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ABSTRACT In this paper, a novel nature inspired meta heuristic optimization approach of Grey Wolf 
Optimization (GWO) algorithm is employed to solved the optimal reactive power dispatch (ORPD) 
problems. Essentially, it is the sub and non-linear optimization problem of optimal power flow (OPF) in 
which the control parameters of the power networks are optimized. The Grey wolf optimizer (GWO) which 
is inspired from grey wolves’ leadership and hunting behaviors to solve the ORPD problems. For which, 
the optimizer is tested on two test cases of IEEE30 standards specially, for 13 and 19 variables in order to 
get three fitness objectives for instance; transmission line losses (Plosses, MW), voltage deviation (VD), 
voltage stability index (VSI) and cost of energy in ($). During computing all fitness objectives, the 
minimum fitness values are possibly achieved by the finest settings of control variables. The simulation 
results are compared with other artificial intelligence methods in previous literature to ensure the superior 
performance of the GWO for ORPD problem. The consistency of GWO will further be validated through 
detailed statistical analysis including histogram illustrations, boxplots, empirical CDF plot, probability plot 
and plot of minimum fitness during each independent trial. 

INDEX TERMS Optimal Power Flow (OPF), Optimal Reactive Power Dispatch (ORPD), Grey Wolf Algorithm (GWO), 
Load Flow Analysis (LFA) 

I. INTRODUCTION 

The recent span of revisions related to the power systems are 
mostly attentive to reduce the entire cost of the generation 
with stable and secure operations. In accumulation, the 
reduction in transmission line losses with the improved of 
voltage profile plays a vital part in resolving the optimal 
reactive power dispatch (ORPD) issues. These tasks can be 
achieved by improving the settings of control parameters for 
instance; the reactive outcomes of generator voltages, tap 
changer of transformers and reactive shunt VAR 
compensators. While, the contingent constraints such as load 
bus voltages, generation from the reactive generators and 
apparent power through transmission lines should be in limits 
to avoid getting penalties [1]. 

The mostly objective functions are optimized while 
resolving the optimal reactive power dispatch issues 
comprises as; minimization of transmission line losses, 
voltage deviation, improvement of voltage stability index and 
minimization of cost of energy. In the initial step of research 
led to resolve the ORPD problems, there are several 

techniques which are used such as; classical methods 
including the gradient method [2,3], interior point method [4], 
linear programming and non-linear programming [5], 
quadratic programming and Newton method [6], 
Langrangian technique [7] and dynamic programing [8]. 

However, these techniques have some drawbacks in 
resolving the complex optimization problem of ORPD such 
as; trapping in local minima, untimely convergence and 
algorithmic intricacy. To resolved these cited issues and 
overwhelmed the weakness these approaches, the 
scholars/researchers have implemented meta-heuristic and 
evolutionary techniques such as; evolutionary programming 
[9], differential evolution algorithm [10], genetic algorithm 
[11], moth-flame algorithm [12], whale optimization 
algorithm[13], binary bat algorithm[14], seeker optimization 
algorithm [15], firefly algorithm [16], chaotic krill herd 
algorithm [17], jaya algorithm [18], backtracking search 
algorithm [19], gravitational search algorithm [20], particle 
swarm optimization [21], invasive weed optimization [22], 
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imperialist competitive algorithm [23], cuckoo search 
algorithm [24], improved GWO optimizer [25] and other 
hybrid solution mechanisms by relating these concepts are 
studied in [26-33]. While, some hybrid techniques are used to 
solve the optimal reactive power dispatch problems such as; 
PSOGSA algorithm [34], HGAPSO [35], SOA-FS [36].  

The paper proposes the practice of a novel meta-heuristic 
approach based on GWO optimizer which aims to resolve the 
ORPD problem in the power networks. This technique is 
based on population and inspired from the conduct of grey 
wolves. The hunting and the social conduct of grey wolves 
has proposed in [37]. For GWO simulation, the standard 
MATPOWER package is used to run the load flow analysis 
and the objectives of the research are given as follows: 
• A novel nature inspired meta-heuristic optimization 

technique of GWO is tested on IEEE30 Bus Standards 
with 13 and 19 control variables for solving ORPD 
problems.  

• The aims / objectives of this research are to minimize the 
power transmission line losses (Plosses, MW), voltage 
deviation (VD), voltage Stability index and the energy cost 
in $. 

• The validation and verification of the proposed results of 
GWO optimization algorithm through comparative studies 
with state-of-the-art methodologies to prove the worth of 
the scheme. 

