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Abstract

This study presents a novel myoelectric pattern recognition strategy towards restoration of hand

function after incomplete cervical spinal cord Injury (SCI). High density surface electromyogram

(EMG) signals comprised of 57 channels were recorded from the forearm of 9 subjects with

incomplete cervical SCI while they tried to perform 6 different hand grasp patterns. A series of

pattern recognition algorithms with different EMG feature sets and classifiers were implemented

to identify the intended tasks of each SCI subject. High average overall accuracies (>97%) were

achieved in classification of 7 different classes (6 intended hand grasp patterns plus a hand rest

pattern), indicating that substantial motor control information can be extracted from partially

paralyzed muscles of SCI subjects. Such information can potentially enable volitional control of

assistive devices, thereby facilitating restoration of hand function. Furthermore, it was possible to

maintain high levels of classification accuracy with a very limited number of electrodes selected

from the high density surface EMG recordings. This demonstrates clinical feasibility and

robustness in the concept of using myoelectric pattern recognition techniques toward improved

function restoration for individuals with spinal injury.

Index Terms

Surface EMG; myoelectic control; pattern recognition; spinal cord injury

I. Introduction

A number of robot devices have been designed to help provide rehabilitation therapy for

patients with different neurological injuries such as hemiparetic stroke, cerebral palsy,

multiple sclerosis, Parkinson’s disease, or spinal cord injury (SCI) [1, 2]. These robot

devices can assist users to perform exercises which involve movement of the disabled limb

in a passive way (as they relax) or in an active way (as they intend to contribute to the

movement). While passive movements have been proved useful to improve motor abilities,
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voluntary user interactions are very important to promote robot-aided therapy and enhance

therapeutic effect for patients with neurological disorders [3–5].

Surface electromyogram (EMG) signals contain rich motor control information from which

the user’s intention can be detected with appropriate signal processing methods. Thus

surface EMG can be used as voluntary command signals for controlling artificial devices.

For example, EMG signals from amputee’s residual muscles have been used to control

prosthesis for more than 40 years [6–9]. Myoelectric control has also been reported in robot–

aided therapy for stroke subjects, primarily based on a conventional “on-off” or proportional

control strategy [10, 11]. In the SCI population, EMG signals from muscles with retained

voluntary contraction have been utilized as neuroprosthesis control signals using functional

neuromuscular stimulation [12, 13].

Myoelectric pattern recognition has recently attracted increasing attention in the

development of dexterous myoelectric control systems. The advancement in EMG feature

extraction and classification techniques provides a powerful approach for identification of

various movement intentions of the missing or disabled limb. This forms a foundation for

development of algorithms for myoelectric control of various artificial devices (e.g., a

prosthetic arm, a virtual arm or a training robot). While most of the EMG pattern recognition

studies have been focused on improved myoelectric prosthesis control for individuals with

different levels of upper limb amputation [6–9], very recently EMG pattern recognition has

also been applied to paretic muscles of stroke subjects to extract motor control information

targeting improved stroke rehabilitation [14, 15].

Individuals with incomplete SCI may retain partial volitional EMG from their muscles

below the level of injury. However, a systematic evaluation of the EMG from these muscles

as a control signal for artificial devices is lacking. In fact, for the SCI population EMG

recording is sometimes used as an assessment approach for therapy or treatment rather than

a control signal for artificial devices. As a result, it is presently unclear how much motor

control information can be extracted from EMG signals of muscles partially paralyzed by

SCI.

After cervical SCI, arm and hand muscles may have different levels of paralysis, and be

incapable of completing upper limb movements without assistance (from therapists or

robotic devices). It is very important to improve the restoration of upper limb function, due

to its importance in daily activities. The specific goal of this study was to determine whether

EMG signals recorded from arm and hand muscles of individuals with incomplete cervical

SCI can be used to detect different hand grasp patterns. The intention of these patterns, if

detectable, can be used to trigger or control a movement assistive device for upper limb

voluntary exercise or rehabilitation training.

