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Abstract: To overcome the real-time problem of maximum power point tracking (MPPT) for partially

shaded photovoltaic (PV) systems, a novel nature-inspired MPPT controller with fast convergence and

high accuracy is proposed in this paper. The proposed MPPT controller is achieved by combining salp

swarm algorithm (SSA) with grey wolf optimizer (GWO) (namely, SSA-GWO). The leader structure

of the GWO algorithm is introduced into the basic SSA algorithm to enhance the global search

capability. Numerical simulation on 13 benchmark functions was done to evaluate the proposed

SSA-GWO algorithm. Finally, the MPPT performance on PV system with the proposed SSA-GWO

algorithm under static and dynamic partial shading conditions was investigated and compared with

conventional MPPT algorithms. The quantitative and simulation results validated the effectiveness

and superiority of the proposed method.

Keywords: Maximum Power Point Tracking (MPPT); Salp Swarm Algorithm (SSA); Grey Wolf

optimizer (GWO); Partially Shaded Photovoltaic (PV) System

1. Introduction

Over the past decades, the development of renewable energy, especially solar energy, has gained

much attention worldwide due to its sustainability, maintenance-free and noise-free characteristics, etc.

However, the operation of photovoltaic (PV) systems is highly dependent on external factors, such as

solar irradiance and temperature, which has huge implications for the output of PV systems. Therefore,

maximum power point tracking (MPPT) controllers are essential to maintain efficient operation of PV

modules in a PV system [1]. Recently, a number of references have proposed different MPPT methods

based on the power–voltage (P-V) characteristic of the PV modules. In the case of uniform irradiance,

the PV array characteristics curve exhibits single peak which can be tracked using conventional MPPT

algorithms such as Perturb & Observe (P&O) method [2], Incremental Conductance (IC) method [3],

and Hill Climbing method [4]. However, when the PV array is exposed to non-uniform radiation, i.e.,

partial shading conditions (PSCs), the P-V characteristic curve would exhibit multiple peaks and the

conventional MPPT methods mentioned above will be trapped in local maximum power point (LMPP),

resulting in high power losses of the PV system [5].

To solve the above problem, different algorithms have been proposed. In [6], an improved IC

algorithm, which is able to locate the global maximum power point (GMPP) by identifying all the
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LMPPs and GMPP was proposed, but a wide range of inherent information about PV modules are

needed. The GMPP tracking (GMPPT) method proposed in [7] is to scan the P-V curve by increasing

the output voltage of PV arrays step by step and then employ the P&O algorithm to locate the GMPP.

However, the tracking speed is rather slow, and it requires a high-precision and fast-speed digital

processor to implement the method, which will increase the overall cost of the MPPT controller.

Other references based on conventional MPPT methods can also be found in [8–10]. In addition,

the soft computing methods such as artificial neural network, the fuzzy logic control, bio-inspired

algorithms, and chaos theory have been investigated by numerous studies due to their good GMPP

tracking performance and simple implementation. Fuzzy logic algorithm [11–13] and artificial neural

network [14–16] are applied to MPPT under PSCs, achieving fast tracking speed and small or even

zero tracking oscillation at stable state. However, these approaches involve complex computation

and the tracking performance is constrained by many factors, such as fuzzy rules, reliable training

data in ANN, etc. Besides this, the real-time implementation of the algorithms in MPPT requires the

algorithms to respond to the change of external conditions, which is the main disadvantage of offline

calculation algorithms like the fuzzy logic algorithm and ANN [17].

Recently, to overcome the aforementioned problems of the conventional MPPT methods,

nature-inspired algorithms have come to the fore. The algorithms, including particle swarm

optimization (PSO) algorithm [18], artificial fish swarm algorithm (AFSA) [19], artificial bee colony (ABC)

algorithm [20] or shuffled frog leaping algorithm (SFLA) [21], grey wolf optimization (GWO) [22,23],

etc., exhibit good tracking performance under PSCs. In [24], a novel MPPT method based on PSO is

proposed to improve the searching speed and reduce the tracking oscillation by initializing the particles

efficiently around the MPP. Another improved PSO algorithm application in MPPT also improves the

searching accuracy and reduce the oscillation by selecting proper initial value [25]. Also, the hybrid

algorithms, such as combining the conventional MPPT algorithms with bio-inspired algorithms, the

hybrid between bio-inspired algorithms, etc., have been proposed to improve the search speed and

accuracy, and reduce the oscillation [26–28]. Though these MPPT algorithms have good performance

in terms of tracking speed and accuracy, the parameters to be tuned, premature convergence problems,

algorithm complexity, etc., have constrained the application to PV systems. The salp swarm algorithm