• The performance of GWO via statistical analysis in term of 
histogram, probability CDF plots with learning curves is 
revealed the stability and the robustness of the algorithm. 
The rest of body of the paper is set into the following 

sections: Section 2 deliberates the problem formulation of 
ORPD, Section 3 represents the methodology of GWO with 
its pseudocode and graphical abstract, Section 4 describes 
the results/discussion, Section 5 demonstrates the statistical 
analysis while Section 6 represents the conclusion of this 
research. 

II. PROBLEM FORMULATION OF OPTIMAL RPD (ORPD)  

The fitness objective of the ORPD problem is to minimize 
the transmission line losses, voltage deviation, voltage 
stability index and cost of energy. The mathematical 
formulations of these objectives are described in following 
sections. 

A. POWER LOSSES MINIMIZATION (F1) 

Here, f (q, p) denotes as the first objective function which 
aims to minimize the transmission line losses in MW. 
While, the mathematical expression of this function is 
defined as follows [32]: 
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The q along with p are defined as the dependent variables 

vector as well as control variables vector correspondingly. 
The function solution requirement is to pay attention 
towards equality and inequality restraints. 

( , ) 0=x q p  (2) 

( , ) 0y q p  (3) 

where, ( , ) 0=x q p is defined as the equality constraints as 

well as ( , ) 0y q p  define as the inequality constraints.  

The equality restraint stands as the balanced power 
equation while the inequality restraints are described as 
generator voltages, tap changer of transformers and reactive 
shunt VAR compensators. 

1) EQUAILITY CONSTRAINTS 

The equality restraint which represents the power equality 
of load flow defined that the modification concerning 
generated power in addition to demand power is equivalent 
to the power losses. The equality restraint equations 
proposed in [40] are still effective to give the power 
balanced of load flow, as follows: 
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where, 
,De i

P and 
,Gt i

P  denoted are the real power demand 

and generation, ,Gt i
Q and ,De i

Q are the reactive power 

generation and demand, i
V and

j
V indicate as the voltages at 

th
i and th

j  load buses correspondingly, while ij
B and

ij
G are 

the susceptance along with conductance between 
th

i and th
j buses respectively. 

2) INEQUAILITY CONSTRAINTS 

The inequality restraints are defined in the following sub 
sections. 

A) GENERATOR CONSTRAINTS: 

The bus voltages’ generation along with generation of real 
as well as reactive power need to be limited through their 
limits as below: 
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where, 
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,Gt i
P  , 

min
,Gt i

Q and 
min

,Gt i
V  denoted as the 

minimum limits of active, reactive power generation and 

voltages,
max

,Gt i
P , 

max
,Gt i

Q and 
max

,Gt i
V are the maximum 

limits of active, reactive and voltages, while 

Gt
N represents the number of generators.  
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B) TRANSFORMER TAP SETTING 

The formulation of setting of transformer tap limits is 
defined as follows: 

min max
, , , 1,.........  =

ts i ts i ts i Ts
T T T i N  (7) 

where, 
min
,ts i

T and 
max
,ts i

T are the upper and lower limits of 

the transformer tap settings, whereas Ts
N  represents the 

number of transformers. 

C) REACTIVE SHUNT COMPENSATORS 

min max
, , , 1,.........  =

ct i ct i ct i Ct
Q Q Q i N  (8) 

Where, 
min

,ct i
Q and 

max
,ct i

Q are upper and lower limits of 

compensators, while Ct
N is the number of compensators. 

All the fitness objectives for ORPD problem are needed to 
be minimize while satisfying the equality and inequality 
constraints. The number of parameters should be set to 
optimum values for obtaining such objectives. In ORPD, 
the inequality restraints are exposed to be considered as the 
penalty factors which is computed as the following 
mathematical expression.  
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where, ,Vge i
P , ,Tc i

P and ,Grp i
P are denoted as the 

penalty multiplier factors for voltage, transformer tap and 
reactive power generation limits. Whereas, the bound 

restraints of 
lim

i
V , 

lim
i

T and 
lim
i

Q  are given as follows: 

GENERATOR BOUND CONSTRAINTS: 
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REACTIVE POWER GENERATION CONSTRAINTS 
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B. MINIMIZATION OF VOLTAGE DEVIATION (F2) 

It is defined as; summation of voltage deviations at the 
entire buses in the electric networks from the reference 
values. It is considered as an important index factor in 
functioning the electric power networks. The mathematical 

expression of the second objective of this research is given 
as follows [40]: 
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Where, nl is the number of transmission lines and 
sv

t
V is 

the stated value which is usually set to 1.0p.u. 

