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Abstract: Higher derivatives are important to interpret the physical process. However, higher
derivatives calculated from measured data often deviate from the real ones because of measurement
errors. A novel method for data fitting without higher derivatives violating the real physical process
is developed in this paper. Firstly, the research on errors’ influence on higher derivatives and the
typical functions’ extreme points distribution were conducted, which demonstrates the necessity and
feasibility of adopting extreme points distribution features in neural networks. Then, we proposed
a new neural network considering the extreme points distribution features, namely, the extreme-
points-distribution-based neural network (EDNN), which contains a sample error calculator (SEC)
and extreme points distribution error calculator (EDEC). With recursive automatic differentiation, a
model calculating the higher derivatives of the EDNN was established. Additionally, a loss function,
embedded with the extreme points distribution features, was introduced. Finally, the EDNN was
applied to two specific cases to reduce the noise in a second-order damped free oscillation signal
and an internal combustion engine cylinder pressure trace signal. It was found that the EDNN
could obtain higher derivatives that are more compatible with physical trends without detailed
differentiation equations. The standard deviation of derivatives’ error of the EDNN is less than
62.5 percent of that of traditional neural networks. The EDNN provides a novel method for the
analysis of physical processes with higher derivatives compatible with real physical trends.

Keywords: higher derivatives; extreme-points-distribution-based neural network; recursive automatic
differentiation; noise reduction; cylinder pressure trace; second-order damped free oscillation

1. Introduction

Higher derivatives are important to theoretical research and engineering applica-
tion [1–6] for deepening the understanding of physical processes and improving analysis
efficiency [7,8]. However, it is difficult to obtain higher derivatives directly from a real
signal because of measurement errors [9]. Though varied techniques such as the Savitzky–
Golay polynomial [10,11], Fourier transform [12,13] and wavelet transform [14,15] have
been developed to obtain higher derivatives of measured signals, the higher derivatives
obtained with the above techniques often deviate from the real one in trends. It is a chal-
lenge and urgent demand [9] to develop a data fitting method without higher derivatives
violating real trends.

With the development of physics-informed neural networks (PINN) [16–18] and the
advancement in automatic differentiation [19–22], complex nonlinear feature recogni-
tion [23–26] and parameter identification of physical processes with well-defined differen-
tial equations [27,28] were extensively studied, which demonstrate the neural networks’
ability to obtain higher derivatives.
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Though neural networks can fit any continuous function [29–31], the higher-derivatives-
constrained PINN could reduce the disturbance of noise [32–34] in data fitting. However,
when lacking detailed mathematical models, the relations between the derivatives could
not be established, and PINN could not be applied in fitting those physical processes.

In order to fit the measured signal without a discrepancy in the trend of higher
derivatives, stemming from the local monotonicity of the real physical process [35,36], the
necessity and feasibility of adopting the number of extreme points as constraints to data
fitting with neural networks are proved. Then, an extreme-points-distribution-based neural
network (EDNN) is proposed and applied in noise reduction. The research indicates that
the EDNN could obtain higher derivatives that are more compatible to physical trends
without detailed differential relations and could be applied in the denoising of measured
signal with higher derivatives conforming to real physical trends. The proposed EDNN
provides a novel way for signal denoising that retains higher derivatives compatible with
real physical process trends.

2. Analysis of Noise’s Influence on Higher Derivatives and Extreme Points
Distribution of Typical Process Functions
2.1. Noise’s Influence on the Higher Derivatives of the Measured Signal

Generally, the signal to be measured f (t) is continuous in the time domain. In the
neighborhood of t0, it can be approximated using a Taylor series as in expression (1).

f (t) = f (t0) + f ′(t0)(t− t0) +
1
2! f ′′ (t0)(t− t0)

2 + · · ·+ 1
n! f (n)(t0)(t− t0)

n

+o((t− t0)
n)

(1)

Suppose that there is a continuous noise ε(t) in the vicinity of t0; the noise ε(t) can
also be approximated using a Taylor series as in expression (2).

ε(t) = ε(t0) + ε′(t0)(t− t0) +
1
2! ε
′′ (t0)(t− t0)

2 + · · ·+ 1
n! ε

(n)(t0)(t− t0)
n

+o((t− t0)
n)

(2)

The signal to be measured and noise can be superposed together. Then, the measured
signal C(t) in the vicinity of t0 can be approximated using a Taylor series as in expression (3).