(SSA) [29] has only one control parameter and is simple and easy to implement. Moreover, it can

converge to the global optimum due to its adaptive mechanism. Therefore, this paper aimed to propose

a novel MPPT algorithm based on the SSA algorithm.

Generally, the MPPT control is achieved by the DC-DC (direct current to direct current) converter,

which is the interface between the PV system and the load. Practically, independent control of two

series-connected or parallel-connected PV modules with an optimizer can improve the output efficiency

of the PV system. Also, the PV module manufacturers focus on the inherent maximum power output

capability of cell-strings in a single PV module. With the control of built-in intelligent optimizers, a

single PV module is capable of outputting maximum power under partial shading conditions. As for

the inverter manufacturer, the dual MPPT inverters structure is employed to make sure that two PV

arrays are connected to single inverter. The two PV arrays work independently. When one of the

arrays is partially shaded, the other PV array can operate at maximum power without being influenced,

which enables the system to have greater energy harvest.

In this paper, a novel nature-inspired SSA-GWO MPPT method is proposed to track the GMPP

quickly and accurately under static and dynamic partial shading conditions. In the proposed algorithm,

the basic SSA algorithm is optimized by the GWO algorithm to improve the leader structure. Particularly,

different from the single leader in SSA algorithm [29], half the salps are selected into a leader group,

where the special hierarchy of GWO algorithm is introduced to help the population search globally and

rapidly converge to the global optimal region. Moreover, the proposed algorithm still maintains the

adaptive mechanism of the basic SSA algorithm, which is able to avoid stagnating in local best solutions.

The numerical simulation was tested on 13 benchmark functions to evaluate the performance of the

proposed SSA-GWO algorithm. Finally, the PV system with the proposed SSA-GWO MPPT method
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was simulated under static and dynamic partial shading conditions and compared with conventional

P&O, PSO, and basic SSA MPPT methods to validate the effectiveness of this novel MPPT method.

The remainder of the paper is organized as follows. The formulas involving SSA-GWO algorithm

and the application in MPPT controller are elaborated on in Section 2. The quantitative analysis and

results of the SSA-GWO algorithm and other algorithms are presented in Section 3. The simulations in

Section 4 give a comprehensive comparison for the performance of SSA-GWO MPPT algorithm and

conventional MPPT algorithms under different PSCs. Finally, the conclusions are given in Section 5.

2. Proposed MPPT Controller

2.1. Description of SSA

SSA is a bio-inspired algorithm proposed by Mirjalili et al. [29]. The salp chain is divided into a

single leader and followers. The leader salp is at the front of the chain while the remaining salps in the

chain are considered as followers. The position of salps is defined within an n-dimensional search

space where n represents the number of variables of given problems. Hence, the position information

of salps can be represented by a two-dimensional matrix. The position of the leader salp is updated as

follows [29]:

x1
j =

{

F j + c1((ub j − lb j)c2 + lb j), c3 ≥ 0.5

F j − c1((ub j − lb j)c2 + lb j), c3 < 0.5
(1)

where x1
j and Fj are the positions of the first salp and food source in jth dimension, respectively; ubj

and lbj indicate the upper bound and lower bound of the search space in jth dimension. The equation

indicates that the leader only updates the position according to the food source. The parameter c2 and

c3 are random values uniformly generated in the interval of (0, 1). Coefficient c1 plays an important

role in optimization, which is defined as [29]:

c1 = 2 · e−( 4l
L )

2

(2)

where l represents the lth iteration and L is the number of iterations. The initial speed of the salp swarm

is zero and the time in optimization is iteration. Therefore, the followers are updated as follows [29]:

xi
j =

1

2

(

xi
j + xi−1

j

)

(3)

where I ≥ 2, xi
j represents the position of ith follower salp in jth dimension. The updating mechanism

of salp chains can be modeled by Equations (1)–(3).

