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Mechanomyography (MMG) signals have extensive applications in muscle function assessment and human intention recognition.
However, during signal acquisition, MMG signals are easily contaminated by noise and artifacts, which seriously affects the
recognition of their characteristics. To address these issues, a novel noise suppression and artifact removal method based on
recursive least square (RLS), improved Gray Wolf Optimizer-optimized variable mode decomposition (IGWO-VMD), and
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is proposed. In this paper, the RLS
algorithm is first applied to adaptively filter out the power line interference (PLI). Then, IGWO is designed to select the
appropriate VMD parameters and use the VMD to decompose the noisy signal into band-limited intrinsic mode functions
(BLIMFs). In addition, the BLIMFs are classified into the low-frequency part and high-frequency part according to the given
correlation coefficient (CC) threshold value. The effective components of the low-frequency part are identified by the center
frequency. Meanwhile, the high-frequency part is decomposed by CEEMDAN, and its effective components are obtained
according to the proposed sample entropy threshold range. Finally, the effective components of the low and high-frequency
parts are reconstructed to obtain the denoised signal to realize the extraction of useful signals. Simulation experiment results
demonstrate that the proposed method outperforms the classical methods and the designed IGWO-VMD method in terms of
denoising performance. The effectiveness of the proposed method is verified through the measured MMG signal experiments.
The proposed method not only effectively suppresses noise and artifacts but also overcomes the limitations of VMD and

CCEMDAN.

1. Introduction

In biomedical engineering, mechanomyography (MMG) is
an important surface biosignal that is commonly used to
record mechanical vibrations characteristics generated from
gross lateral movement of the muscle fiber at the initiation of
a contraction [1]. Since MMG signals contain rich informa-
tion on muscle activity, it has received a lot of attention in
recent years and has been successfully applied in many
fields, such as human-machine interface, muscle fatigue
assessment, rehabilitation exercise, and muscle disease diag-
nosis [2-5]. However, MMG signals are often disturbed by
various noises during acquisition, and their useful compo-
nents can be masked by strong background noise, such as

power line interference (PLI) and noise generated by elec-
tronic devices. In addition, MMG signals acquired using
acceleration sensors are disturbed by artifacts such as gravi-
tational acceleration information, motion caused by limb
movement, and tremors generated by muscle contractions.
These seriously affect the quality of the MMG signal and
further increase the difficulty of signal detection, feature
extraction, and identification. Therefore, it is of great signif-
icance to effectively remove the noise and correct artifacts
from the measured MMG signals for further MMG signal
identification and application.

Many methods are used to denoise and correct artifacts
in various signals. The main common methods include Fou-
rier transform-based methods, wavelet transform (WT),
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empirical mode decomposition (EMD), and variable mode
decomposition (VMD). MMG signals are not only nonlin-
ear, nonstationary, and non-Gaussian but also chaotic and
fractal [5]. Krueger et al. [3] collated 43 MMG studies pub-
lished from 1987 to 2013, showing that it appears to be a
consensus on the use of Butterworth filters to obtain useful
MMG signals. However, the use of Fourier transform-
based band-pass filters can filter out noise as well as impor-
tant high-frequency information in the signal and cannot
analyze local frequencies; in addition, useful low-frequency
information in MMG signal may also be lost, when remov-
ing low-frequency artifacts. The energy of MMG signals is
mainly distributed in the low-frequency band, which can
overlap with artifacts at low frequencies, making it difficult
for the band-pass filter to distinguish them in the frequency
domain. As a result, many Fourier transform-based denois-
ing methods do not always perform well and have little effect
in correcting artifacts when applied to nonlinear and nonsta-
tionary signals similar to MMG signals [6].

