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Abstract—Increasingly advanced technology allows the moni-
toring of complex systems from a wide variety of perspectives.
But the exploration of such systems from a multi-channel
sensor information viewpoint remains a complicated challenge of
ongoing interest. As a development of modality transition theory,
we first present a novel multiplex network-based model for multi-
channel sensor information fusion. Toward this aim, projection
network and weighted network measures, including average
weighted clustering coefficient and graph energy, are exploited
both to implement data mining and quantitatively characterize
the studied system. In particular, as a validation, the model
is tested on spatial-temporal sensor measurements acquired
from oil-water flow experiments. The results suggest that our
analytical framework allows for the efficient characterization of
the spatial flow behaviors underlying the transition of different
flow patterns.

Index Terms—Signal analysis, Industrial multiphase flow, Mul-
tiplex network, Information fusion.

I. INTRODUCTION

W ITH the development of appropriate hardware, multi-

channel sensor system [1]-[3] has emerged as a key

component for providing a comprehensive understanding of

complex systems, ranging from physics and chemistry to

environment and biology. But the research about how to char-

acterize the intrinsic dynamics underlying the system under

consideration is still in its infancy. The measurements from

multi-channel sensor system of complex systems are always

featured by the strong nonlinearity and coupling characteris-

tics, which makes it difficult to address in a significant way.

This calls for intensive research to come up with a novel robust

information fusion model and to open up new research venues.

Complex network [4]-[6] theory has undergone an explosive

growth in recent years. The substantial and large number of

achievements emerging from different fields have demonstrat-

ed that complex network can serve as an efficient framework

for describing and characterizing complex systems [7]-[16].

Quite recently, complex networks have been obtained and

analyzed from time series, and many successful applications

have been achieved in different fields [17]-[27]. Ref [28]

presents a review of complex network analysis of time se-

ries. Moreover, because of the multiplex character of real-

world systems, the interest of complex network has gradually

changed from single-layer network to multilayer network

[29], especially multiplex networks [30]-[32]. Up to now, this

burgeoning theory has been applied in systems such as air

transportation systems [33], multiplayer online games [34],

information spreading [35]-[36] and diffusion process [37].

Oil-water two-phase flow [38]-[39], a primary kind of

multiphase flow, occurs in various industrial applications,

particularly in the exploitation of oil fields. This mixture flow

displays instabilities, transient and random behaviors, and can

thus be considered as a typical complex system. Chinese

petroleum industry has developed rapidly in recent years and

the low velocity oil-water two-phase flow remains in the center

of attention for many researchers. Oil phase can disperse in

continuous water phase in a variety of temporal-spatial con-

figurations defined as flow patterns [40]-[41]. Different flow

patterns exhibit different intrinsic characteristics. Revealing

the spatial local flow behaviors of low velocity oil-water flow

patterns represents a significant challenge of ongoing interest.

In this paper, based on multiplex network theory, we develop

a novel multiplex network-based sensor information fusion

model (MSIF model) for exploring multi-channel sensor in-

formation. In particular, we obtain the weighted projection

network in the MSIF model and then use the average weighted

clustering coefficient [42] and graph energy [43] to make

a quantitative assessment. By carrying out oil-water two-

phase flow experiments and applying our MSIF model to the

experimental measurements, we find that the complex spatial

flow behaviors governing the transitions of different oil-water

flow patterns can be effectively characterized.

This paper is organized as follows. Section I gives the

introduction of this research. The MSIF model is described

in Section II. Section III illustrates the DLDSC Sensor sys-

tem and oil-water flow experiments. Section IV provides the

application of MSIF model to multi-channel oil-water flow

measurements. Section V concludes the paper.

II. MULTIPLEX NETWORK-BASED SENSOR INFORMATION

FUSION MODEL



2

IN this paper, we develop a novel MSIF model to provide

an effective framework for analyzing multi-channel sensor

information. A schematic diagram of our model is presented

in the lower part of Fig. 1. For the double-layer sensor

measurements, for example
{
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}N

i=1

, k = 1, 2, ..., p and
{

xdown
k,i

}N

i=1

, k = 1, 2, ..., p , we develop a novel multiplex

network, namely modality-based multiplex network (MBMN),

with two layers to characterize the studied system. Note that,

multiplex network, where the links in different layers denote

distinct kinds of interactions between the same set of nodes,

is a crucial characteristic of multilayer network.