C. MINIMIZATION OF VOLTAGE STABILITY INDEX (F3) 

The instability of voltage is one of the most destructive 
phenomena for the power system that can cause the voltage 
collapse steadily even immediately. The improvement of 
voltage stability is equivalent to minimization of voltage 
stability indicator that normally called L-index at each bus 
in the power system. The improvement of the voltage 
stability is carried out by minimizing the highest value of 
the L-index in the power system at one bus. It is formulated 
by the given mathematical expression [38]: 
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here, j
L is the value of bus j and called L-index, while 

ji
Y is the mutual admittance between bus j and i.  

D. MINIMIZATION OF ENERGY COST (F4) 

The computing of minimization of cost is considered as the 
third fitness objective of this research. The mathematical 
expression is defined as follows [39]: 

4 min( )= =
total Energy

F C C  (16) 

1 (0.06 365 24)=   
Energy

C F  (17) 

where, the value of 0.06 $/KWhr cost due to energy losses, 
365 represents days/year while 24 indicates the hour/day. 

III. METHODOLOGY 

This section presents the fundamental concepts of the Grey 
Wolf Optimizer (GWO), pseudo code and the graphical 
abstract for the solution to ORPD problems. 

A. GREY WOLF OPTIMIZER (GWO) 

The Grey Wolf Optimizer is Swarm Intelligence tool. It 
was first proposed by Mirjalili [37]. The grey wolf 
optimizer is inspired from the behavior of grey wolves. The 
grey wolves usually live in a pack of 4-10 wolves. The 
Group consists of one leader which is on top of its 
hierarchy. The leaders are alpha wolves which dominate the 
whole pack and they take decisions for the pack. The alphas 
(α) are followed by betas (β), they help alphas (α) in 
decision making and they, too, dominate rest of the pack. 
The deltas (δ) are third in order and they control rest of the 
wolves. The omegas (ω) are at last on the hierarchy and 
they follow the commands from top orders.  
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FIGURE 1. The dominance hierarchy of Grey Wolves 

The social hierarchy is shown in Fig. 1. The hunting 
behavior of grey wolves consists of chasing, encircling and 
attacking the prey. These behaviors help in exploration and 
exploitation in search space for optimization problems. 
The mathematical approach of social hierarchy and hunting 
behavior of grey wolves is explained in this section. To 
formulate the social hierarchy for grey wolf optimizer, we 
consider the best solution as the alphas (α). The second-best 
solution is called beta (𝛽), followed by delta (δ) as the third 
best solution. The rest of the population is called omega (ω). 
The hunting in GWO algorithm is focused through (α), (𝛽), 
as well as (δ) whereas the omega tracks them. The attacking 

procedure of the grey wolves comprises numerous phases 
before they catch the prey. Initially, the wolves tend to 
encircle the prey to stop her as of moving, this encircling 
behavior can be represented through the subsequent set of 
equations:  
The hunting behavior of grey wolves comprises of 
searching, encircling and attacking the prey. The 
mathematical expression is given as follows: 
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Algorithm 1. Pseudo Code of GWO optimizer for ORPD problems 
Inputs: Set no. of iterations, population, set limits of control variable and load case data of IEEE 30 bus 
for 13 and 19 Control Variables. 
Output:  Minimization of power losses, Voltage deviation, Voltage Stability Index and Cost of Energy. 
Start GWO 

Step-1 Swarm (Swarm) with set of all possible solutions, known as search agents in nth dimension given as: 

,1 ,2 , ,1 ,2 , ,1 ,1 ,[ , ,..., , , ,..., , ,..., ]=
warm GE GE GE n c c c n c c c n

S V V V T T T Q Q Q  

Step-2 Initialize Optimizer by maximum number of iterations with Swarm of search agents for given 
control variables with upper and lower limits. 

(0) (0,1) ( )= +  −i L u u

j j j j
S S rand S S  

Step-3 Start with random Alpha, Beta and Delta positions of three populations. 

,1 ,2 ,3, ,
→ → →

p p pX X X  

Step-4 Run Load flow for each population and obtain active power losses, voltage deviation, voltage 
stability index and cost of energy. 
Step-5 Update positions of population by using alpha, beta and delta positions and best results stored in 
three positions. 