C(t) = f (t) + ε(t)
= f (t0) + f ′(t0)(t− t0) +

1
2! f ′′ (t0)(t− t0)

2 + · · ·
+ 1

n! f (n)(t0)(t− t0)
n + o((t− t0)

n) + ε(t0) + ε′(t0)(t− t0)

+ 1
2! ε
′′ (t0)(t− t0)

2 + · · ·+ 1
n! ε

(n)(t0)(t− t0)
n + o((t− t0)

n)

(3)

Because the noise ε(t) is random, there exists the probability that the first k terms of
the Taylor series at t0 are zero and the term after the k + 1 term can be ignored; thus:

ε(t) = ε(t0) + ε′(t0)(t− t0) +
1
2! ε
′′ (t0)(t− t0)

2 + · · ·+ ε(tt)

(tt−t0)
k (t− t0)

k

+ · · · 1
n! ε

(n)(t0)(t− t0)
n + o((t− t0)

n) = 1
k! ε

(k)(t0)(t− t0)
k

(4)

Suppose the noise amplitude at the time tt is εt, i.e., ε(tt) = εt, then:

ε(tt) =
1
k!

ε(k)(t0)(tt − t0)
k (5)

ε(k)(t0) =
ε(tt)

1
k! (tt − t0)

k =
εt

1
k! (tt − t0)

k (6)

For ∀Aε, when |εt| >
∣∣∣Aε· 1

k! (tt − t0)
k
∣∣∣, ∃∣∣∣ε(k)(t0)

∣∣∣ > |Aε|.

Therefore, when the noise amplitude εt is a constant, as tt approaches t0, ε(tt)

(tt−t0)
k will

become larger and larger, as will ε(k)(t0). That is, the kth order derivative of the noise at t0
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becomes larger and larger. Subsequently, the kth order derivative of the measured signal
C(t) also becomes larger and larger. When εt is large enough or (tt − t0) is small enough,
the kth order derivative of noise ε(t) at t0 will be large enough, and the kth order derivative
of measured signal C(t) at t0 will deviate seriously from the corresponding derivative of
the signal f (t).

The above analysis shows that even if the Taylor series expansion of the noise has
only the kth order term, provided the kth order derivative is large enough, the kth order
derivative of the measured signal can be seriously interfered with. Additionally, the
kth order derivative of the measured signal will deviate substantially from the kth order
derivative of the real physical process. Therefore, it is necessary to reduce the noise
disturbance to obtain the higher derivatives of the measured data conforming to the real
physical trend.

2.2. Extreme Points Distribution of Typical Process Functions

When fitting a measured signal using neural networks, noise often leads to the higher
derivatives of the fitted signal to deviate from the true physical trend [37].

Generally, the relation between the physical quantities and time of a physical process
can be modeled by a polynomial, Gaussian function, cosine function, or exponential
function. The extreme points of those functions’ higher derivatives on a specific interval
are distributed in certain patterns. When extreme points distribution is involved in data
fitting, the approximation between the higher derivatives of the measured signal and the
higher derivatives of the real physical process could be improved. It is necessary to analyze
the extreme points’ distribution pattern of those typical process functions and their higher
derivatives to involve the extreme points distribution in data fitting with neural networks.

An nth order polynomial modeling a continuous process is shown in expression (7).

p(x) =
n

∑
i=0

ai·xi (7)

Additionally, the kth order derivative of an nth order polynomial can be obtained
in (8).

p(k)(x) = k!ak +
(k + 1)!

1!
a(k+1)x +

(k + 2)!
2!

a(k+2)x
2 + · · ·+ n!

(n− k)!
anxn−k (8)

It can be seen that the kth order derivative of nth order polynomial is an (n− k)th-order
polynomial. Therefore, the number of the kth-order derivative’s extreme points decreases
with the increase of order k. When fitting a measured signal modeled by an nth-order
polynomial, the extreme point number could be applied to test the consistency between the
fitted kth order derivative and that of the real physical process.

An exponential function describing the growth or decline process is shown in (9).

f (x) = ax (9)

Additionally, the kth-order derivative of the exponential function is shown in (10).

f (k)(x) = [ln(a)]ka
x

(10)

According to (10), the number of extreme points of the 0–kth-order derivatives of
the exponential function is always zero. When fitting a measured signal modeled using
the exponential function, the number of extreme points should always remain zero. Any
extreme point appearing in the fitting results indicates a deviation from the physical trend.

A Gaussian function describing a random process is shown in expression (11).

g(x) = eax2
(11)
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The kth-order derivative of the Gaussian function is shown in expression (12).

dng(x)
dxn = eax2

∑n
i=0 Cn

it(a)xm (12)

where Cn
it(a) = (2a)t

1+iε+n
Fi(n)[(n− i)− ε+n ]!!, m = i + ε−n , ε±n = 1

2
[
1± (−1)n], t = (n+i)

2 + ε−n

and Fi(n) = n!
i!(n−i)! is the binomial coefficient.