The optimization process consists of two stages: exploration and exploitation [29]. The exploration

begins with a set of random solutions, which change randomly, rapidly, and abruptly. The main goal

of the exploration is to find the promising region in the search space and avoid stagnation in local

solutions. After the exploration, the algorithm starts the exploitation stage to improve the accuracy of

the potential best solution obtained in the previous stage. The solutions change gradually and locally

towards the best solutions. In the movements of the salp chain, the leader salp moves towards the

food source while the follower salps follow the leader salp. It is assumed that the current best solution

is considered as the food source to be chased by the salp chain, in that the solution to the optimization

problem is unknown.

2.2. Modifying SSA with GWO Algorithm

In the original SSA algorithm, the single leader plays a dominant role in the exploration. During

exploration, the leader is required to change randomly and abruptly to help the whole population search

globally. Considering the interactions between the leader and the followers of the SSA algorithm, it is

found that the structure of the leader can improve the performance of the whole population. Therefore,

in the proposed hybrid algorithm, half the salps are assigned into a leader group, which improves the
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exploration capability of the salp chain due to random distribution of each salp. Furthermore, to guide

the follower salps towards the best solution efficiently, the leader group is reconstructed using the

GWO algorithm.

In the leader group, the best solution is selected as the alpha (α), and the second and third best

solutions are selected as beta (β) and delta (δ), respectively. The rest of the candidate solutions are

assumed to be omega (ω). The position of the grey wolf is expressed as [30]:

→
E =

∣

∣

∣

∣

∣

→
C ·

→
Dp(t) −

→
D(t)

∣

∣

∣

∣

∣

(4)

→
D(t + 1) =

→
Dp(t) −

→
A ·
→
E (5)

where t is the current iteration, A and C are coefficient vectors, Dp represents the position of the prey,

and D is the position of a grey wolf. The vectors A and C can be calculated as follows [30]:

→
A = 2

→
a ·→r1 −

→
a (6)

→
C = 2 ·→r2 (7)

where a decrease linearly from 2 to 0, r1 and r2 are random vectors between 0 and 1.

The hunting is guided by the leader group, where the alpha, beta, and delta have a better

knowledge of the promising area of the prey. The locating process is modeled as follows [30]:

→
Eα =

∣

∣

∣

∣

∣

→
C1 ·

→
Dα −

→
D

∣

∣

∣

∣

∣

,
→
Eβ =

∣

∣

∣

∣

∣

→
C2 ·

→
Dβ −

→
D

∣

∣

∣

∣

∣

,
→
Eδ =

∣

∣

∣

∣

∣

→
C3 ·

→
Dδ −

→
D

∣

∣

∣

∣

∣

(8)

→
D1 =

→
Dα −

→
A1 ·

→
Eα,

→
D2 =

→
Dβ −

→
A2 ·

→
Eβ,

→
D3 =

→
Dδ −

→
A3 ·

→
Eδ (9)

→
D(t + 1) =

→
D1 +

→
D2 +

→
D3

3
(10)

The alpha, beta, and delta in the leader group are simply history memories rather than specific

individuals, which is different from the single leader in the SSA algorithm. The leader group will

locate the promising solution, which will be chased gradually by the followers. Therefore, with the

GWO algorithm, this leader group structure can extend the global search capability of the population

as well as improve the accuracy of exploration and exploitation. Generally, the hybrid SSA-GWO

algorithm is proposed to enhance the global search capability of the SSA algorithm without altering

the adaptive mechanism.

2.3. MPPT Controller Based on SSA-GWO Algorithm

In this paper, the MPPT controller produces a duty cycle as the output. Therefore, the duty cycle d

is considered as the position of salp swarm, and the corresponding output power of PV arrays is the

fitness value. To make the proposed SSA-GWO MPPT controller function under various irradiance

conditions, the salps should be distributed appropriately and randomly.