,1 ,2 ,3
(t 1)

3

→ → →
→ + +

+ = p p p

iter

X X X
X  

Step-6 Check for all limits. Reject constrained violated values. 
Step-7 Repeat from Step-4 till max number of iterations is reached. 
Step-8 Print results for Best Solutions. 
End GWO 
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FIGURE 2.  Graphical Abstract of GWO Optimizer Scheme Using for Solving ORPD problems based on 13 and 19 variables in IEEE30 Standards Bus 
System
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where, a  is in range [2, 0] in addition decreased from 2 to 

0 through every iteration, whereas 1

→

r and 
2
→

r are random 

vectors between [0, 1]. 
In each iteration, the three best solutions namely alpha (α), 
beta(β) and delta(δ) are chosen and other wolves (ω) update 
their position established on the best solutions. The 
mathematical formulation is given as follows: 

1 . ( ) (t )
→ →

→ →= −
iter iter

D C X t X 
 (21) 

2 . ( ) (t )
→ →

→ →= −
iter iter

D C X t X 
 (22) 

3 . ( ) (t )
→ →

→ →= −
iter iter

D C X t X 
 (23) 

The vector positions of the prey be able to be determined 
established on the alpha (α), beta(β) as well as delta(δ) 
positions consuming the following equations: 

,1 1(t ) .D
→ →

→ →= −
p iter

X X A   (24) 

,2 2( ) .D
→

→ → →= −p iterX X t A   (25) 

,3 3( ) .
→

→ → →= −p iterX X t A D   (26) 

The exploration in addition to exploitation of the grey wolf 
agents depend proceeding the parameter A, through 
decreasing A half of the iterations remain devoted towards 
exploration (|A| ≥1). In the meantime, while the (|A| < 1) 
the other half of the iterations are dedicated towards 
exploitation. 

,1 ,2 ,3
(t 1)

3

→ → →
→ + +

+ = p p p

iter

X X X
X  (27) 

IV. RESULTS AND DISCUSSION 

A MATLAB programmed for traditional GWO was 
developed and tested upon different test cases on IEEE30 
standards with 13 and 19 variables. The best fitness can 
possible be achieved by settings of control variables. In this 
research, the minimum transmission line losses (F1), 
minimum voltage deviation (F2), voltage stability index (F3) 
and cost of energy (F4) are the four objectives to find and 
discussed while keeping the equality and inequality 
constraints keep in their limits to avoid get penalties. The 
details of the study cases are given as follows: 
Case A: The GWO optimizer will be tested for IEEE30 
standard with 13 variables to minimize different objective 
functions such as; transmission line losses (Plosses, MW), 
voltage deviation (VD), voltage stability index (VSI) and 
cost of energy ($) respectively. 
Case B: The fitness objective in the second study case, the 
GWO will be tested for IEEE30 standard with 19 variables 
to get the same fitness objectives. 

The Table II describes the function parameters using by 
GWO for ORPD problems. The comparative analysis will 
be conducted and discussed in the section for all given 
fitness objectives with its statistical analysis. The Fig. 3 
illustrates the single line diagram of IEEE30 standard 
system using for both cases (A, B) by using MATPOWER 
software. 

FIGURE 3. Single Line Diagram of IEEE30 Standard Bus System 

TABLE I 
CONTROL BOUND RESTRAINTS OF IEEE30 BUS (13, 19 VARIABLES) 

IEEE
30 

VGE
MAX VGE

MIN TcI
MIN TcI

MAX QcMAX QcMIN 

13, 19 
Var  

1.1 0.95 0.9 1.05 0 30 
1.1 0.95 0.9 1.05 0 30 

TABLE II 
GWO SELECTION PARAMETERS FOR IEEE30 (13, 19 VARIABLES) 

FITNESS 

OBJECTIVE F1 (PLOSS) F2 (VD) F3 (VSI) F4 (Cost) 