The highest degree of xm in expression (12) increases as the derivative order in-
creases [38]. Then, the number of the derivative’s extreme points increases as the derivative
order increases. When fitting a measured signal modeled using the Gaussian function, the
extreme point number could be applied to test the consistency between the fitted kth-order
derivative and that of the real physical process.

The cosine function describing a simple periodic process is shown in (13).

h(x) = cos(x) (13)

The kth-order derivative of the cosine function is shown in expression (14).

h(k)(x) = cos(
kπ

2
+ x) (14)

Cosine function shifted left by kπ/2 yields its kth-order derivative. If the number of
extreme points of the cosine function is Nhp on any arbitrary interval [−a,+a], the number
of extreme points of the cosine function’s kth-order derivative is Nhp − 1, Nhp or Nhp + 1.
When fitting a measured signal using a cosine function, it is feasible to judge whether
the higher derivative deviates from the physical trend according to whether an abnormal
number of extreme points appears.

In summary, there are definite relations between the number of extreme points and the
derivative order for the typical process function. Moreover, the pattern of a real physical
process could be modeled using a typical function or its combinations. Therefore, the
number of extreme points of the higher derivatives could be applied as constraints to fit the
measured signal for denoising purpose, which will get noise-reduced signals with higher
derivatives conforming to the physical trend.

3. The Extreme-Points-Distribution-Based Neural Network (EDNN)

For similar physical processes, the functions modelling the physical quantities varying
with time and space have the same form. Additionally, the numbers of the extreme points
of those functions and their derivatives are confined in a certain range. Therefore, a novel
neural network that introduces the extreme points distribution as constraints was proposed
in order to acquire higher derivatives conforming to physical trends. The outline of building
the EDNN is shown in Figure 1.
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Figure 1. The outline of building the EDNN.

3.1. The Architecture of the Extreme-Points-Distribution-Based Neural Network (EDNN)

The extreme-points-distribution-based neural network (EDNN) is composed of an
input layer, hidden layers, an output layer, an automatic differentiation layer, an extreme
points distribution feature layer and a loss function containing extreme points distribution
errors. As shown in Figure 2, the EDNN contains a sample error calculator (SEC) and an
extreme points distribution error calculator (EDEC). The total loss function of the EDNN
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is composed of the sample error loss function LossSp and the extreme points distribution
error loss function LossEV.
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The sample error loss function LossSp is calculated from the difference between the
output fs of the sample error calculator (SEC) and the corresponding target ft. The extreme
points distribution feature error loss function LossEV is calculated using the extreme points
distribution error calculator (EDEC). For each xd in the measured signal’s definition domain,
the automatic differentiation layer (ADLayers) calculates the 0–(k+1)th-order derivatives.
Additionally, the extreme points distribution feature layer (EVLayer) calculates the number
of extreme points of the 0–kth-order derivatives. Then, LossEV can be calculated from the
difference between the calculated extreme points number and extreme points number of
the real physical process.

The total loss function of the EDNN (Loss) is the weighted summation of LossSp and
LossEV. The EDNN is trained, and the weight and the bias are updated until the total loss
drops below the stopping criterion or the gradient is less than the stopping criterion.

3.2. Recursive Automatic Differentiation

Calculating the derivatives of the output with respect to the input is necessary for the
EDNN. A recursive formulation is established for calculating the derivatives. The current
layer’s derivatives with respect to the input are modeled as a function of the previous
layer’s derivatives with respect to the input.

3.2.1. Derivatives of Hidden Layers

The derivative of the (l + 1)th hidden layer with respect to the input layer can be
formulated as a function of the derivatives of the lth hidden layer with respect to the input
layer.

The ith node’s output of the (l + 1)th layer is denoted as al+1
i (x), and its mth-order par-

tial derivative with respect to the input layer’s nth node xI
n is denoted as Dm(al+1

i (x), xI
n
)
.



Appl. Sci. 2023, 13, 6662 6 of 17

According to Faà di Bruno’s formula [39,40], Dm(al+1
i (x), xI

n
)

can be expressed as:

Dm
(

al+1
i (x), xI

n

)
= ∑ m!

b1!b2!···bm!

(
f l+1
i

)(k)(
∑Sl

j=1 wl+1,l
i,j ·a

l
j(x) + bl+1

i

)
·
(

∑Sl
j=1 wl+1,l

i,j ·D1
(

al
j(x),x

I
n

)
1!

)b1

·
(

∑Sl
j=1 wl+1,l

i,j ·D2
(

al
j(x),x

I
n

)
2!

)b2

· · ·
(

∑Sl
j=1 wl+1,l

i,j ·Dm
(

al
j(x),x

I
n

)
m!