The MPPT begins with the initialization of the salp swarm, of which the positions are distributed

within the interval (0, 1). Then the fitness values, which are the output power of PV arrays corresponding

to each duty cycle, are calculated and compared. The initialized salp is arranged in descending order

according to the fitness value and half the salps are chosen as leader. The GWO algorithm is utilized to

redistribute the leader group in the course of iteration. Meanwhile, the followers follow the leader

group and are updated based on the SSA algorithm. The complete flow chart for the proposed MPPT

controller based SSA-GWO algorithm is shown in Figure 1 and the steps are as follows:
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• Step 1: Initialization. In a standard initialization, the salps are usually initialized randomly. For the

proposed MPPT algorithm, the salps are initialized within the search space (0, 1), where the output

voltage corresponding to the position of salps covers a wide range.

• Step 2: Fitness evaluation. The duty cycle, i.e., the position of salps, is connected to the Pulse

Width Modulation (PWM). After a fixed period, the corresponding output power is obtained as

the fitness of each salp.

• Step 3: Determining the leader group and obtain the food source. The fitness values are sorted

in descending order and the first half salps with larger fitness are categorized into leader group

while the rest are the followers. The best salp with the largest fitness will be selected as the food

source F.

• Step 4: Updating the coefficient c1. The parameter is updated with Equation (2), which decides

the exploration and exploitation.

• Step 5: Updating the leader salps and follower salps. Position of the leaders are updated by

Equation (1) and the promising GMPP for the followers to pursue are updated by Equations (4)

to (10). Meanwhile, the followers are updated by Equation (3). Besides this, the salps will be

amended based on the upper and lower bound of the searching space. If the salps’ positions reach

the bound, the position of the salp will be set to the corresponding bound.

• Step 6: Calculation of fitness and obtaining the food source. Input the duty ratio of each salp to

the power converter and save the corresponding fitness value. The fittest salp will be selected as

the food source.

• Step 7: Iteration check. The convergence criterion is checked. If the preset iteration is reached,

the calculation will be terminated. Otherwise, steps 2 to 5 will be conducted iteratively until the

termination criterion is met.

• Step 8: Reinitialization. In a PV system, the optimum output power is dependent on weather

conditions. Therefore, a restart scheme is employed to enable the proposed SSA-GWO MPPT

controller to respond rapidly to the irradiance change. The proposed SSA-GWO algorithm will

restart when the following equation is satisfied

|Preal − Pm|
Pm

> ∆P (11)

where Preal is the measured actual power of PV arrays, Pm is the current global MPP of the array.

When partial shading conditions occur, Preal will be much lower than Pm and ∆P is set to 0.05 to

obtain satisfactory performance.
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Figure 1. The flowchart of the proposed maximum power point tracking (MPPT) controller based on

the Salp Swarm Algorithm–Grey Wolf Optimizer (SSA-GWO) algorithm.

3. Numerical Simulation Analysis and Discussion

To evaluate the performance of the proposed SSA-GWO algorithm, a set of mathematical functions

were selected [29,30]. The benchmark functions consisting of unimodal and multimodal functions

are listed in Table 1, where Dim is dimension of the function, search range indicates the boundary

of the search space, and Fmin is the optimum. Also, the performance of the proposed algorithm was

compared with PSO and SSA algorithms. The parameters for different algorithms are given in Table 2.

Two indexes were employed to evaluate the performance of the algorithms, mean value and standard

deviation (STD) of the best solutions obtained in 300 independent runs. The population size was 50,

the dimension was 10 for each benchmark function and the iteration number was 1000. Furthermore,
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the convergence curves for average fitness value in the course of iteration are shown to present the

global search capability of different algorithms in avoiding premature convergence. The quantitative

results are listed in Table 3.

Table 1. Test benchmark functions.