Search Agent 50 50 50 50 
Iterations 200 200 200 200 

Independent Runs 50 50 50 50 

A. CASE A (IEEE30 WITH 13 VARIABLES) 

The number of control variables are taken for IEEE30 

standard bus case are 13. The system contains six generator 
units (VGE), which is connected to buses 1, 2, 5, 8, 11 and 
13; four transformers are connected on lines between 6–9, 
6–10, 4–12 and 27–28 while three shunt compensators are 
connected to the bus numbers 10, 20 and 24. The IEEE30 
Standard bus system also contains 41 number of branches. 
The generator voltages, transformer tap settings and VAR 
injection of the shunt capacitors are considered as the 
control variables. These restraints of variables are given 
with the base of 100 MVA. The voltage magnitudes limits 
of all bus ranges are given between 0.95-1.1p.u, 
transformer tap settings range from 0.9-1.1 p.u while shunt 
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capacitor limits are in between the interval of 0 to 30 
MVAR. Furthermore, the load demand set for this case is  
S = P + jQ = 2.834 + j1.262p.u [40].  
In the initial step, the proposed algorithm is run at different 
search agents for 200 iterations with 10 autonomous trails 
to optimize and get the best solution of GWO optimizer for 
given ORPD problems. The convergence characteristic 
curve of GWO for different search agents are given in  
Fig. 4 for fitness objective F1. 

T
ra

n
s
m

is
s
io

n
 L

in
e

 L
o

s
s
e
s
 (

M
W

) 
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FIGURE 4. GWO Convergence Curve on Different Search Agents for 
Objective (F1) IEEE30 (13 Variables) – CASE A 

Comparative Analysis. In this section, the simulation of 
results getting from 1EEE30 bus system for 13 variables are 
compared with the different approaches given in Table III. 
The GWO results are compared with C-PSO [41], DE [46], 
MFO [12], MICA-IWO [23], FODPSO [42] and FODPSO-
EE [47] algorithms for the optimal reactive power dispatch 
problems. The limits of control variables are given in Table 
I, while the results of GWO optimizer gives the best 
outcomes with satisfying the control limits.   
The results are compared to the base case which is taken 
here 5.663 MW while the outcomes getting from GWO is 
reported 4.5538 MW which is 19.59% reduced from the 
base case. The outcomes getting from GWO optimizer is 
further compared to other algorithms given in Table III. 
The percentage in reduction of losses from different 
techniques are given such as; C-PSO is 17.36%, DE is 
13.68%, MFO is 19.01%, MICA-IWO is 14.43%, FODPSO 
is 18.66% and FODPSO-EE is 18.82% while the GWO 
optimizer is reported to 19.59% respectively. 
The Fig. 6(a) illustrates the convergence characteristic 
curve for minimization of transmission line losses attained 
by GWO optimizer for ORPD problem. For such purpose, 
the GWO parameters are set to 50 autonomous runs and 50 
search agents with 200 iterations given in Table II, the 
transmission line losses attained by optimization of GWO 
reported as 4.5538 MW for Case A. The outcomes of 
comparative analysis indicated towards the best 
performance of GWO in case of transmission losses. 

The Fig. 6(b) deliberates the mean average, best and worst 
conditions in cases of transmission line losses minimization 
in case of power line losses. The best worst and mean 
values in this case are reported to 4.5538MW, 4.5972MW 
and 4.5732MW respectively. Here, it is mentioned that the 
worst case reported in this case. 
While, the fitness objective (F2) in case study A, is to find 
the voltage deviation (VD), for which GWO has run for 50 
search agents with 200 iterations, the detail of function 
parameters for GWO are given in Table II. 
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FIGURE 5. Convergence Curve of GWO for Fitness Objective (F2), 
IEEE30 (13 Variables) – CASE A 

The Fig. 5 illustrates the characteristic curve in case of 
voltage deviation, the GWO outcomes is reported to 
minimum value 0.1037p.u. While, the worst and mean 
values are reported to 0.1427p.u and 0.1254p.u respectively. 
The outcomes attained by the GWO optimizer in case of 
minimization of voltage deviation is less reported as 
compared to the other given solutions in Table III. 
The fitness objective (F3) in study case A is to find the 
minimization of voltage stability index (VSI). The 
outcomes of GWO optimizer is reported to 0.1172p.u. 
While the mean and the worst cases are reported 0.1203p.u 
and 0.1186p.u respectively. The convergence 
characteristics of GWO optimizer for this objective is 
shown in Fig. 7(a) and the detail of comparison given in 
Table III. 
To find the cost of energy minimization is another objective 
(F4) of this study Case A. This cost of energy is related to 
the power losses minimization objective and their values 
are calculated in. For this cost objective, the GWO 
parameters selected by Table. 2 and calculate this objective 
by given Eq. (14-15). The Fig. 7(b) demonstrated the 
minimum cost of energy curve computed by the GWO 
optimizer. The minimum cost of the energy is reported to 
2.3867E+06 in dollars ($). 
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FIGURE 6. (a) Convergence Curve of GWO (b) Mean, Worst and Average Values for Fitness Objective (F1) IEEE30 (13 Variables) – CASE A 