Based on our previously proposed modality transition-based

network theory [24], we perform the following steps to con-

struct the up-layer network Wup of the MBMN from the up-

layer signals
{

x
up
k,i

}N

i=1

, k = 1, 2, ..., p, where N represents

the length of each signal and p=4 denotes the number of

signals in one of the layers:

(a) Firstly, we divide each channel of the up-layer signals

into a multitude of sub-time series with the data length equal

to l via a sliding window, where the window slides along time

by a step of τ . For each window, we obtain four sub-time

series corresponding to the four up-layer signals, respectively.

(b) Then, we calculate the correlation between any two sub-

time series in the same window by the following equation

rxy =

∑l

i=1
(xi − x̄) (yi − ȳ)

√

∑l

i=1
(xi − x̄)

2

√

∑n

i=1
(yi − ȳ)

2

. (1)

All six correlation coefficients including r12, r13, r14, r23,

r24, and r34 are set as the elements of a modality

r12 → A, r13 → B, r14 → C, r23 → D, r24 → E, r34 → F .

(c) We rank the six correlation coefficients incrementally to

obtain a modality for each sliding window. For instance, if

A < C < B < D < F < E, then we obtain the modality

ACBDFE. The number of all possible modalities is equal to

the strings of the permutations of A, B, C, D, E and F , i.e.,

6! =720.

(d) We define each modality as a node and set all the nodes

in a fixed order. Then the directed and weighted connections

between the nodes can be determined in terms of the direction

and times of the transitions among modalities. For instance,

in the current step, we acquire the modality ABCDEF (e.g.,

node i), and in the next step, the modality become ABEFCD

(e.g., node j), so we get one directed edge from node i to j

and the w
up
ij pluses one. Self-transitions are excluded.

For the down-layer signals
{

xdown
k,i

}N

i=1

, k = 1, 2, ..., p,

we implement the analogous steps to obtain the down-layer

network W down of the MBMN. The order of nodes is the same

as the up-layer network. Finally, the above procedure allows

us to infer a two-layer multiplex network with 720 nodes

in each layer. The directed and weighted links in different

layers reflect different transition processes of the modalities,

which render our method particularly useful for uncovering

complicated system behaviors.

Then we derive a weighted projection network Wu−d from

the inferred MBMN, described as follows

Wu−d = Wup +W down, (2)

where Wup and W down are the directed and weighted matrices

of up-layer network and down-layer network, respectively.

In Fig. 1, we present a schematic diagram of the simplified

MBMN with 10 nodes in each layer and the corresponding

directed weighted projection network derived from this multi-

plex network. The node with identical number in the up-layer

network and down-layer network corresponds to the same

modality. The structural skeleton of the network is drawn by

the software MuxViz [44].

Based on the inferred directed weighted projection network,

we calculate the average weighted clustering coefficient and

the graph energy to give a quantitatively characterization of the

dynamics. The weighted clustering coefficient [42] of node i

is defined as follows

Cu−d
i =

∑

j,k

wu−d
ij wu−d

jk wu−d
ki

∑

j,k

wu−d
ij wu−d

ki

(j 6= k) , (3)

where wu−d
ij represents the weight of the edge from node i to

node j in the weighted projection network Wu−d. The average

weighted clustering coefficient for the Wu−d can be calculated

by

〈CWu−d〉 =
1

N

N
∑

i=1

Cu−d
i . (4)

The graph energy [43] for a weighted projection network

Wu−d is the sum of the absolute value of the whole eigen-

values of the network

EWu−d =

N
∑

i=1

|λi| , (5)

where λi denotes the i-th eigenvalue of the network Wu−d

and |λi| means the absolute value of λi.

Fig. 1. (Color online) Schematic of multiplex network-based sensor informa-
tion fusion model.
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III. MULTI-CHANNEL SENSOR MEASUREMENT SYSTEM

AND MULTIPHASE FLOW EXPERIMENTS

A. Measuring circuit for the DLDSC Sensor measurement

system

As an extension of the four-sector distributed conductance

sensor [39], we technically design a double-layer distributed-

sector conductance sensor (DLDSC Sensor), as shown in Fig.

1. In the upper zone of Fig. 1 we give a schematic diagram of

the voltage measurement circuit for one sector in the sensor.

The other sectors are the same. We obtain the voltage Vm

following the real-time variation of the multiphase flow in

the relative sector of the pipe. The voltage Vref across a

fixed resistance is captured as a reference to calibrate Vm.