)bm

(15)

where the sum is over all different solutions in non-negative integers b1, b2, · · · , bm of

b1 + 2b2 + · · ·+ mbm = m and k = b1 + b2 + · · ·+ bm;
(

f l+1
i

)(k)(
∑Sl

j=1 wl+1,l
i,j ·a

l
j(x) + bl+1

i

)
is the kth-order derivative of the activation function; Sl is the number of nodes in layer l;
wl+1,l

i,j is the weight of the jth node in the lth layer to the ith node in the (l + 1)th layer; bl+1
i

is the bias of the ith node of the (l + 1)th layer; l = 1, · · · , (Lh − 1), Lh is the total number of
hidden layers.

When there is no transform in the input layer, the mth-order partial derivative
Dm(a1

i (x), xI
n
)

of the ith node’s output a1
i (x) in the first hidden layer with respect to the nth

node of the input layer is shown in expression (16).

Dm
(

a1
i (x), xI

n

)
=
(

f 1
i

)(m)
(

∑SI

j=1 w1,I
i,j ·x

I
j + b1

i

)
·
(

w1,I
i,n

)m
(16)

where
(

f 1
i
)(m)

(
∑SI

j=1 w1,I
i,j ·x

I
j + b1

i

)
is the mth-order derivative of the activation function; SI

is the number of nodes of the input layer; w1,I
i,j is the weight of the jth node in the input

layer to the ith node in the first hidden layer; b1
i is the bias of the ith node of the first hidden

layer.

3.2.2. Derivatives of Output Layers

The partial derivatives of the output layer with respect to the input layer are modeled
as the functions of the partial derivatives of the last hidden layer with respect to the input
layer. The mth-order partial derivative of the output layer’s ith node with respect to the nth
node in the input layer is shown in expression (17).

Dm
(

aO
i (x), xI

n

)
= ∑SLh

j=1 wO,Lh
i,j ·

∂m
[
aLh

j (x)
]

∂(xI
n)

m = ∑SLh

j=1 wO,Lh
i,j ·D

m
(

aLh
i (x), xI

n

)
(17)

where Lh is the total number of hidden layers; SLh is the number of nodes in the (Lh)th
hidden layer; wO,Lh

i,j is the weight of the jth node in the (Lh)th hidden layer to the ith node
in the output layer.

3.3. Extreme Points Distribution Feature Layer

The role of the extreme points distribution feature layer is calculating the extreme
points number. The extreme points of the mth-order partial derivatives Dm(aO

i (x), xI
n
)

are
derived from the (m + 1)th-order derivative Dm+1(aO

i (x), xI
n
)
.

Let:
Dm+1

(
aO

i (x), xI
n

)
= 0 (18)

Equation (18) is an equation for x.
The solution of Equation (18) is a set:

Solm,i,n =
{

x
∣∣∣Dm+1

(
aO

i (x), xI
n

)
= 0

}
(19)
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The number of extreme points of Dm(aO
i (x), xI

n
)

is the rank of the set Solm,i,n:

Rm,i,n = Rank
(

x
∣∣∣Dm+1

(
aO

i (x), xI
n

)
= 0

)
(20)

where Rank() is the ranking function, Rm,i,n is the number of extreme points of Dm(aO
i (x), xI

n
)

and Rm,i,n is defined as the extreme points distribution feature.

3.4. Loss Function Containing Extreme Points Distribution Feature Errors

The number of extreme points of the real physical process is the reference for calculat-
ing the extreme points distribution feature error.

If the number of extreme points of derivative Dm(aO
i (x), xI

n
)

is Rm,i,n and the number of
extreme points of the real physical process is TCEn,i,m, then the extreme points distribution
feature error of derivative Dm(aO

i (x), xI
n
)

is defined as:

Erm,i,n = Rm,i,n − TCEn,i,m (21)

The extreme points distribution feature error loss function LossEV is defined as:

LossEV = ∑NI
n=1 ∑No

i=1 ∑Md
m=0

{
(Erm,i,n)

2
}

(22)

where No is the number of nodes in the output layer, NI is the number of nodes in the input
layer and Md is the highest order of the partial derivatives.

The sample error loss function LossSp is defined as:

LossSp = ∑Nt
s=1 ∑No

i=1

[
ti,s − aO

i,s(x)
]2

(23)

where ti,s is the ith component of the sth training sample; aO
i,s(x) is the ith node’s output

of the output layer corresponding to the sth training sample; Nt is the number of training
samples.

The total loss function of the EDNN is defined as:

Loss = SS·LossSp + SE·LossEV (24)

where SS is the weight of the sample error loss function LossSp; SE is the weight of the
extreme points distribution feature error loss function LossEV.

The optimization criterion is to minimize the total loss function. Additionally, the
stopping criterion is when the total loss function is less than 10−4 or the gradient is less
than 10−7.