TABLE III 
BEST CONTROL VARIABLE SETTINGS FOR FITNESS OBJECTIVES FOR CASE A 

Control Variables C-PSO [41] DE [46] MFO [12] MICA-IWO [23] FODPSO [42] FODPSO-EE [47] GWO 

VGE, 1 1.1000 1.095319 1.1000 1.07972 1.01 1.1 1.1000 

VGE, 2 1.1000 1.085946 1.0946 1.07055 1.04231 1.1 1.0912 

VGE, 5 1.0747 1.062628 1.0756 1.04836 1.0401 1.0833 1.0715 

VGE, 8 1.0867 1.065076 1.772 1.04865 1.0956 1.08533 1.0759 

VGE, 11 1.1000 1.0266 1.0868 1.07518 1.0110 1.0931 1.1000 

VGE, 13 1.1000 1.014253 1.1000 1.07072 1.0491 1.1 1.1000 

Tc,6-9 0.99 1.017796 1.04110 1.03 1.0610 1.0434 1.0408 

Tc6-10 1.05 0.979277 0.95007 0.99 0.9295 1.0294 0.9020 

Tc4-12 0.99 0.9797843 0.95541 1 0.9665 1.0752 0.9799 

Tc27-28 0.96 1.008938 0.95754 0.98 0.9555 1.0210 0.9719 

QC, 10 9.00 20.22359 7.1032 -7 8.4272 4.2822 2.7566 

QC20 30.0 9.584327 30.796 23 25.1542 2.6762 2.9020 

QC24 8.00 13.02992 9.8981 12 9.2331 6.6747 1.7639 

Plosses, MW 4.6801 4.888081 4.5865 4.846 4.606 4.5971 4.5538 

TVD, p.u. NR NR 0.12154 NR NR NR 0.1037 

VSI, p.u. NR NR NR NR NR NR 0.1172 

Cost in $ NR NR NR NR NR NR 2.3867E+06 
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FIGURE 7. (a) Convergence Curve of GWO for Fitness Objective (F3), (b) Convergence Curve of GWO for Fitness Objective (F4) – CASE A
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B. CASE B (IEEE30 WITH 19 VARIABLES) 

For the second Case B, the GWO optimizer is been tested 
on IEEE30 standard for 19 variables to solve the ORPD 
problems for four different objective functions. For this 
case, the IEEE30 standard system considered the same data 
as previous discussed in Case A for VGE and Tc. But there 
are 9 shunt reactive compensators considered which are 
connected to 10, 12, 15,17, 20, 21, 23, 24 and 29 buses 
while their control limits range interval between 0 to 30 
MVAr. The restraints of control variables are taken from 
Table I. While, the loads and transmission line data are 
taken from [31].  
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FIGURE 8. GWO Convergence Curve on Different Search Agents for 
Fitness Objective (F1), IEEE30 (19 Variables) – CASE B 

The grey wolf optimizer (GWO) has been tested on 
different trials according to changing in number of search 
agents from 10 to 50 runs with 200 iteration for 10 
independent trails given in Fig. 8. The aim of this act, is to 
get the finest global solution from GWO optimizer. After 
getting over these trails, the best outcomes are taken from 
the search agents 50 which is further run for 200 iterations 
and 50 autonomous trails. 

Comparative Analysis. The first fitness objective in Case B 
is to minimize the transmission line losses (Plosses, MW). 
The outcomes getting from GWO optimizer is further 
compared to the base case 5.811 MW and other 
optimization techniques given in Table IV.  
By applying the grey wolf optimization (GWO) strategy, 
the fitness objective F1 is reduced from the based case 
5.811 MW to 4.5185 MW and reduction in losses reported 
to 22.24%. The GWO optimizer outcomes is further 
compared to different techniques which are reported such 
as; GSA [43] is 14.381%, TLBO [45] is 6.85%, FA [36] is 
17.92%, GSA-SQP [44] is 21.82%, MFO [12] is 21.86 and 
DE [46] is 21.61% respectively. 
The convergence curve of GWO tested for the transmission 
line losses is given in Fig. 10(a). The GWO has run on its 
best trail of 50 search agents with 200 iterations for its 
better performance, the outcomes of GWO has been 
reported to 4.5185 MW. The overall results demonstrate 

towards the better performance of GWO optimizer for 
ORPD problems in this case. It can also be concluded that 
the GWO technique is able to determine the near global 
solution. The results given in Table 4 also showed that the 
bound limits of control variables were in the limits. 
The outcomes of learning curve in Fig. 10(b) are given in 
form of average, worst and best. These values are reported 
4.5552MW, 4.6284MW and 4.5185MW respectively. The 
worst value in this case are reported less to the base case 
which endorse towards the best performance and solution 
achieved by GWO optimizer. 
The second fitness objective in Case B, is to find the 
voltage deviation (VD). For this purpose, the parameter 
selection for GWO optimizer is attained from Table II.  
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FIGURE 9. Convergence Curve of GWO for Fitness Objective (F2), 
IEEE30 (19 Variables) – CASE B 