Function Dim Search Range Fmin Type

f1 =
n
∑

i=1
x2

i 10 [−100, 100] 0 Unimodal

f2 =
n
∑

i=1
|xi|+

n
∏

i=1
|xi| 10 [−10, 10] 0 Unimodal

f3 =
n
∑

i=1













i
∑

j−1
x j













2

10 [−100, 100] 0 Unimodal

f4 = max{|xi|, 1 ≤ i ≤ n} 10 [−100, 100] 0 Unimodal

f5 =
n−1
∑

i=1

[

100
(

xi+1 − x2
i

)2
+ (xi − 1)2

]

10 [−30, 30] 0 Unimodal

f6 =
n
∑

i=1
([xi+0.5])2

10 [−100, 100] 0 Unimodal

f7 =
n
∑

i=1
ix4

i
+ random[0, 1) 10 [−1.28, 1.28] 0 Unimodal

f8 =
n
∑

i=1
−xisin

(√
|xi|

)

10 [−500, 500] −418.9829 × 10 Multimodal

f9 =
n
∑

i=1

[

x2
i
− 10 cos(2πxi) + 10

]

10 [−5.12, 5.12] 0 Multimodal

f10 = −20 exp















−0.2

√

1
n

n
∑

i=1
x2

i















− exp

(

1
n

n
∑

i=1
cos(2πxi)

)

+20+e 10 [−32, 32] 0 Multimodal

f11 = 1
4000

n
∑

i=1
x2

i
−

n
∏

i=1
cos( xi√

i
) + 1 10 [−600, 600] 0 Multimodal

f12 = π
n

{

10 sin(πy1) +
n−1
∑

i=1
(yi − 1)2

[

1 + 10 sin2(πyi+1)
]

+ (yn − 1)2

}

+
n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k, m) =



















k(xi − a)mxi > a
0− a < xi < a

k(xi − a)−mxi < −a

10 [−50, 50] 0 Multimodal

f13 = 0.1

{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2

[

1 + sin2(3πx1 + 1)
]

+ (xn − 1)2
[

1 + sin2(2πxn)
]

}

+
n
∑

i=1
u(xi, 5100, 4)

10 [−50, 50] 0 Multimodal

Table 2. Parameter settings for different algorithms.

Algorithm Parameter Settings

PSO Inertia weight w = 0.9, C1 = C2 = 2
SSA C1: Self-adaption

SSA-GWO a and C1: Self-adaption

In Table 3, the proposed SSA-GWO algorithm, PSO, and original SSA algorithm are compared in

terms of mean, best, and standard deviation of fitness value. It can be observed that the proposed

SSA-GWO algorithm outperforms the other algorithms in most test functions. More precisely, except

for the best solution and STD value of Function 5 and the best solution of Function 8, the proposed

algorithm has the best performance.
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Table 3. Results comparison for functions f1–f13.

Function Index PSO SSA SSA-GWO

f1
Best 1.4899 × 10−10 5.1222 × 10−10 7.2759 × 10−12

Mean 0.54751 8.2708 × 10−5 8.5053 × 10−11

STD 2.6367 8.5841 × 10−4 3.7595 × 10−11

f2
Best 0.025965 0.0011806 1.101 × 10−6

Mean 1.8619 0.43577 2.4873 × 10−6

STD 1.457 0.57199 6.1863 × 10−7

f3
Best 1.3329 × 10−7 0.050476 3.5286 × 10−10

Mean 10.3393 17.8683 2.1272 × 10−9

STD 25.6427 23.4735 1.1302 × 10−9

f4
Best 0.38817 0.0075142 2.2977 × 10−6

Mean 5.2313 1.481 4.8977 × 10−6

STD 3.1815 1.6162 1.2188 × 10−6

f5
Best 0.00081823 0.0035541 0.095366

Mean 164.4538 208.8242 128.3479

STD 332.6081 444.9757 371.3509

f6
Best 0.0041224 0.00067943 0.00021082

Mean 0.53906 0.01156 0.0021277

STD 0.29003 0.0096091 0.0014936

f8
Best −Inf −3716.0755 −3714.5585

Mean −Inf −2763.9914 −2874.5761

STD NaN 330.2627 318.3991

f9
Best 2.9851 2.9849 0.99496

Mean 19.8398 14.4535 11.0971

STD 8.4259 7.1933 5.4115

f10
Best 0.12402 2.1373 × 10−5 1.7439 × 10−6

Mean 5.2821 2.3401 0.32278

STD 2.0648 1.1404 0.70685

f11
Best 0.06798 0.039666 2.2012 × 10−10

Mean 0.87126 0.32775 0.10671

STD 0.59614 0.20514 0.082469

f12
Best 0.0003799 0.013168 2.8442 × 10−12

Mean 4.2438 2.7214 0.037527

STD 4.3704 2.2349 0.16814

f13
Best 0.0010674 2.364 × 10−5 1.235 × 10−11

Mean 4.1882 0.37209 0.0018249

STD 5.8115 1.4615 0.0042647

Figure 2 shows the convergence curves of the three algorithms for six selected benchmark functions,