High density surface EMG recording and pattern recognition analysis methods were used in

this study. We hypothesize that different hand grasp intentions can be reliably classified

through high density surface EMG recording and pattern recognition analyses. Furthermore,

it is possible to select only a very limited number of EMG channels from the high density

recordings to maintain high levels of classification accuracy, thus demonstrating clinical

feasibility and robustness in the concept of using myoelectric pattern recognition techniques

to extract motor control information toward improved function restoration for incomplete

SCI subjects.
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II. Methods

A. Subjects

Nine subjects with incomplete cervical spinal injury (ASIA C or D) participated in this

study. The study was approved by the Institutional Review Board of Northwestern

University (Chicago, IL, USA). All our subjects were recruited from the Clinical

Neuroscience Research Registry at the Rehabilitation Institute of Chicago (Chicago, IL,

USA). All subjects gave their written consent before the experiment. The experimental

procedures were conducted in accord with the Helsinki Declaration of 1975. Demographic

and clinical measures for the subjects are detailed in Table I.

B. Data Acquisition

A multiple-channel surface EMG system (REFA 128 model, TMS International BV,

Enschede, Netherlands) was used for surface EMG recording of the forearm and hand

muscles in the weaker side of each SCI subject. As shown in Figure 1, a total of 57 surface

EMG electrodes were used, among which 48 were placed in a 6×8 grid formation over the

forearm, with a reference electrode located on the olecranon (each channel also had a

common feedback subtraction of the average of all the recording channels). The size of each

individual electrode was 10 mm in diameter while the recording surface was 5 mm in

diameter. To facilitate electrode placement, 8 electrodes were equally spaced and attached to

a stretchable strap custom designed for this experiment. After putting each stretchable strap

around the forearm, the center to center distance between two consecutive electrodes

depends on the size of the arm. The six stretchable straps were equally placed around the

forearm at different locations from approximately 12.5% to 75.0% (with 12.5% increments)

of the entire distance from the medial epicondyle of the humerus to the styloid process of the

ulna. Before electrode placement, the skin was shaved, lightly abraded, and cleaned with

alcohol; and conductive gel was applied to each electrode. In addition to 48 electrodes on

the forearm, three electrodes were placed on the first dorsal interosseous (FDI), the thenar

group and the hypothenar group muscles, respectively. The surface EMG signals were

sampled at 2k Hz per channel, with a system band pass filter setting at 20–500 Hz.

C. Experimental Protocol

Each SCI subject was comfortably seated on a chair with the tested forearm relaxed on a

height-adjustable table. The subject was instructed to perform six different grasp patterns as

shown in Figure 2, including power grip, cylindrical grip, key grip, tool grip, open pinch,

and fine pinch. The experiment comprised of 6 trials. Each trial contained 8 repetitions of

one hand grasp pattern. For each repetition of a pattern, the subject was instructed to

perform (or intend to perform) the task with a moderate or comfortable force, hold the task

for 5 seconds and then relax between repetitions. Subjects did not practice the grasp patterns

before or during the experiments. Each subject received auditory cues from the experimenter

when to start and stop each repetition of contraction. Sufficient relaxation time between

repetitions of each task was allowed to help the SCI subjects decrease muscle spasticity or

involuntary EMG activity before performing the next task. The subject was allowed to

sufficiently rest between trials to avoid muscular and mental fatigue. In addition to the 6

hand grasp patterns, the spontaneous EMG signal during hand relaxation was also recorded

as the 7th task for each subject.

D. EMG Pattern Recognition Analysis

For each hand grasp pattern, the recorded EMG signal was composed of eight active

segments corresponding to eight repetitions of muscle contraction. An EMG amplitude

based data segmentation scheme was used to manually determine the onset and offset of the
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active segments for each repetition, which were the same for all the channels. For each

active segment, 57-channel EMG data were further divided into a series of overlapping

analysis windows (window length: 256 ms, overlapping step: 32 ms) [16, 17]. The

overlapped windowing scheme was used to enhance both utilization of limited data stream

and continuity of decision output by the classifier.