The Fig. 9 is demonstrated the convergence curve for the 
best outcome achieved by GWO in case of voltage 
deviation. The results attained by the GWO optimizer in 
case of minimization of voltage deviation is reported to 
0.1325p.u which is less to the base case 1.1501p.u. The 
outcomes attained by the GWO optimizer in case of 
minimization of voltage deviation is less reported as 
compared to the other given solution given in Table IV, 
which indicates the best optimization solution achieved by 
the GWO optimizer.  
The third objective in this study Case B is to find the 
minimization of voltage stability index (VSI). The 
outcomes of GWO optimizer is reported to 0.1125p.u and 
shown in Fig. 11(a) while the values of the results are given 
in Table IV. 
The results indicated towards the best outcome attained by 
the GWO optimizer in this case and the results are better 
reported from GSA, TLBO and DE algorithm given in 
Table IV. The fourth objective for this study Case B is to 
find the minimum cost of energy.  
The Fig. 11(b) describes cost of energy minimization curve 
for fitness objection (F4). For, this objective the selection of 
GWO parameters taken from Table II. The minimum 
energy cost is reported to 2.3997E+06 ($). 
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FIGURE 10. (a) Convergence Curve of GWO (b) Mean, Worst and Average Values for Objective (F1) IEEE30 (19 Variables) – CASE B 

TABLE IV 
BEST CONTROL VARIABLE SETTINGS FOR MINIMIZATION OF FITNESS OBJECTIVE CASE B 

Control Variables GSA [43] TLBO [45] FA [36] GSA-SQP [44] MFO [12] DE [46] GWO 

VG1 1.1 1.06 1.1 1.10000 1.1000 1.1000 1.1 

VG2 1.1 1.08 1.0644 1.09432 1.0943 1.0931 1.0946 

VG5 1.1 1.07 1.07455 1.07479 1.0747 1.0736 1.0749 

VG8 1.1 1.08 1.0869 1.07671 1.0766 1.0756 1.0787 

VG11 1.1 1.07 1.09164 1.10000 1.1000 1.1000 1.1 

VG13 1.1 1.09 1.099 1.10000 1.1000 1.1000 1.0950 

T11 0.9 0.93 1 1.04021 1.0433 1.0465 1.0414 

T12 0.9 0.9318 0.94 0.90000 0.9000 0.9097 0.9126 

T15 0.9 0.95 1 0.97871 0.97912 0.9867 1.0269 

T36 1.019538 0.9331 0.97 0.96611 0.96474 0.9689 0.9891 

QC10 5 0.03 3 5.00000 0.0500 5.0000 2.8072 

QC12 5 0.0466 4 5.00000 0.0500 5.0000 1.5266 

QC15 5 0.0392 3.3 5.00000 0.048055 5.0000 2.7158 

QC17 5 0.0464 3.5 5.00000 0.0500 5.0000 2.8099 

QC20 5 0.0051 3.9 5.00000 0.040263 4.4060 2.2453 

QC21 5 0.02 3.2 5.00000 0.0500 5.0000 0.3991 

QC23 5 0.0101 1.3 3.70176 2.5193 2.8004 1.6841 

QC24 5 0.0043 3.5 5.00000 0.0500 5.0000 2.3217 

QC29 5 0.0016 1.42 2.68988 0.021925 2.5979 2.6973 

Ploss, MW 4.975298 5.4129 4.7694 4.54271 4.5410 4.5550 4.5185 

TVD, pu 0.215793 1.8586 1.9542 2.00789 2.0316 1.9598 0.1325 

VSI, pu 0.136844 0.1252 NR NR NR 0.5513 0.1125 

Cost in $ NR NR NR NR NR NR 2.3997E+06 
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FIGURE 11. (a) Convergence Curve of GWO for Fitness Objective (F3), (b) Convergence Curve of GWO for Fitness Objective (F4) 
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V. SATISTICAL ANALYSIS 