including unimodal and multi-modal functions. As analyzed in Section 2.2, the proposed SSA-GWO

algorithm has improved global search capability compared with SSA by restructuring the leader group,

while maintaining the adaptive mechanism of SSA. In Figure 2, all the three algorithms converge

successfully, while it can be observed that the initial convergence speed of PSO algorithm is fast. Also,

the fitness value of SSA-GWO and SSA algorithm is lower than its PSO counterpart. In the middle stage

of iteration, both the SSA-GWO and SSA maintained a fast convergence speed while the convergence

speed of PSO was reduced to a low level. To be precise, the convergence speed of SSA-GWO algorithm

was even faster than SSA algorithm in the middle stage. In the late stage of iteration, the fitness value

of SSA-GWO and SSA algorithm was lower than PSO, and the fitness value using SSA-GWO was able

to converge to the lowest level.

The results validate the analysis in Section 2.2, wherein by halving the salp chain into leaders

and followers, the global search capability of the proposed SSA-GWO algorithm is improved and the

introduction of GWO algorithm in leader group enables the SSA-GWO to converge faster in the course

of iteration. Therefore, the SSA-GWO algorithm has better performance in terms of convergence speed

and accuracy.
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Figure 2. The optimization curve of test functions: (a) function 1; (b) function 4; (c) function 7;

(d) function 10; (e) function 12; (f) function 13.

4. Simulation of PV System under Static and Dynamic PSCs

To test the proposed SSA-GWO performance in MPPT, a PV system consisting of series-connected

PV arrays with Buck-Boost converter was established as depicted in Figure 3.
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Figure 3. Photovoltaic (PV) power generation system with Buck-Boost converter.

The equivalent circuit of PV cell is shown in Figure 4, including Np parallel-connected PV modules

and Ns series-connected PV modules [31]. The I-V characteristics of single PV module can be expressed

as [31]:

Iout = NPIph −NPIs

{

exp

[

q(Vout/NS + IoutRST)

AKTc

]

− 1

}

−
NP

Vout
Ns

+ IoutRs

RPT
(12)

where Iph is the photocurrent, Is is the reverse saturation current of diode D, A is diode ideality

factor, q is the electron charge (1.609 × 10−19 C), Tc is the cell absolute temperature in K and K

is Boltzmann’s constant. The equivalent series and shunt resistance are RST = RS ·NS/NP and

RPT = RP·NP/NS, respectively.
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Figure 4. Equivalent circuit model of a PV module.

The parameters of single PV module are listed in Table 4. The circuit parameters are as follows:

L = 0.8 mH, C1 = 220 µF, C2 = 220 µF, and the switching frequency is 20 kHz.

Table 4. Parameters of a single PV module.

Parameter Value

Maximum power (Pm) 35 W
Open circuit voltage (Voc) 21.6 V

Maximum power voltage (Vm) 17.6 V
Short circuit current (Isc) 1.98 A

Maximum power current (Im) 2.25 A
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To evaluate the performance of the proposed algorithm in MPPT, it has been compared with

conventional P&O and PSO MPPT algorithms. The step size of the P&O algorithm is ∆d = 0.05, and

the parameters of PSO algorithm are inertia weight ω = 0.4, factors c1 = 1.2 and c2 = 1.2.

4.1. Complex Static Partial Shading Condition

Ten series-connected PV modules with irradiance ranging from 100 W/m2 to 1000 W/m2 were

implemented to verify the MPPT performance of the proposed algorithm. The P-V characteristic curve

of the PV system is shown in Figure 5. The maximum output power of the system was 116.9 W.

The simulation results of the PV system using different MPPT algorithms are shown in Figure 6.