Note that, the measurement circuit consists mainly of the

voltage follower, amplifier, phase demodulator and low-pass

filter. The integrated circuit AD630 is selected as the phase

sensitive demodulator. The cut-off frequency of the low-pass

filter circuit is set as 30 Hz. In particular, the 20 kHz sinusoidal

exciting source is utilized in our voltage measurement circuit.

The data acquisition equipment is the National Instrument

Corporations data acquisition card PXI 4472 (with synchro-

nized acquiring function and eight sampling channels). The

data processing part is realized under LabVIEW operating

environments, which allows realizing real-time data waveform

displaying, storing and analyzing.

B. Experiments and data acquisition

We systematically carry out oil-water two-phase flow exper-

iments in a vertical 20-mm-diameter pipe at Tianjin University.

The flow loop facility includes a water tank, an oil tank, two

peristaltic metering pumps, a mixing tank, a vertical testing

pipe, some hand ball valves and our DLDSC Sensor, as shown

in Fig. 2. The experimental media are tap-water and white oil

with a density of 856kg/m3 and a viscosity of 11.984mPas.

The DLDSC Sensor consists of two identical parts, namely,

up-structure and down-structure sector sensors, which is spe-

cially designed for capturing spatial oil-water flow information

from different pipe positions. The experimental process can

be described as follows: Firstly, the water and oil are pumped

into the vertical pipe respectively by two peristaltic metering

pumps, which can accurately control the inlet flow parameters

of the flow media in light of the pre-defined water-cut and

total flow velocity. The oil and water phase first flow through a

long vertical pipe until the oil-water flows reach a stable state,

namely, until the water and oil adequately mix and a steady

flow pattern occurs, and then the double-layer multi-channel

experimental information of oil-water flows are acquired via

the DLDSC Sensor measurement system. The sampling rate

is 4 kHz and the sampling duration for each measurement is

60s. We acquire eight-channel measurements for one specified

flow condition in which the up-structure and down-structure

sectors of the DLDSC Sensor get four channels each. Then we

change the water-cut and the total flow velocity, and repeat

the above operation to generate a new flow condition and

acquire again the experimental data. This process lasts until

all the flow conditions are fulfilled. In this experiment, the

total flow velocity is in the range of 0.0184m/s-0.2579m/s

and the water-cut is set as 70%, 80%, 84%, 94%, and 98%,

respectively. Meanwhile, the high-speed video camera is used

to help classify different experimental flow patterns. During

the experiments, three typical water continuous flow patterns

are observed, i.e., oil-in-water slug flow (D OS/W), oil-in-

water bubble flow (D O/W) and oil-in-water VFD flow (VFD

O/W).

Fig. 2. (Color online) Schematic of vertical upward oil-water two-phase flow
loop facility and DLDSC Sensor.

IV. CHARACTERIZING SPATIAL OIL-WATER FLOW

BEHAVIORS VIA MSIF MODEL

A
S a common type of multiphase flow, oil-water flows

present strong nonlinear dynamics. Regrettably, despite

the tremendous amount of work done on oil-water flows,

the complicated flow mechanism underlying low velocity oil-

water flows is still elusive. In this section, we introduce the

MSIF model and apply it to the fusion of multi-channel

DLDSC Sensor measurements. In concrete terms, we derive

MBMN and projection network for each flow condition. And

subsequently two weighted network measures are extracted

to give the quantitatively characterization. All the calculated

results are shown in Figs. 3-7, where Kw denotes the water-

cut and Vm represents the total flow velocity. As can be

seen, for each fixed water-cut, the average weighted clustering

coefficient and graph energy exhibit obviously different values

for different total flow velocities. They present monotone

increasing trends, which allow characterizing the evolution of

spatial complicated flow behaviors and provide an intuitively

and quantitatively evidence about the power of our model.

In concrete terms, when the water-cut (Kw) is not very

high, such as Kw=70%, oil-water flows gradually evolve from

oil-in-water slug flow to oil-in-water bubble flow with the

increase of total flow velocity (Vm). When the Vm is low,

the oil phase of the mixture flow gathers into cap-shaped big

oil slugs and slithers slowly from the bottom up, namely,

the oil-water flows appear as vertical oil-in-water slug flow

(D OS/W). Correspondingly, the network measures shown in

Figs. 3-5 exhibit small values for such flow pattern, which

exactly serve as a good indicator for the quasi-periodic flow

behavior and heterogeneous flow feature in such flow pattern.