4. Application of the EDNN in Denoising

The research on signal denoising with EDNN was conducted. Firstly, a single-input,
single-output, single-hidden-layer EDNN was realized. Then the EDNN is applied in the
denoising of a second-order damped free oscillation signal and an internal combustion
engine cylinder pressure trace signal.

4.1. Realization of EDNN

The single-input, single-output EDNN is shown in Figure 3. There are eight nodes in
the hidden layer, and the activation function of the hidden layer is a sigmoid function. The
output of the sample error calculator (SEC) is:

ao(x) = f
[
(∑8

i=1 f
(

W1,I
i,1 ∗ x + b1

i

)
)·W2,1

1,i + b2
1

]
(25)
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where W1,I
i,1 is the weight of the input to the ith node of the first hidden layer; W2,1

1,i is the
weight of the ith node in the first hidden layer to output; b1

i is the bias of the ith node of the
first hidden layer; b2

1 is the bias of the output.
Appl. Sci. 2023, 13, 6662 8 of 17 
 

 
Figure 3. Schematic of the single-input, single-output, single-hidden-layer EDNN. 

The 𝑘th derivative of the output with respect to the input is shown in (26). 

 ( ) = ∑ 𝑓( ) 𝑊, , ∗ 𝑥 + 𝑏 ∙ 𝑊 , , ∗ 𝑊, ,  (26) 

where 𝑓( ) 𝑊, , ∗ 𝑥 + 𝑏  represents the 𝑘th-order derivative of the activation function 
corresponding to the 𝑖th node of the hidden layer. 

The highest derivative order of the voltage with respect to the time of the second-
order damped free oscillation signal is two. Thus, the highest derivative order of the 
EDNN could be set to four, which satisfies the noise reduction demand. Therefore, the 
maximum value of k in expression (26) is four. Additionally, only the first- through fourth-
order derivatives of the activation function are required [41]. The first- through fourth-
order derivatives of the activation function are shown in expressions (27)–(30): 𝑓 (𝑥) = 𝑓(𝑥) − 𝑓(𝑥)   (27)𝑓 (𝑥) = 𝑓(𝑥) − 3 𝑓(𝑥) + 2 ∙ 𝑓(𝑥)  (28)𝑓( )(𝑥) = 𝑓(𝑥) − 7 ∙ 𝑓(𝑥) + 12 ∙ 𝑓(𝑥) − 6 ∙ 𝑓(𝑥)  (29)𝑓( )(𝑥) = 𝑓(𝑥) − 15 ∙ 𝑓(𝑥) + 50 ∙ 𝑓(𝑥) − 60 ∙ 𝑓(𝑥) + 24 ∙ 𝑓(𝑥)  (30)

where 𝑓(𝑥) =  is the sigmoid function; 𝑓 (𝑥), 𝑓 (𝑥), 𝑓( )(𝑥),𝑓( )(𝑥) are the first, sec-
ond, third, and fourth derivatives of 𝑓(𝑥) with respect to 𝑥. 

The 𝑘th derivative of the output with respect to the input is ( ). Additionally, the 

solution of ( ) = 0 is: 𝑆𝑜𝑙 = 𝑥 ( ) = 0   (31) 

The number of extreme points 𝑅 corresponding to the derivative ( ) is the 
rank of the set 𝑆𝑜𝑙 , i.e.: 

 𝑅 = 𝑅𝑎𝑛𝑘 𝑥 ( ) = 0  (32)

when the number of extreme points of the real physical process corresponding to the 
derivative ( ) is 𝑇𝐶𝐸 . 

Therefore, the extreme points distribution feature error corresponding to the (𝑘 −1)th  derivative ( ) is: 

Figure 3. Schematic of the single-input, single-output, single-hidden-layer EDNN.

The kth derivative of the output with respect to the input is shown in (26).

dkao(x)
dxk = ∑n

i=1 f (k)
(

W1,I
i,1 ∗ x + b1

i

)
·W2,1

1,i ∗W1,I
i,1 (26)

where f (k)
(

W1,I
i,1 ∗ x + b1

i

)
represents the kth-order derivative of the activation function

corresponding to the ith node of the hidden layer.
The highest derivative order of the voltage with respect to the time of the second-order

damped free oscillation signal is two. Thus, the highest derivative order of the EDNN could
be set to four, which satisfies the noise reduction demand. Therefore, the maximum value
of k in expression (26) is four. Additionally, only the first- through fourth-order derivatives
of the activation function are required [41]. The first- through fourth-order derivatives of
the activation function are shown in expressions (27)–(30):

f ′(x) = f (x)− [ f (x)]2 (27)

f ′′ (x) = f (x)− 3[ f (x)]2 + 2·[ f (x)]3 (28)

f (3)(x) = f (x)− 7·[ f (x)]2 + 12·[ f (x)]3 − 6·[ f (x)]4 (29)

f (4)(x) =
{

f (x)− 15·[ f (x)]2 + 50·[ f (x)]3 − 60·[ f (x)]4 + 24·[ f (x)]5
}

(30)

where f (x) = 1
1+e−x is the sigmoid function; f ′(x), f ′′ (x), f (3)(x), f (4)(x) are the first, sec-

ond, third, and fourth derivatives of f (x) with respect to x.