Generally, the performance of MPPT algorithms can be evaluated by the tracking speed, accuracy, and

oscillation. It can also be evaluated by the MPPT tracking efficiency, which is expressed as:

η =
Pmax

Preal
(13)

where Preal is the theoretical global maximum output power of the PV system under different irradiance

patterns, and Pmax is the maximum output power of PV system using various MPPT algorithms.

 

  ∆

maxη

Figure 5. Power–Voltage (P-V) curve of ten series-connected PV arrays.

The output waveform in Figure 6, along with the statistical results in Table 5, gives a comprehensive

comparison of different MPPT algorithms. Though it takes only 0.16 s for the conventional P&O

algorithm to track an MPP, the output power is much lower than the counterpart algorithms. It took

1.09 s, 0.92 s, and 0.68 s for the PSO, SSA, and proposed SSA-GWO algorithms to track the GMPP, where

the output powers of PV system were 116.53 W, 116.59 W, and 116.69 W, respectively. The tracking

efficiency for the four algorithms was 86.25%, 99.68%, 99.73%, and 99.82%. Therefore, the proposed

SSA-GWO algorithm outperforms the other algorithms in terms of tracking speed and efficiency.

In addition, it can be observed that the oscillation of the proposed MPPT algorithm is reduced compared

with other algorithms.
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Figure 6. Output waveforms of the PV system using different MPPT algorithms.

Table 5. Performance comparison of different MPPT algorithms.

Algorithms Pmax (W) MPPT Efficiency Tracking Time (s)

P&O 100.83 86.25% 0.16
PSO 116.53 99.68% 1.09
SSA 116.59 99.73% 0.92

SSA-GWO 116.69 99.82% 0.82

4.2. Dynamic Performance Under Sudden Irradiance Change

To further evaluate the performance of the proposed SSA-GWO algorithm, it was applied to the

system under dynamic irradiance change. A PV system with three series-connected PV arrays using

different MPPT algorithms was implemented. The irradiation patterns of the three PV modules are

given in Table 6. The corresponding P-V characteristic curves are shown in Figure 7. The maximum

output powers of the PV system were 105 W, 69.4 W, and 44.6 W for Pattern I, II, and III respectively.

Table 6. Irradiance patterns.

Pattern
Irradiance of PV modules (W/m2)

G1 G2 G3

1 1000 1000 1000
2 1000 600 300
3 1000 800 600
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Figure 7. P-V characteristic curves of the PV array under partial shading conditions (PSCs).

Different MPPT methods, including P&O, PSO, SSA, and the proposed SSA-GWO MPPT algorithm,

were applied to the system. The simulation was performed under dynamic irradiance change. To ensure

that the MPPT algorithms were able to track the new GMPP under changing irradiance, a re-initialization

technique was implemented. The waveforms of output power and duty cycle using different MPPT

methods are presented in Figure 8, which are divided into three intervals, representing three different

irradiance patterns. The statistical results are given in Table 7.
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Figure 8. Dynamic performance under sudden irradiance changes: (a) Perturb & Observe (P&O)

MPPT controller; (b) Particle Swarm Optimization (PSO) MPPT controller; (c) SSA MPPT controller;

(d) SSA-GWO MPPT controller.
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Table 7. Results of different MPPT algorithms.

Cases Algorithms Tracking Time (s) Pmax (W) MPPT Efficiency

Pattern 1
Preal = 105 W

P&O 0.48 104.06 99.10%
PSO 0.72 104.46 99.49%
SSA 0.58 104.60 99.62%

SSA-GWO 0.46 104.88 99.89%

Pattern 2
Preal = 44.6 W

P&O 0.16 34.64 77.69%
PSO 0.64 44.47 99.71%
SSA 0.52 44.49 99.75%

SSA-GWO 0.53 44.55 99.89%

Pattern 3
Preal = 69.4 W

P&O 0.35 68.22 98.30%
PSO 0.68 69.19 99.70%
SSA 0.66 69.23 99.76%

SSA-GWO 0.47 69.32 99.88%

� Interval 1 (0 < t < 1 s): A standard irradiance pattern was implemented, i.e., G1 = G2 =

G3 = 1000 W/m2.