In addition, the increasing trend of the measures demonstrates

that the coalescence and slippage between the oil and water
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become weaker with the increase of Vm, i.e., the small scale

oil slugs and oil droplets become more difficult to polymerize

into large oil slugs. With the continuous increase of Vm, the

turbulence kinetic energy of the mixture flow is enhanced.

When the velocity reaches a critical value, the oil slugs die

away and the oil-in-water bubble flow (D O/W) occurs. The

oil phase exists over a wide range of scales, randomly flowing

up in the water continuum. This transition mainly results from

the fact that the oil slugs are broken into oil bubbles induced

by the increased Vm. When mapping these features into the

relevant multiplex networks, the network measures of the

projection networks maintain the rising trend, suggesting that

the spatial heterogeneous distribution is gradually weakened

and the spatial local flow behaviors start exhibiting stochastic

feature. In particular, the increasing trend of the measures

allows distinguishing spatial oil-water flow structures with

different form and size, particularly for oil slugs and bubbles

under consideration. When the water-cut (Kw) and total flow

velocity (Vm) are high, e.g., the Kw exceeds 94% and the Vm

overs 0.2210m/s, the oil bubbles are broken into very fine oil

droplets with almost uniform smaller diameters. Meanwhile,

the flow patterns evolve from oil-in-water bubble flow (D

O/W) to oil-in-water VFD flow (VFD O/W). Correspondingly,

the network measures derived from these two flow patterns, as

shown in Figs. 6-7, display an increasing trend and their values

reach the peak at VFD O/W flow, indicating that the VFD O/W

flow presents a more random spatial local flow behavior and

a homogeneous spatial distribution of oil droplets.

These interesting results suggest that the average weighted

clustering coefficient and the graph energy of the inferred

weighted projection networks allow the characterization of

the spatial flow behaviors associated with the change of the

total flow velocity and water-cut. In summary, the rise of

the network measures happens after the change of the spatial

local flow behaviors from heterogeneity to homogeneity, which

corresponds to the flow transition from D OS/W flow pattern

to D O/W flow pattern and then to VFD O/W flow pattern.

In particular, the network measures can efficiently reflect the

distinct local flow structures associated with the form and

size of oil slugs and oil bubbles. These findings render our

MSIF model particularly efficient to characterize spatial local

flow behaviors of the low velocity oil-water two-phase flow in

vertical pipes.

Fig. 3. (Color online) Distribution of the network measures with the change
of total flow velocity for different flow conditions when Kw=70%. (a) Graph
energy E

Wu−d (b) Average weighted clustering coefficient 〈C
Wu−d 〉.

Fig. 4. (Color online) Distribution of the network measures with the change
of total flow velocity for different flow conditions when Kw=80%. (a) Graph
energy E

Wu−d (b) Average weighted clustering coefficient 〈C
Wu−d 〉.

Fig. 5. (Color online) Distribution of the network measures with the change
of total flow velocity for different flow conditions when Kw=84%. (a) Graph
energy E

Wu−d (b) Average weighted clustering coefficient 〈C
Wu−d 〉.

Fig. 6. (Color online) Distribution of the network measures with the change
of total flow velocity for different flow conditions when Kw=94%. (a) Graph
energy E

Wu−d (b) Average weighted clustering coefficient 〈C
Wu−d 〉.
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Fig. 7. (Color online) Distribution of the network measures with the change
of total flow velocity for different flow conditions when Kw=98%. (a) Graph
energy E

Wu−d (b) Average weighted clustering coefficient 〈C
Wu−d 〉.

V. CONCLUSION

Fusing and analyzing multi-channel sensor information has

unquestionably become a significant procedure for the com-

prehensive characterization of complex systems. Here a novel

MSIF model is established aiming at providing an effective

framework for exploring multi-channel sensor information.

We first infer MBMN from double-layer multi-channel sensor

measurements. Then projection network and weighted network

measures, including average weighted clustering coefficient

and graph energy, are exploited both to characterize the

studied systems. Especially, by applying our MSIF model to

experimental DLDSC Sensor measurements of vertical oil-

water two-phase flow, we find that the network measures are

sensitive to the change of local flow structures and particularly

allow the characterization of spatial local flow behaviors of

low velocity oil-water flows. Our findings suggest that our

MSIF model enables to efficiently fuse multilayer multi-

channel signals for characterizing the complicated dynamical

behaviors underlying time dependent complex system. Taking

into account the generality of our MSIF model for information

fusion, in the future research, we will attempt to expand and

apply this model to other fields, such as brain network analysis

and industrial big data mining.
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