In the 1980s, a new time-frequency interaction analysis
method, namely, wavelet analysis which is widely used in
time-series signals and image noise reduction [7-9], emerged,
which decomposes the signal into different frequencies by
multiscale analysis and is suitable for nonlinear signals with
good time-frequency localization properties. However, wave-
let analysis that is developed from Fourier transform is limited
in removing noise because of problems in selecting the appro-
priate wavelet type, the number of wavelet decomposition
layers, and the threshold selection. In addition, a certain
degree of distortion may occur when reconstructing the signal
[9]. To overcome the drawbacks of the conventional wavelet
transform, a second-generation wavelet transform (SGWT),
which does not depend on the Fourier transform, is proposed.
SGWT consists of three phases: splitting, predicting, and
updating, in which the wavelet coefficients generated in the
decomposition process need to set a threshold for processing,
and the processed wavelet coefficients are inverted to obtain
the denoised signal. Usually, the threshold processing methods
include the soft threshold method and the hard threshold
method. Since the hard thresholding method would produce
oscillations at discontinuity points, the signal reconstructed
using it does not have the smoothness of the original signal.
The signal processed using the soft thresholding method has
better continuity, which is also a commonly used method,
but it produces bias and thus reduces the approximation to
the original signal. Therefore, in practice, it is necessary to
improve the soft threshold function, such as introducing
Savitzky-Golay smoothing algorithm [10] and semisoft
thresholding [8], to reduce the deviation between the esti-
mated wavelet coeflicients and the original wavelet coeffi-
cients, making the reconstructed signal approximate the real
signal. However, setting the appropriate thresholding function
is still a nontrivial task.

With the development of novel techniques, empirical
mode decomposition (EMD) [11] and VMD [12] have been
proposed for the analysis of nonlinear and nonstationary
signals. Unlike wavelet analysis, EMD and VMD have signifi-
cant adaptability by avoiding the dependence on basis func-
tions. EMD overcomes the shortcomings of signal processing
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that require prior knowledge. However, due to its theoretical
defects, the decomposition process is prone to problems such
as mode aliasing and endpoint effects [13], and the denoising
effect is not satisfactory. Subsequently, ensemble empirical
mode decomposition (EEMD) [14] was introduced, which is
essentially a multiple empirical mode decomposition with
superimposed Gaussian white noise. The overall average of
the corresponding intrinsic mode function (IMF) obtained
by multiple EMDs is used to eliminate the added white noise
and suppress mode aliasing. However, the reconstructed com-
ponent still contains residual noise of a certain amplitude.
Although the reconstruction error can be reduced by increas-
ing the number of integrations, it increases the computational
scale. To overcome this problem, Torres et al. [15] proposed
complete ensemble empirical mode decomposition with adap-
tive noise (CEEMDAN) based on EEMD. It adds adaptive
white noise at each stage of decomposition and obtains each
mode component by calculating a unique residual. Compared
with EEMD, the reconstruction error is almost zero regardless
of the number of integration, and the decomposition process is
complete, overcoming the problem of low efficiency of EEMD
decomposition. Due to these important properties, CEEM-
DAN has been widely used in biomedical engineering [16],
seismology [17], etc. However, effective IMFs require appro-
priate methods for identification and selection.

In 2014, Dragomiretskiy and Zosso [12] proposed a non-
recursive mode decomposition method, namely, variational
mode decomposition (VMD), according to the constrained
variational problem, which has a solid theoretical founda-
tion. VMD can decompose any signal into an ensemble of
band-limited intrinsic mode functions (BLIMFs). It has sig-
nificant advantages in processing nonrecursive signals and
not only can overcome the mode aliasing problem in EMD
but also can use its own Wiener filtering characteristics to
obtain a better filtering effect. VMD has received a lot of
attention from researchers and has been successfully applied
to many fields such as mechanical diagnosis, biomedical sci-
ence, and other signal processing [18-20]. Although VMD
obtains excellent results in signal denoising, these effects
are determined by two critical parameters, namely, the num-
ber of modes K and the value of the penalty factor a, which
are usually selected within a certain range. Selecting these
parameters by trial-and-error would require a large number
of operations and would waste a lot of time. Therefore, these
critical parameters are usually determined based on empiri-
cal methods, which greatly limits the performance of VMD
and may lead to inaccurate decomposition results. Hence,
appropriate methods are needed to obtain the optimal values
of these parameters. A popular approach is to use an intelli-
gent optimization algorithm to adaptively determine the
combination of parameters. There are many intelligent opti-
mization algorithms such as genetic algorithm [21], particle
swarm algorithm [22], artificial fish swarm algorithm [23],
and gray wolf algorithm [24]. For example, Zhang et al.
[25] proposed a parameter-adaptive VMD method based
on the grasshopper optimization algorithm (GOA) to ana-
lyze vibration signals from rotating machinery. Similarly,
to address the limitations of traditional VMD methods, Ni
et al. [26] proposed a fault information-guided variational
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mode decomposition (FIVMD) method to improve the
VMD method for extracting weak bearing repetitive tran-
sients and obtained significant fault-related frequencies.