The kth derivative of the output with respect to the input is dkao(x)
dxk . Additionally, the

solution of dkao(x)
dxk = 0 is:

Solk−1 =

{
x

∣∣∣∣∣dkao(x)
dxk = 0

}
(31)
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The number of extreme points Rk−1 corresponding to the derivative dk−1ao(x)
dxk−1 is the

rank of the set Solk−1, i.e.:

Rk−1 = Rank

(
x

∣∣∣∣∣dkao(x)
dxk = 0

)
(32)

when the number of extreme points of the real physical process corresponding to the

derivative dk−1ao(x)
dxk−1 is TCEk−1.

Therefore, the extreme points distribution feature error corresponding to the (k− 1)th

derivative dk−1ao(x)
dxk−1 is:

Erk−1 = Rk−1 − TCEk−1 (33)

where TCEk−1 is determined using known physical process information.
The total loss function of the EDNN is:

Loss = SS·LossSp + SE·LossEV = SS·∑Nt
s=1[ts − ao

s(x)]2 + SE·∑k=4
k=0(Erk−1)

2 (34)

where LossEV is the extreme points distribution feature error loss function; LossSp is the
sample error loss function; SS is the weight of the sample error loss function LossSp; SE is
the weight of the extreme points distribution feature error loss function LossEV; ts is target
of the sth training sample; ao

s(x) is the output corresponding to the sth training sample; Nt
is the number of training samples.

4.2. Denoising of Second-Order Damped Free Oscillation Signal via EDNN
4.2.1. Acquisition of Second-Order Damped Free Oscillation Signal

The measured second-order damped free oscillation (SODFO) signal has errors, and
the effect of the errors on the derivatives is difficult to evaluate. Therefore, a SODFO signal
is obtained via simulation. High-frequency noise and random noise were superposed on
the simulated signal. Then, the performance of the EDNN on denoising was studied.

The simulation model of SODFO signal is shown in expression (35). Additionally, the
simulated signal is a cosine-shape curve with decreasing amplitude (shown in Figure 4a).
The simulation model of the high-frequency noise is shown in expression (36). Moreover,
the simulated high-frequency noise is a cosine signal with a frequency 10 times the fre-
quency of the SODFO signal (shown in Figure 4b). The simulation model of the random
noise is shown in expression (37). Further, random noise is a uniformly distributed noise
on [−0.01, 0.01] (shown in Figure 4c). The superposition of the higher-order noise and
random noise on the SODFO signal does not change the amplitude, apparently (shown in
Figure 4d).

yc = 10·e(−0.3·t)·cos(3·t) (35)

hnoise = 0.02·cos(30·t) (36)

rnoise ∼ U(−0.01, 0.01) (37)

y = yc + hnoise + rnoise (38)

In expressions (35)–(38), the range of time t is [0.4, 6] seconds; y is the noisy second-
order damped free oscillation (NSODFO) signal. The time t, signal y and the signal yc are
vectors of length 491.
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Figure 4. Second-order damped free oscillation signal and noise. (a) Simulated second-order damped
free oscillation (SODFO) signal; (b) high-frequency noise; (c) random noise; (d) noisy second-order
damped free oscillation (NSODFO) signal.

4.2.2. Comparative Research of EDNN with Shallow Neural Network on Denoising of
Second-Order Damped Free Oscillation Signal

Comparative research on denoising performance of the EDNN was conducted. The
NSODFO signal processed using the shallow neural network and the EDNN were compared.
The SODFO signal, the noise-removed signal from the shallow neural network (NRSNN
signal) and the noise-removed signal from the EDNN (NREDNN signal) are shown in
Figure 5.
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Figure 5. SODFO signal, NRSNN signal, NREDNN signal and the errors. (a) SODFO signal, NRSNN
signal, NREDNN signal; (b) errors between the NRSNN signal, NREDNN signal and SODFO signal.

It can be found in Figure 5a that the SODFO signal, NRSNN signal and the NREDNN
signal are well coincident. In Figure 5b, the differences between the denoising signals and
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the SODFO signal show that the errors of the NRSNN signal and the NREDNN signal are
of the same magnitude. The maximum error of the NRSNN signal is 0.09 percent of the
maximum amplitude of the SODFO signal. The maximum error of the NREDNN signal is
0.08 percent of the maximum amplitude of the SODFO signal. It indicates that the shallow
neural networks and the EDNN have similar performance in approximating the amplitude
of the signal.