In this segment, the performance of the proposed grey wolf 
optimizer (GWO) is further studied through the 
comparative analysis with its statistics considering for the 
two test cases of IEEE 30 with 13 and 19 variables for 
optimal RPD problems. According to the stochastic nature 
of the GWO, the outcomes getting from the GWO are 
different from one another. Therefore, the 50 independent 
runs are carried out with 50 search agents with 200 
iterations to check the inference on GWO to get the better 
solution for ORPD problem. 
The statistical analysis is performed based on boxplot 
analysis, histogram analysis, empirical CDF analysis with 
minimum fitness. The results demonstrate in sub Figs 6(a) 
and 10(a) are for minimization of transmission line losses 
(Plosses, MW), Figs. 5 and 9 demonstrates the voltage 
deviation (VD) minimization, sub Figs. 7(a) and 11(a) 
illustrates the minimization of voltage stability index (VSI), 
while sub Figs. 7(b) and 11(b) are for the cost of energy 

minimization. The minimum fitness in sub Figs. 12(a)-29(a) 
indicates the minimum difference in all test cases 
determined the substantial precision of the GWO optimizer. 
The sub Figs. 12(b)-19(b) histogram plots demonstrated 
towards the best outcomes taken from the GWO which is 
recorded less as compared to the based case for given test 
cases. The sub Figs. 12(c)-19(c) probability empirical CDF 
curve indicated that almost hundred percent of the 
autonomous runs gives the fitness less than the base case. 
While, the sub Figs. 12(d)-19(d) demonstrated the dispersal 
of data where values and outliers are much closer to the 
average gauge consist the precise optimization getting from 
the GWO. For discussing all this statistical analysis and 
studies, it is depicted that the results demonstrate the 
robustness consistency and stability of GWO optimizer and 
also is been observed for the better solution to ORPD 
problems. 
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FIGURE 12. Statistical Analysis of GWO for Transmission Losses Minimization on IEEE30 Bus with 13 Variables – CASE A 
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FIGURE 13. Statistical Analysis of GWO for Transmission Losses Minimization on IEEE30 Bus for 19 Variables – CASE B 
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(b) Voltage Deviation (VD) (c) Voltage Deviation (VD) (d) GWO 

FIGURE 14. Statistical Analysis of GWO for Voltage Deviation on IEEE-30 Bus with 13 Control Variables – CASE A 
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FIGURE 15. Statistical Analysis of GWO for Voltage Deviation on IEEE-30 Bus for 19 Control Variables– CASE B 
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FIGURE 16. Statistical Analysis of GWO for Voltage Stability Index on IEEE30 Bus with 13 Variables– CASE A 
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FIGURE 17. Statistical Analysis of GWO, Voltage Stability Index on IEEE30 with 19 Variables– CASE B 
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FIGURE 18. Statistical Analysis of GWO for Cost Minimization on IEEE30 Bus with 13 Variables– CASE A 
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FIGURE 19. Statistical Analysis of GWO for Cost Minimization on IEEE30 Bus for 19 Variables – CASE B 
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VI. CONCLUSION 

In the research, the nature inspired metaheuristic approach of 
GWO is successfully employed to solved ORPD problems 
for two given Cases A, B. The numerical results of GWO are 
tested with other existing methods, namely, C-PSO, DE, 
MFO, FODPSO, MICA-IWO, MFO, DE, FA, GSA, GSA-
SQP and TLBO, to validate the performance of the proposed 
GWO optimizer. The simulation results showed that GWO 
optimizer is effective and efficient approach for solving the 
ORPD problems. When compared with the best results of 
other techniques, GWO optimizer is observed to be more 
effective as the total transmission line losses, voltage 
deviation and cost are the minimum relative to others.  
The best outcomes attained by GWO optimizer for both A 
and B cases are reported such as; minimization of 
transmission line losses 4.5324 MW and 4.5185 MW with 
19.59% and 22.24% reduction in power losses to the base 
case, voltage deviation values are reported to 0.1037p.u. and 
0.1325p.u, voltage stability index values are reported to 
0.1175p.u and 0.1125p.u while the cost of energy are 
reported to 2.3867E+06$ and 2.3997E+06$ respectively.   
To summarizes the overall statistical analysis indicates 
towards the robustness, effectiveness and efficacy of the 
GWO optimizer. In future, by utilization of GWO optimizer, 
it could be more possible to solve the complex and non-linear 
problems in the field of science and technology. 
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