Grey Wolf Optimizer (GWO) is a new swarm intelli-
gence optimization algorithm proposed by Mirjalili et al.
[27] in 2014. The algorithm simulates the predation behav-
ior of gray wolves and seeks the global optimal solution by
tracking, encircling, chasing, and attacking prey. The GWO
algorithm has the advantages of fewer input parameters, fast
solution speed, and high accuracy. Among these optimiza-
tion algorithms, the GWO algorithm has stronger competi-
tiveness [28]. Combined with the previous work [29], the
improved GWO (IGWO) has a better global optimization-
seeking performance. Therefore, in this paper, the improved
GWO is used for VMD parameter optimization.

VMD is one of the most popular techniques in the field
of biomedical signal processing. However, Lahmiri and Bou-
kadoum [30] found that it is not safe to use VMD alone for
denoising. To solve the problems caused by using CEEM-
DAN and VMD alone, some researchers have used EMD-
related methods in combination with VMD methods in
recent years and achieved better results [31-34]. From these
literatures, it can be seen that the combination of the two
methods can significantly improve the decomposition pro-
cess and has a better noise suppression effect than a single
one.

In the specific application of denoising methods, Maji
and Pal [35] found some differences between EMD and
VMD in the range of signal decomposition levels and in
the ability to extract low and high frequencies from the sig-
nal; i.e., the VMD method can better process high-frequency
signals, while EMD has better effects on low-frequency
signals. Therefore, this paper proposes a novel denoising
method based on the above-mentioned research work.
Firstly, VMD is used to decompose the measured MMG sig-
nal to obtain the low and high-frequency parts of the signal,
then, CEEMDAN is used to extract the effective components
of this high-frequency part, and finally, the useful information
in the measured MMG signal is obtained by reconstructing the
effective components in the low and high-frequency parts. The
main contributions of the proposed method are presented as
follows:

(1) To suppress the 50 Hz PIL, the RLS algorithm is first
applied to the measured MMG signal

(2) To obtain the optimal combination of the VMD
parameters (K, a], an IGWO algorithm is proposed
in which the energy entropy is selected as the fitness
function

(3) To improve the VMD denoising performance, the
CEEMDAN algorithm is used to decompose the
high-frequency BLIMFs. In the CEEMDAN algo-
rithm, a sample entropy threshold range is proposed
to identify the effective components of the high-
frequency part

(4) To evaluate the effectiveness of the proposed method
on the denoised signals reconstructed from the low

and high-frequency effective components, the power
spectral density (PSD) analysis method is used in
addition to the frequency spectrum analysis method

The rest of this paper is arranged as follows. The related
theories, including RLS, IGWO-VMD, and CEEMDAN, are
introduced in Section 2. The proposed method is presented
in Section 3. In Section 4, the proposed method is compared
with other methods through simulation experiments, and the
superiority of the proposed method is proved. In Section 5, the
proposed method is applied to the actual measured MMG
signals. Finally, the conclusions are drawn in Section 6.

2. The Basic Methods

2.1. RLS Algorithm. PLI is an electromagnetic noise from
electronic equipment and transmission lines during bio-
signal measurements, which reduces the quality of the signal
[36]. Therefore, removing PLI from the original signal is a
problem that cannot be ignored. PLI is usually described as
additive noise, having a sinusoidal signal at a fixed frequency
(50Hz or 60Hz) with an unknown phase and amplitude.
Many conventional filtering techniques are used to solve this
problem [37]. However, these filters will fail in the case of
PLI with frequency drift. Ahmed et al. [38] compared
LMS, NLMS, and RLS algorithms and found that RLS has
the best performance in removing PLI. The recursive least
square (RLS) method has been widely used because of its
advantages of the easy numerical solution and fast parame-
ter convergence [39]. The RLS algorithm minimizes the
weighted linear least square cost function by calculating
the filter coeflicients recursively. Therefore, in this paper,
RLS is used to remove the PLI from the measured MMG sig-
nals. The specific description of the RLS algorithm is as fol-
lows [38, 40]:

e(k) = d(k) - y(k), (1)

y(k) = w(k)x(k), (2)
(k- 1)ex(k)

KO = X (o= 1)l ®)

P(k)=A"P(k-1) - A'K(k)x"(k)P(k-1),  (4)
w(k +1) = w(k) + K(k)ee(k), (5)

where e(k) is the error signal, d(k) is desired signal, y(k) is
the output signal from the adaptive filter, x(k) is the filter
input vector, w(k) is the filter coefficients vector, K(k)
denotes the gain vector, and P(k) is a correlation matrix of
the input signal. In this paper, P(0) = I/c, where I is the unit
matrix and c is set to 0.01; A is the forgetting factor which is
set to 0.99. In addition, filter order M is set to 2.