For each analysis window, a set of features was extracted to characterize the EMG data for

classification of the intended hand grasp patterns. Three feature sets were investigated in this

study including the time domain (TD) feature set [18], the combination of autoregressive

(AR) model (6-order as suggested by Farina and Merletti [19]) coefficients and the root

mean square (RMS) of the signal as a feature set (AR+RMS) [20], and the TD+AR+RMS

feature set [21]. These feature sets have been shown to be effective signal representation for

EMG pattern recognition with relatively low computational complexity [22–26]. The feature

set was extracted on each of the 57 EMG channels and then concatenated into a feature

vector.

The high density surface EMG recording resulted in very high-order n-dimensional feature

vectors (n = 228 for TD feature set; n = 399 for AR+RMS feature set; n=627 for TD+AR

+RMS feature set) for pattern classification. To reduce feature dimensionality, two methods,

i.e. principal component analysis (PCA) [24] and uncorrelated linear discriminant analysis

(ULDA) [27], were used respectively. PCA is a mathematical procedure that uses an

orthogonal transformation to convert a set of correlated variables into linearly uncorrelated

variables called principal components. The first principal component has the largest possible

variance, and each succeeding principal component in turn has the highest variance possible

under the constraint that it be orthogonal to the preceding components. ULDA employs an

optimal transformation that projects high dimensional data into a lower dimensional space

with minimized within-class distance and maximized between-class distance. Features in the

transformed space are uncorrelated, which is attractive for feature dimension reduction.

Two classifiers were used respectively in this study. They are the linear discriminant

analysis (LDA) classifier and the k-nearest neighbor (KNN) classifier (k=5) [28]. For each

classifier, a post-processing method, namely the majority vote [16], was used to improve the

classification performance. Majority vote takes advantage of the increased frequency of

class decisions by overlapping windows. For the decision stream produced by the

overlapped windowing scheme, it has been demonstrated that majority vote can be used to

remove spurious misclassifications [16]. In this study, data analysis windows of 256 ms

were used to extract features and produce a decision at 32 ms intervals, which allowed for

17 decisions (the current decision, the previous 8 decisions and the future 8 decisions) to be

used in majority vote to choose the decision that occurs most frequently. The effect of

majority vote on classification accuracy was evaluated by one-way repeated-measures

ANOVA.

E. Performance Evaluation

To evaluate classification performance, an eight-fold cross-validation scheme was used. The

EMG data within any random seven active segments were assigned as training dataset, and

sequentially the EMG data of the remaining active segment were used as testing dataset. The

performance accuracy for each intended hand pattern was the percentage of correctly

classified windows over all the analysis windows in its testing dataset. An overall

performance was then calculated as the percentage of correctly classified windows over all

the analysis windows in the testing datasets across all hand grasp patterns. The Linear Mixed

Model (LMM) in SPSS 16.0 (SPSS Inc., Chicago, IL, USA) was used to perform a Two-

way Repeated Measures ANOVA (Two-way RM-ANOVA) on the classification accuracy.
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Bayesian Information Criteria (BIC) was used to determine the best covariance structure for

repeated measurements on subjects in the RM-ANOVA model.

F. Channel Reduction

The high density surface EMG recording was used to evaluate how much control

information one can extract with the maximum possible number of EMG signals from

partially paralyzed muscles of SCI subjects. However, it is impractical to use the high

density surface EMG as a source for real time control. Therefore, a preliminary study

seeking a practical number of EMG channels was conducted using a strategy of sequential

forward selection (SFS) developed in [17].