The first- through fourth-order derivatives and the derivative errors are shown in
Figure 6.
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Figure 6a is the first-order derivative and the errors. The first-order derivatives of
the NRSNN signal and the NREDNN signal coincide with the first-order derivative of the
SODFO signal. The maximum error of the first-order derivative of the NREDNN signal is
0.16 percent of the maximum amplitude of the first-order derivative of the SODFO signal.
The maximum error of the first-order derivative of the NRSNN signal is 0.49 percent of the
maximum amplitude of the first-order derivative of the SODFO signal.

Figure 6b is the second-order derivatives and the errors. The second-order derivatives
of the NRSNN signal and the NREDNN signal coincide with the second-order derivative of
the SODFO signal. The maximum error of the second-order derivative of the NREDNN
signal is 0.42 percent of the maximum amplitude of the second-order derivative of the
SODFO signal. The maximum error of the second-order derivative of the NRSNN signal
is 2.22 percent of the maximum amplitude of the second-order derivative of the SODFO
signal.

Figure 6c is the third-order derivatives and the errors. The third-order derivative
of the NREDNN signal coincides with the third-order derivative of the SODFO signal.
Additionally, no trend discrepancy occurs in the third-order derivative of the NREDNN
signal. However, there is a trend discrepancy occurs on the third-order derivative of
the NRSNN signal (Figure 6d). The maximum error of the third-order derivative of the
NREDNN signal is 4.02 percent of the maximum amplitude of the third-order derivative of
the SODFO signal. The maximum error of the third-order derivative of the NRSNN signal
is 12.05 percent of the maximum amplitude of the third-order derivative of the SODFO
signal.

Figure 6e is the fourth-order derivatives and the errors. The fourth-order derivatives
of the NRSNN signal and the NREDNN signal coincide with the fourth-order derivative
of the SODFO signal. The maximum error of the fourth-order derivative of the NREDNN
signal is 39.92 percent of the maximum amplitude of the fourth-order derivative of the
SODFO signal. The maximum error of the fourth-order derivative of the NRSNN signal
is 114.24 percent of the maximum amplitude of the fourth-order derivative of the SODFO
signal. The error of NREDNN signal is less than that of the NRSNN signal (Figure 6f).

The standard deviation of the first- through fourth-order derivatives are shown in
Table 1. The standard deviation error between the derivatives of the SODFO signal and that
of the NREDNN signal is less than 62.5 percent of the standard deviation errors between
the derivatives of the SODFO signal and the NRSNN signal.

Table 1. The standard deviation of the derivatives.

1st Derivative 2nd Derivative 3rd Derivative 4th Derivative

SNN_18 neural
network 0.016 0.215 2.642 28.692

EDNN neural
network 0.010 0.074 0.751 8.414

In summary, the noise reduction performance of the NREDNN is better than that of
the shallow neural networks. Additionally, no trend discrepancy occurred in the first-
through fourth-order derivatives of the NREDNN signal. Those are the advantages of
the EDNN. However, the EDNN requires more memory to store the derivatives and more
computational time to calculate the derivative and the extreme feature error.

4.3. Denoising of the Cylinder Pressure Signal with EDNN

The internal combustion engine cylinder pressure trace is the variation of cylinder
pressure with crank angle. Generally, the cylinder pressure trace is recorded using a
piezoelectric high-temperature pressure sensor and smoothed via cyclic averaging [42].
The cyclically averaged cylinder pressure trace can satisfy the demands of calculation
of indicated mean effective pressure. However, when the analysis involves derivatives
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beyond the second order, the noise often leads to deviation from the physical trend. The
denoising performance of the EDNN on cylinder pressure trace was studied.

The cylinder signal is the in-cylinder pressure which varies with the crank angle. The
pressure signal is between the −120 degree CA and 120 degree CA, and the sample interval
is 0.1 degrees CA. Additionally, the cylinder pressure signal is a vector of length 2400 whose
maximum value is 1.6946 × 106 Pa.

The single-input, single-hidden-layer, single-output EDNN with eight nodes in the
hidden layer was applied to reduce the noise of the cylinder pressure trace. Moreover,
the noise reduction results were compared with that from a shallow neural network with
8 nodes (SNN_8), a shallow neural network with 18 nodes (SNN_18) and the smoothing
splines that are traditionally adopted in smoothing cylinder pressure trace.