For PLI in the measured MMG signals, it is difficult for a
hardware to filter it out completely, but the adaptive filtering
algorithm RLS cannot only suppress it well, but PLI-free
MMG signals can pass through the filter unchanged.



2.2. IGWO-VMD Algorithm. VMD is a new time-frequency
analysis method, which iteratively searches for the optimal
solution of the variational modes, continuously updates each
mode function and the center frequency, and obtains an
ensemble of BLIMFs, avoiding the endpoint effect and spuri-
ous component problems during the iterative process. The
constrained variational optimization problem using the
alternate direction method of multipliers can be described

as follows:
2
2 }

K
min
{oid{we} { ;

s.t. ;u(t) =s(t),

at) Ka(t) N ;t) . uk(t)} ot

(6)

where K represents the number of modes, k=1,2, -+, K; u;
and w;, are the modes and their center frequencies, respec-
tively, {u}={uy, - ugh {w}={w;, - wr}s s(t) is the
VMD processed signal; 8(¢) is the Dirac distribution func-
tion; * and 0(¢) denotes the convolution and partial differ-
ential operators, respectively; j is the imaginary unit, and
|l||, represents L2 norm.

To solve the above constrained variational model, a qua-
dratic penalty factor a and Lagrangian multiplier A(t) are
introduced to transform the constrained variational problem
into an unconstrained variational problem as follows:

[0+ 2

s(1) = X we(t)

k

2

{eh {we}A) =“;

2

+ <)L(t),s(t) - ; uk(t)>.

The specific implementation process of VMD is referred
to [20-22, 41, 42]. By applying the alternating direction
method of multipliers to iteratively update u;, w,, and A(t)
, the narrowband components and their associated center
frequency can be calculated.

Although VMD has a strong decomposition ability in
processing the noisy signal, it cannot effectively suppress
the pattern aliasing phenomenon if the parameters of
VMD, such as the number of modes K and the value of
the penalty factor a, are not properly set. [43]. Thus, param-
eters [K, a] determine the quality of the decomposed modes,
i.e., whether the same frequency band signal can be decom-
posed onto a single mode; and how much signal loss and
noise is retained in the bandwidth of each mode after signal
decomposition.

Compared with traditional intelligent optimization algo-
rithms, the GWO algorithm provides unparalleled advan-
tages [44, 45]. Nonetheless, the GWO algorithm also has
some disadvantages, such as poor stability and easy falling
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into local optimization [46]. Therefore, an improved Grey
Wolf Optimization (IGWO) algorithm is applied to hunt
the optimal VMD parameter [K, a]. Based on the previous
improved GWO work [29], tent chaotic mapping is further
introduced to make the initial population with uniformly
distributed diversity and enhance the global convergence
speed of the IGWO algorithm. The optimization process of
IGWO is led by alpha, beta, and delta wolves. When the
maximum iteration is reached, the optimal VMD parameter
[K, a] would be found by IGWO. In order to ensure that the
reconstructed MMG signal after IGWO-VMD decomposi-
tion retains as many muscle activity feature as possible and
removes as much noise as possible, the energy entropy is
used as the fitness function of IGWO in this paper. The
energy entropy reflects the uncertainty and complexity of
the signal and is used to represent the distribution of the sig-
nal energy. A small energy entropy indicates the increased
significance of the corresponding signal in the total energy
[24, 43]. It can be described as follows:

H(uy) = -P; log Py, (8)

where H(u,) is the energy entropy of the component u,
P, =E,/E is the percentage of the energy of the kth mode

in the total signal energy, E; = Y, u2(t) and E= Y& u?(t).

i=1"i

Fitness = mKin(H(uk)). 9)

When the optimal fitness is obtained, the corresponding
parameters [K, a are optimal, and further, the signal can be
properly decomposed into a series of modes by VMD.

2.3. CEEMDAN Algorithm. CEEMDAN, as an improved
algorithm of EMD and EEMD, can adaptively decompose
a complex signal into a series of IMFs. Therefore, CEEM-
DAN is suitable for analyzing nonlinear, nonstationary,
and non-Gaussian signals [47]. Since CEEMDAN over-
comes the shortcomings of EMD and EEMD, its decomposi-
tion process can effectively overcome the mode aliasing
problem, the reconstruction error is almost zero, and the
computational cost is greatly reduced.