III. Experimental Results

A. The Effect of Feature Dimension on Classification Performance

Figure 3 shows the effect of the number of feature dimensions on the classification

performance averaged across all the subjects, using combination of the TD feature set and

the LDA classifier as an example, where the feature dimensions were reduced via the ULDA

and the PCA, respectively. The comparison between the two methods indicates that the

ULDA is more efficient than the PCA in reducing feature dimensions for classification.

With 7 classes used in this study, the maximum number of the linearly independent feature

dimensions derived from the ULDA is 6. These 6 feature dimensions from the ULDA were

used for the following classification analyses with different features sets and classifiers.

B. Classification of Intended Movements

A series of pattern recognition analysis was performed using the TD, AR+RMS and TD+AR

+RMS feature sets in combination with the LDA and KNN classifiers. Figure 4 shows

examples of the confusion matrices to illustrate the class-to-class performance of two

specific subjects (Subjects 1 and 2), with and without application of majority vote,

respectively. The majority vote significantly improved the classification performance.

Across all subjects the average overall classification accuracy without majority vote was

97.20 ± 4.0% while the accuracy increased to 97.93 ± 3.3% with majority vote (P<0.001).

Examination of the class-to-class results revealed that the misclassifications were not

consistent among subjects. Figure 5 presents the box plots of the overall classification

accuracies from 9 subjects with different combinations of feature sets and classifiers, while

the mean and standard deviation of each subject’s performance is demonstrated in Table II.

For every combination of feature sets and classifiers, the average overall classification

accuracy was higher than 97%. It was found that Compound Symmetry (CS) had the best

model fit for our repeated-measures data. Pairwise comparisons using the Bonferroni

correction with a family confidence coefficient of 0.95 were calculated to determine

significant effects in the RM-ANOVA post-hoc tests. It was found that feature set had a

significant effect on classification accuracy (F[2, 42] =5.60, P=0.01), while classifier did not

significantly affect the classification performance (F[1,42] =1.26, P=0.27). The classification

accuracy derived from the AR features was lower than that using the TD (P=0.38) or TD

+AR+RMS (P=0.01) features; while the classification accuracy derived from the TD

features was not significantly different from the TD+AR+RMS features (P=0.24). It is noted

that across all subjects, the maximum difference in average overall classification accuracy

was only 0.5% with different feature sets or classifiers; while for individual subjects, the

maximum overall classification difference was 2.2%.
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C. Preliminary Channel Reduction Analysis

The preliminary channel selection analysis indicated that it was feasible to greatly reduce the

number of EMG channels while maintaining high classification accuracy. Figure 6 shows an

example of performance using the different feature sets and the LDA classifier. Across all

subjects, the three EMG channels selected using the SFS method achieved higher than 90%

average overall classification accuracy. With increase of the EMG channels to 8, the overall

classification accuracy tended to saturate (at higher than 95%). Little improvement was

achieved with further increase of EMG channels.

IV. Discussions and Conclusions

This study focuses on assessment of a novel application of myoelectric pattern recognition

techniques for patients with neurological disorders. In contrast to success achieved in

prosthesis control using EMG pattern recognition techniques, myoelectric pattern

recognition based systems have rarely been designed for individuals with neurologic

injuries. A previous study [14] assessed classification of intended hand grasp patterns of

stroke subjects with untargeted placement of ten surface electrodes on paretic forearm and

hand muscles, and achieved relatively low mean classification accuracies (71.3% for

moderately impaired subjects and 37.9% for severely impaired subjects). Taking advantage

of high density surface EMG recording, we demonstrated that high accuracies were achieved

in classification of 20 different elbow, wrist, hand, and finger/thumb movements, suggesting

that substantial motor control information can be extracted from paretic muscles of stroke

subjects. A channel reduction analysis on the high density surface EMG further

demonstrated the clinical feasibility of using such information for myoelectric control [15].