In this period, the standard irradiation was employed, GMPP is about 105 W. It is clear that the

P&O algorithm is able to track the MPP under uniform irradiance condition with only 0.48 s, while

the output power has relatively large oscillation around the maximum power, achieving 99.1% MPPT

efficiency. The traditional PSO algorithm can locate the peak with zero oscillation, while it took 0.72 s

to track the MPP with 99.49% MPPT efficiency. It can also be observed in Figure 8b that the fluctuation

in the process of tracking is high. Compared with the conventional P&O and PSO algorithm, the SSA

MPPT algorithm tracked the MPP with faster speed and higher efficiency, which are 0.58 s and 99.62%,

respectively. The improved SSA-GWO algorithm dominates the other three algorithms in terms of

tracking speed (0.46 s) and MPPT efficiency (99.89%). Meanwhile, power fluctuation was also reduced.

In addition, the waveform of duty ratio in Figure 8d saw an expanded search region at around

0.3 s, which indicates improved global search capability of the proposed algorithm.

� Interval 2 (1 < t < 2 sec): At t = 1s, a sudden irradiance change occurred, i.e., G2 = 600 W/m2,

G3 = 300 W/m2.

When PSC occurred, the value and position of GMPP also changed. In Figure 8, it can be observed

that the employed re-initialization method can effectively restart the MPPT algorithms between

intervals. The P&O algorithm failed in the condition, causing great power losses. The MPPT speed for

the four MPPT algorithms was 0.16, 0.64,0.52, and 0.53 s.

According to the results, Pmax was 34.64, 44.47, 44.49, and 44.55 W, while the MPPT efficiency was

77.69%, 99.71%, 99.75%, and 99.89% using the four MPPT methods, respectively, as listed in Table 7.

It is obvious that the proposed SSA-GWO has the best overall performance considering tracking speed

and MPPT efficiency.

� Interval 3 (2 < t < 3 s): At t = 2 s, a sudden irradiance change occurred, i.e., G2 = 800 W/m2,

G3 = 600 W/m2.

Though it takes 0.35 s for the P&O MPPT algorithm to track the MPP, the P&O method scanned

the P-V curve from right to left. Hence, P&O algorithm was actually trapped in the third peak of the

P-V curve, which happened to be the GMPP. Besides this, the output power still fluctuated around the

MPP. It took 0.68, 0.66, and 0.47s for the PSO, SSA and proposed SSA-GWO algorithms to acquire the

GMPP. Pmax was 68.22, 69.19, 69.23, and 69.32 W, while the MPPT efficiency was 98.30%, 99.70%, 99.76%,

and 99.88% using the four MPPT methods, respectively. The proposed SSA-GWO algorithm had the

best performance in terms of tracking speed and MPPT efficiency. Furthermore, the power fluctuation

with the proposed SSA-GWO MPPT algorithm was lower than the counterpart MPPT algorithms, as is

shown in Figure 8. Therefore, the PV system has a better dynamic with higher output power.



Electronics 2019, 8, 680 16 of 17

5. Conclusions

In this paper, a novel SSA-GWO MPPT algorithm was proposed for PV systems to track GMPP

under diverse PSCs. In the proposed SSA-GWO algorithm, the GWO algorithm was integrated into the

SSA algorithm to enhance the global search capability and high tracking efficiency, and half the salps

were selected into a leader group and the rest were followers. Meanwhile, it still maintains the adaptive

mechanism of the SSA algorithm, which is able to avoid stagnating in local best solutions. Numerical

simulation analysis was done on benchmark functions and the results verified that the proposed

SSA-GWO algorithm outperforms the PSO and basic SSA algorithms in most cases. Furthermore, the

MPPT results tested on the PV system simulation platform validated the effectiveness and superiority

of the proposed SSA-GWO MPPT algorithm. Compared with other MPPT algorithms, the proposed

MPPT method has the following advantages: (1) fast and accurate GMPP tracking performance for

real-time MPPT control of PV system, (2) capability of dealing with both static partial shading condition

and dynamic irradiance change, and (3) reduced power fluctuation.
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