If x(t) is the target signal, the procedure of CEEMDAN
is summarized as follows:

Define E/(-) as the operator that produces the jth IMF

obtained by EMD decomposition, and let the jth IMF
obtained by CEEMDAN decomposition be IMF;(t).

Step 1. A signal x(t) + g,w'(t) is obtained by adding positive
and negative paired Gaussian white noise to x(t), where w'
(t) is the noise sequence added in the ith experiment and
g, is the noise amplitude. The signal is decomposed by

EMD I times to obtain the first mode IMF, (¢).

IMF, (t) = ;ZI:IMFiI(t). (10)
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Then, the first residue can be obtained in

ri(t) =x(t) - IMF, (¢). (11)

Step 2. A new signal r,(t) + &, E, (w'(t)) is obtained by add-
ing the above white noise and continuing to implement

decomposition to obtain the second IMF,(¢) component,
as in

IMF, (t) = —i E,(r (1) + & E, (w'(1)))- (12)

i=1

~| -

Then, the second residue can be obtained in

ry(t) =ri(t) - IMEy(2). (13)

Step 3. Repeat the above steps until the extremum points of
the margin do not exceed two; in the case that this condition
is met, the decomposition is terminated. Assuming that k
IMFs are obtained, the final residue is r,(¢). The original sig-
nal x(t) is decomposed as

x(t)= ) IMFg(t) +ri(t). (14)
k=1

After the above steps, the original signal is finally decom-
posed into a series of IMF components and a residual com-
ponent. A good decomposition effect can be obtained by
adjusting various parameters, such as the noise standard
deviation (Nstd), number of realizations (NR), and maxi-
mum number of iterations (MaxIter). In this paper, the
parameters of CEEMDAN are set to Nstd = 0.2, NR = 100,
and MaxlIter = 1000.

3. The Proposed Method Based on RLS, IGWO-
VMD, and CEEMDAN

Combining the above analysis and theoretical basis, a novel
noise suppression and artifact removal method based on
RLS, IGWO-VMD, and CEEMDAN is proposed. The spe-
cific procedures are summarized as follows:

Step 1. Collect MMG signals during isometric muscle con-
tractions in the laboratory.

Step 2. Remove the 50 Hz PLI from the MMG signal using
RLS.

Step 3. Using the IGWO-VMD method to decompose the
PLI-free MMG signal, a series of BLIMF components are
obtained; in this paper, the parameters of IGWO-VMD are
configured as shown in Table 1.

Step 4. To extract the useful and effective BLIMF compo-
nents, the correlation coefficient (CC) between each BLIMF
and the PLI-free signals is calculated. By setting the correla-
tion coefficient threshold (Ct) [48], the corresponding

TaBLE 1: Parameter configuration of IGWO-VMD.

Parameters Parameter values or ranges
Population number 10

Maximum iterations number 10

Range of K (2,15)

Range of « (500,10000)

BLIMFs are selected as the low-frequency part and the
high-frequency part, respectively. If CC is greater than Ct,
the BLIMF will be selected as the low-frequency part. Other-
wise, the BLIMF will be selected as the high-frequency part.

max (CC)

Ct= ——MM
10 max (CC) -3

, (15)

where Ct represents the threshold value and max (CC)
denotes the maximum value of the correlation coefficient.

Step 5. Identify the effective components in the low-
frequency part. A center frequency threshold of 5Hz is set
to identify the low-frequency part. Specifically, the low-
frequency component less than 5 Hz is identified as an artifact
component and will be abandoned, while the low-frequency
component greater than 5Hz is identified as the effective
component and will be retained.

Step 6. Decompose the high-frequency part of the signal
using CEEMDAN, and extract the effective components of
the high-frequency part. SE [49] is a new approach for the
measure of time-series complexity, similar to approximate
entropy, but with better accuracy, less dependence on data
length, and better computational consistency. Generally,
the larger the SE value, the higher the complexity and random-
ness of the signal, and correspondingly, the more complex the
dynamic system and signal generation mechanism. Therefore,
in this step, the sample entropy (SE) of each IMF obtained by
CEEMDAN is calculated. The SE threshold (St) range is pro-
posed to select the effective IMF components.