By testing a novel application of high density surface EMG recording and pattern

recognition techniques in individuals with a different nature of neurologic injury from stroke

(i.e. incomplete SCI), the current study further assesses the concept of applying myoelectric

pattern recognition techniques for improved rehabilitation after neurologic injuries. We have

demonstrated that applying pattern recognition techniques to high density surface EMG

recordings achieved high accuracies in classification of 7 different intended hand patterns (6

hand grasp patterns and the hand rest pattern) of 9 incomplete SCI subjects, suggesting that

substantial motor control commands can be extracted from partially paralyzed muscles

following incomplete SCI. This study, together with the previous one in stroke [15],

supports the concept of using myoelectric pattern recognition techniques to control EMG

driven therapy or assistive devices toward improved motor recovery for individuals with

neurologic disorders.

In particular, the high accuracies achieved in classification of the intended hand grasp

patterns imply a great potential for intuitive control of assistive devices towards improved

restoration of hand function, which is very important due to its importance in daily

activities. Indeed, a survey showed that regaining arm and hand function would be most

important to quadriplegics in terms of improving quality of life [29]. While robotic training

of the lower extremity has been extensively studied in the recovery of gait function after SCI

[30–33], several very recent studies have performed upper extremity robotic training in

incomplete cervical SCI and demonstrated the effectiveness of such training for upper limb

function improvement [34–36]. In this regard, the novel myoelectric pattern recognition

strategy proposed in this study has great potential for improvement of hand function after

incomplete SCI by promoting EMG-driven artificial devices for active and dexterous robotic

training.

The six hand patterns used in this study were selected from the Cutkosky’s grasp taxonomy

[37] based on the usage frequency of different grasp types. The typical activities of daily
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living can be accomplished using a finite set of predefined grasps. A recent study has shown

that a small number of grasp types comprises the majority of typical daily activities. The six

selected hand patterns (i.e. power grip, cylindrical grip, key grip, tool grip, open pinch, and

fine pinch) comprise nearly 80% of the daily usage time [38] and thus can be viewed as

shortcuts for the main daily operations of every human. Because of this, the latest prosthetic

arm, the DEKA arm, also chose to have these six hand patterns [39]. Compared with other

movements (such as wrist rotation or flexion/extension), the hand patterns are more complex

and difficult to decode using conventional myoelectric control techniques (i.e. based on

EMG amplitude). Thus these patterns were selected to test the proposed myoelectric pattern

recognition strategy. We acknowledge that development of a practical assistive device for

cervical SCI subjects may involve elbow and wrist movements in addition to hand patterns.

The control of such a device may require a pattern recognition strategy or a combination of

pattern recognition and conventional strategies. Further studies are necessary to determine

the most appropriate control strategy.

Similar to our previous studies [15, 17], a preliminary channel selection analysis indicates

that it was possible to maintain high levels of classification accuracy with only a very

limited number of EMG channels. This demonstrates clinical feasibility and robustness of

the proposed myoelectric pattern recognition strategy. Although with high density surface

EMG much redundant information exists among different channels, such recording can be

used to optimize electrode number and location to facilitate implementation of a practical

myoelectric control system.

Compared with myoelectric prosthesis control, there are also several factors that are unique

to myoelectric control for individuals with SCI. For example, it is likely that the voluntary

EMG activities are contaminated by involuntary muscle contractions as a result of muscle

spasticity. As in our previous study with hemiparetic stroke subjects [15], additional rest

periods were allowed for SCI subjects to decrease the muscle spasticity or involuntary EMG

activities. It is currently unclear how relatively high levels of muscle spasticity may affect

the classification performance. A previous study indicated that the classification

performance may not be compromised as long as the interference (e.g., electrocardiography

artifacts) was consistently present in specific channels for the tested classes [40]. Further

experimental studies are necessary to investigate the effect of strong muscle spasticity on

classification performance by comparing the classification accuracies in presence or absence

of such spasticity. In addition to classification accuracy, involuntary EMG activity may also

compromise muscle activity onset detection using conventional amplitude threshold based