The noise reduction results are shown in Figure 7. The noise-reduced signals of the four
techniques are all consistent with the measured cylinder pressure (Figure 7a). Additionally,
the errors between the noise-reduced signal and the measured signal in Figure 7b are all
less than 400 Pa, and the relative error is less than 1.2 × 10−6%, which satisfies the accuracy
requirements.
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Figure 8 shows the first- through fourth-order derivatives. It can be seen in Figure 8a
that the first-order derivatives of the noise-reduced signal from the four techniques are
all consistent with each other, and there are no fluctuations deviating from the physical
trend. The first-order derivative of the measured signal shows a small fluctuation near the
zero-degree crank angle, which deviates from the physical trend.

It can be seen in Figure 8b that the second-order derivative of the noise-reduced signal
from the EDNN and the SNN_18 neural network is consistent with real trend and there
is no fluctuations deviating from the physical trend. The second-order derivatives of the
noise-reduced signal from the SNN_8 neural network and the smoothing splines showed
small fluctuations. Further, the second-order derivative of the measured signal shows
frequent fluctuations deviating from the physical trend in the whole crank angle range.

It can be seen in Figure 8c that there are no fluctuations deviating from the physical
trend occur on the third-order derivative of the noise-reduced signal, obtained from the
EDNN. There are small fluctuations on the third-order derivative of the noise-reduced
signal from the SNN_18 neural network. In addition, there are obvious fluctuations on the
third-order derivative of the noise-reduced signal from the SNN_8 neural network. There
are frequent fluctuations on the third-order derivative of the noise-reduced signal, obtained
from the smoothing spline. Additionally, the third-order derivative of the measured signal
is submerged in the noise.

It can be seen in Figure 8d that there are no fluctuations deviating from the physical
trend on the fourth-order derivative of the noise-reduced signal, obtained from the EDNN.
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There are obvious fluctuations on the fourth-order derivative of the noise-reduced signal
from the SNN_18 neural network and the SNN_8 neural network. Additionally, the fourth-
order derivative of the measured signal and the noise-reduced signal obtained from the
smoothing splines are submerged in the noise.
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In summary, the noise reduction performance of the EDNN is better than that of the
SNN_8 neural network, the SNN_18 neural network and the smoothing splines. Further,
there is no trend discrepancy in the first- through fourth-order derivatives of the noise-
reduced cylinder pressure signal from the EDNN.

The EDNN could derive higher derivatives consistent with the real physical process in
the absence of the process’ detailed mathematical model. However, the EDNN needs more
computational resources due to the recording and calculation of the higher derivatives.

5. Conclusions

The effect of the error on the higher derivatives of the measured signal was analyzed.
The feasibility of using the extreme points distribution as constraints in data fitting was
studied. Then, the extreme-points-distribution-based neural network (EDNN) was pro-
posed. Finally, the superiority of the EDNN on signal denoising was verified. The details
are as follows:

1. The error’s deviation effect on the higher derivatives of the measured signal was
analyzed and a possible way of applying the extreme points distribution as constraints
on data fitting was studied.

A mathematical model was established for the analysis of the error’s effect on higher
derivatives. It was found that even though the Taylor series of the noise only has the
kth-order term and the coefficients of other terms are zero, the kth-order derivative of
the measured signal could deviate from the real physical process greatly as long as the
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kth-order derivative of the noise is large enough. The necessity of finding a way to fit data
with higher derivatives compatible to real process trends was clarified.

The higher derivative’s extreme points distribution of typical process functions were
analyzed, and the pattern of the extreme points distribution of higher derivatives was
investigated. The pattern provides a theoretical basis for applying the extreme points
distribution as a constraint in denoising with data fitting techniques.

2. The extreme points distribution pattern was adopted as a constraint and the EDNN
was established. The EDNN consists of an input layer, hidden layers, an output layer,
an automatic differentiation layer and an extreme points distribution feature layer. A
recursive formulation was established for calculating the derivatives. Additionally, a
novel loss function, embedded with the extreme feature error, was proposed.

3. The effectiveness of the EDNN on signal denoising was verified. The proposed EDNN
was applied to reduce the noise in the second-order damped free oscillation signal
and the internal combustion engine cylinder pressure signal. Compared with shallow
neural networks and smoothing splines, the EDNN could obtain higher derivatives
that are consistent with the real physical process in the absence of a detailed mathemat-
ical model. Therefore, data fitting for higher derivatives conforming to real physical
process trends could be realized with EDNN, which provides a novel approach for
analyzing physical processes with higher derivatives. Additionally, it could be used
in understanding the real process with higher derivatives.

In summary, the advantage of the EDNN is that it could fit the measured signal with
higher derivatives compatible to real physical process trends, which provides a novel tool
to mine information of the real physical process through higher derivatives. However, it
needs more computational resources and needs the knowledge of extreme distribution of
the real process. The aim of future research is to study the computational efficiency of the
EDNN and apply it in other engineering fields.
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