3i1(SE; - SE)°
L

St= , (16)

where L represents the number of IMFs; SE; denotes sample
entropy value of the ith IMF component, and SE denotes the
average of SE.

If SE is within the range ((1/5)St, St), the relevant IMF
components are maintained as the effective IMF compo-
nents. Otherwise, the relevant IMF components are removed
as useless components.

Step 7. Reconstruct the effective BLIMF components of the
low-frequency part and the effective IMF components of
the high-frequency part to realize useful signal extraction.
The flow chart of the proposed method in this paper is
shown in Figure 1. The pseudocode of IGWO-VMD algo-
rithm is shown in Algorithm 1. The experiments in this
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FiGure 1: Flowchart of the proposed method for MMG signal denoising.

Input: MMG signal segment

Start

Initializing 4, A and C

X5 = the best search agent

X = the second best search agent

X = the third best search agent

While (t <maximum iteration number)
for each search agent

Output: The global optimum (VMD optimal parameters [K, «])

Initializing VMD parameters (tau=0; DC=0; init=1; tol=1e-7)
Initializing IGWO parameters (dim=2; Maxiter=10; N=10, N wolves was initialized using Tent chaotic mapping)

VMD decomposition, and using Eq. (9) to calculate the fitness of each search agent
Update the position of the current search agent

end for

Update a, A, and C using Eq.(10),(11),(16) in literature 29

Update X5, Xg and X,

Updated optimal solution X using Eq.(17)-(20) in literature 29

t=t+1
end while
return the global optimum X (K, «)
End

ArcoriTHM 1: The pseudocode of IGWO-VMD algorithm.

study are carried out on a workstation with a 2.30 GHz
Intel(R) i7 Core (TM), 8 GB RAM.

4, Simulation Analysis Experiments with
Synthetic Signals

To verify the effectiveness and advantages of the proposed
method in noise suppression and artifact removal of the
measured MMG signal, this section will simulate the pro-
posed method through two simulated synthetic signals and
compare with classical methods, such as EMD, VMD, wave-
let, CEEMDAN, and IGWO-VMD. Both signals have some
characteristics of MMG signal, such as simulated synthe-
sized signal 1 with MMG-like nonlinear and nonstationary
characteristics and simulated synthesized signal 2 with
MMG-like frequency bandwidth. In the simulation experi-

ments, the simulated synthesized signals are firstly sup-
pressed with RLS for PLI and then processed with IGWO-
VMD and CEEMDAN.

The mode selection in EMD and CEEMDAN is also
done by the SE range ((1/5)St, St). The parameter K in
VMD is selected according to the number of IMFs in
EMD, the parameter « is usually selected as 2000, and the
BLIMFs are selected according to the central frequency and
SE less than St. In addition, wavelet basis function dbeé,
6-layer decomposition, and soft threshold functions are
used in wavelet processing, where the threshold values are
as follows:

B ov2In N

AGj) = m
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FIGURE 2: The signal and its corresponding frequency spectrum: (a) the target signal; (b) the synthetic signal ssl; (c) the PLI-free signal.
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B2

B3

B4

B8

B9

B0

BI1

BI12
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Time (5)

FIGURE 3: VMD decomposition results of the PLI-free signal.

where o = median(W;)/0.6745, j represents the decomposi- To evaluate the performance of these denoising

tion scale, N is the signal length, o is a rough estimate of noise ~ methods, three evaluation indicators, namely, signal-to-
level, and W, is the kth detail coefficient at scale j. noise ratio (SNR), mean square error (MSE), and correlation
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TaBLE 2: Correlation coefficients and the center frequency of the Bs.

Mode B1 B2 B3 B4 B5 B6 B7

Fc 0.0103 4.5501 9.6831 36.2427 54,9831 69.1833 86.9504

CC 04118 0.7224 0.5597 0.1527 0.1441 0.1447 0.1393

Mode B8 B9 B10 B11 B12 B13

Fc 102.5289 112.7258 122.9406 137.5556 148.7139 163.3797

CC 0.1421 0.1264 0.1301 0.1261 0.1331 0.1400

coeficient (CC), are adopted. The calculation formulas of
the three evaluation indicators are as follows:

i (i)

SNR =10 log m,

(18)

MSE = — Y [x(i) - X(i)], (19)

cC= (20)

YN (i) - xPe XY, [7(0) - %()]

where x(i) is the original target signal, X(i) is the denoised
signal, and N is the signal length. x represents the average
value of the original target signal; X represents the average
value of the denoised signal.