methods, thus making it a challenging task to automatically detect onset or offset of a

muscle activity. Appropriate methods other than conventional amplitude thresholding should

be developed for automatic onset detection. This is particularly important for

implementation of a myoelectric system for subjects with neurological disorders (e.g.,

stroke, SCI) using a conventional control strategy, or using a combination of conventional

and pattern recognition control strategies. We have shown that voluntary EMG bursts can be

distinguished from spurious background spikes in the nonlinear dynamic or complexity

domain. Based on this, a muscle activity onset detection method was developed against

those spurious background spikes (such as spontaneous tonic spikes) [41, 42].

This study is currently limited by only recording from incomplete SCI subjects (ASIA C and

D). A recent study [43] indicates that EMG signals from lower extremities of patients with

motor complete cervical SCI can be detected in response to voluntary movement attempts,

and thus it is feasible to use these signals as a command source for motor neuroprosthetic

control. The study reports that significant EMG activity was evident in 89% of the 192

examined muscles of 12 clinically complete cervical SCI patients during their attempted

movements of the foot and lower limb [43]. For clinical complete cervical SCI, it would be
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interesting to examine whether high density surface EMG can be used to sense isometric

muscular activity in the upper limb muscles even no movement can be produced. The

muscular activity, if captured by high density surface EMG, can be potential command

signals for a myoelectric system with conventional or pattern recognition control strategy.

This would promote the restoration of upper limb function for clinically complete SCI

subjects (ASIA A and B).

Finally, it is worth noting the SCI subjects in this study had varying levels of impairment

(Injury level: C4-C8; ASIA class: C and D; UEMS: 30–45), and the class-to-class errors are

not consistent among different subjects. In particular, the first two subjects (ASIA C) with

the worst classification performance had the lowest UEMS (30 for both) among all the

subjects. This suggests that the EMG activity and classification performance may be

affected by different levels or degrees of functional impairment. The variance in daily

activity and therapeutic interventions may also contribute to the different EMG patterns and

their classification. It follows that the myoelectric pattern recognition control system should

be individually customized for SCI subjects. The design should consider motor control

features of each specific subject. The selection of target tasks should also reflect the degree

of functional impairment and injury level, and the need of each specific subject.

In conclusion, this study presents a novel framework toward hand function restoration using

high density surface EMG recording and pattern recognition analysis for individuals with

incomplete cervical SCI. High accuracies can be obtained in classification of seven intended

hand movements, and the classification performance can be maintained with a very limited

number of EMG channels selected from the high density surface EMG recording. This

suggests that with myoelectric pattern recognition techniques substantial motor control

information can be extracted from partially paralyzed muscles of SCI subjects. Such

information will potentially enable volitional control of assistive devices, thereby facilitating

function restoration for individuals with spinal injury.
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Fig. 1.

Recording of 57-channel surface EMG from forearm and hand muscles of an SCI subject.

The bottom figure shows the stretchable strap used for the recording on which 8 surface

electrodes are evenly distributed.
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Fig. 2.

Illustrations of six different hand grasp patterns used in this study.
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Fig. 3.

The effect of the number of feature dimensions on the classification performance averaged

cross all the subjects using ULDA and PCA respectively. The TD feature set and the LDA

classifier were used in this example.
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Fig. 4.

Class-to-class confusion matrices derived from Subject 1 and Subject 2, with and without

application of majority vote (MV) for classification, respectively. Results are averaged as

percentages. The results along the main diagonal, shaded in black, are correct classifications

(accuracy) and those off the main diagonal, shaded in grey, are incorrect classifications

(error rate). The TD feature set and LDA classifier were used in this example.
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Fig. 5.

Box plots of the overall classification accuracies from 9 subjects with different combinations

of feature sets and classifiers
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Fig. 6.

The classification performance with limited number of EMG channels selected using the

SFS method. The LDA classifier was used with different feature sets in this example.
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