) confirmed the effectiveness and

robustness of our proposed framework.
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