If the SNR is larger, the denoised signal is closer to the
original target signal, and the noise suppression effect is bet-
ter. If the MSE is smaller, the deviation between the denoised
signal and the original target signal is smaller, and the
smoothness of the signal is better. If the value of CC is closer
to 1, the similarity between the denoised signal and the orig-
inal target signal is higher.

4.1. Simulation Experiment 1

4.1.1. Construction of Simulation Signal. Since MMG signals
have nonlinear and nonstationary characteristics, a similar
synthetic signal is designed to simulate the noisy signal mea-
sured by the acceleration sensors. The synthetic signal ss1(#)
is made up of four components: s1(t), sj(¢), sp(¢), and gs(t),
as shown in equation (21). s1(#) is the target signal which is
a nonlinear, nonstationary waveform based on the coupled
Van-der Pol oscillators [50]. sj(t) is baseline drift which is
modulated by a DC component and a low-frequency sine
signal with a frequency of 1 Hz. In this paper, baseline drift
is used to simulate artifacts. sp(t) is PLI which is a sine signal
with a frequency of 50 Hz. gs(t) is Gaussian white noise. The
sampling frequency is 360 Hz, and signal length N is 2000.

sj(t) = sin (27tt) + 5,
qmt)=(195sn1(100nt+ %), (21)
ss1(t) =sL(t) +sj(t) +sp(t) + gs(t).

Figures 2(a)-2(b) shows the time domain and frequency

spectrum of the target signal s1(¢) and the synthetic signal
ss1(t) with a SNR,, of 5dB.

4.1.2. Denoising of Simulation Signal. From Figure 2(b), it
can be seen that the target signal s1(¢) is contaminated by
noise, PLIL, and baseline drift. To better suppress noise and
remove baseline drift, the synthetic signal ss1(¢) is first proc-
essed using RLS for PLI, the removal PLI result is shown in
Figure 2(c). It can be seen that PLI is completely invisible in
the frequency spectrum, and the target signal is not changed
after filtering, which better preserves the original target
signal.

IGWO is used to search for the optimal value of VMD
parameters [K, a] by minimizing the fitness function. After
iterations, the optimization results are obtained as K =13
and o = 9800. Then, VMD is carried out for the PLI-free sig-
nal with these parameters, and the decomposition of VMD is
shown in Figure 3. The correlation coefficient (CC) and the
center frequency (Fc) of the above 13 BLIMFs (abbreviated
as Bs) are calculated, and the results are shown in Table 2.
It can be seen that the 13 Bs have different center frequen-
cies, and the mode aliasing problem is not obvious. Accord-
ing to formula (15), the calculated Ct value is 0.171, and the
PLI-free signal is divided into the high-frequency part (B4-
B13) and the low-frequency part (B1-B3). Then, in the low-
frequency part, according to the Fc, less than 5Hz is judged
as the baseline drift, and higher than 5Hz is judged as the
low-frequency effective components. Then, the B2 and B3
are reconstructed to get the denoised signal by IGWO-
VMD.

Further, CEEMDAN is conducted for the high-
frequency part (the noise-dominant Bs), and the decomposi-
tion results are shown in Figure 4. According to the formula
(16), the SE of each IMF component is calculated as shown
in Table 3. The SE threshold range is obtained as 0.0761-
0.3803. Thus, IMF5, IMF6, IMF7, and IMF8 are selected as
the effective IMF components, and the rest of the IMFs are
considered as high-frequency noise components and useless
components and then discarded.

Finally, the effective components of the low-frequency
part and the high-frequency part are reconstructed to obtain
the signal processed by the proposed method.

4.1.3. Comparison with Other Methods. To verify the effective-
ness of the proposed method, the proposed method, EMD,
VMD, wavelet, CEEMDAN, and IGWO-VMD are employed
to denoise the same noisy signal ss1(¢) with a SNRin of 5dB
for comparison, and the results are recorded in Table 4.
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FiGUure 4: CEEMDAN decomposition results of the high-frequency part.

TaBLE 3: The SE of CEEMDAN decomposition results.

Mode IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11

SE 1.2618 0.6195 0.8662 0.4649 0.2668 0.2456 0.1981 0.1181 0.0558 0.0168 0.0015

TaBLE 4: The denoising performance indicators of various methods with a SNR,, of 5dB.

Indicator EMD VMD Wavelet CEEMDAN IGWO-VMD The proposed method
MSE 0.3137 1.0024 1.0024 0.4123 0.2224 0.1991
SNR 10.8396 5.7951 5.7949 9.6530 12.3344 12.8140
CC 0.9584 0.8639 0.8967 0.9465 0.9725 0.9736
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F1Gure 5: Denoising performance with different SNR, on the synthetic signal ss1(¢).
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TaBLE 5: The CC and Fc of the IGWO-VMD decomposition results.

Mode Bl B2 B3 B4

B5 B6 B7 B8 B9

Fc 0.0123 30.5882 104.1649 177.8528
CC 0.4257 0.7954 0.1735 0.1507

230.7533

275.0756 319.2273 380.4707 446.7987

0.1480 0.1510 0.1432 0.1458 0.1370

As can be seen from Table 4, these methods have some
denoising effect. Nevertheless, the IGWO-VMD method is
far superior to VMD in terms of performance indicators,
which further indicates that using IGWO to search the
VMD parameters can effectively improve the decomposition
efficiency of VMD. The denoising results of both IGWO-
VMD and the proposed method are significantly better than
the other methods, but the proposed method in this paper
has lower MSE and higher SNR and CC.

Further, the denoising results of the above-mentioned
methods for the synthetic signal ss1(t) with SNR,, values
varying from 1dB to 11dB are presented in Figure 5. It
can be seen that the proposed method obtained the best
results, as expected, with different SNR;, values. In addition,
the designed IGWO-VMD method obtains suboptimal
results. Specifically, the comparison of performance indica-
tors at different SNR,, values indicates that the proposed
method obtains the optimal results with the smallest MSE,
the largest SNR, and the largest CC in reconstructing signal
s1(t). In particular, when the SNR,, value is 9 dB, the MSE is
reduced to 0.1498, the SNR_, is improved to 13.6085dB,
and the CC is improved to 0.9806 for the proposed method.
Through these experimental comparisons, it is shown that
the performance of the proposed algorithm in this paper
outperforms other algorithms under different decibel noises.
The above analysis shows that the proposed method is most
suitable for denoising and baseline drift removal of the non-
linear and nonstationary signal.

TaBLE 6: The SE of the CEEMDAN decomposition results.

Mode IMF1
SE 1.3218
Mode IMF7
SE 0.2141

IMF2
0.5989
IMF8
0.1263

IMF3
1.0387
IMF9
0.0452

IMF4
0.4650
IMF10
0.0236

IMF5
0.2951
IMF11
0.0078

IMF6
0.2415
IMF12
0.0003

4.2. Simulation Experiment 2

4.2.1. Construction of Simulation Signal. When human mus-
cles are active, the internal muscle vibrations would produce
MMG signals in a certain frequency range. The main
components of MMG signals are distributed between 10
and 40Hz and are contaminated by noise, PLI, and arti-
facts. A synthetic signal ss2(¢) are used to simulate this
situation. The synthetic signal ss2(t) is also made up of
four components: s2(¢), sj(t), sp(¢), and gs(t). s2(t) is
the target signal which is a coupling frequency component
that is used to simulate MMG signal with the frequency of
5-100 Hz. sj(t), sp(t), and gs(t) refer to Simulation Exper-
iment 1. The sampling frequency is 1000 Hz, and signal
length N is 2000.

{52(1‘) =
ss2(t) = s(t) + sj(t) + sp(t) + gs(t).

2(1+ 0.6 sin (207rt)) cos (607t + 1.5 sin (8mt)),

(22)
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TaBLE 7: The denoising performance indicators of various methods with a SNR;, of 5dB.

Indicator EMD VMD Wavelet CEEMDAN IGWO-VMD The proposed method
MSE 0.6174 0.5861 0.8786 0.3524 0.2294 0.1234
SNR 5.8233 6.0494 42911 8.2590 10.1238 12.4949
CC 0.8905 0.8852 0.8336 0.9237 0.9556 0.9736
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Figure 9: Denoising performance with different SNR;, on the synthetic signal ss2(¢).
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FiGure 10: The measured MMG signals during isometric muscle contraction: (a) SMMG; (b) DMMG.

The synthetic signal ss2(t) is used as an example to
further illustrate the effectiveness of the proposed method.
Figures 6(a)-6(b) show the time domain and frequency
spectrum of the target signal s2(¢) and the synthetic signal
ss2(t) with a SNR,, of 5dB.

4.2.2. Denoising of Simulation Signal. The process of denois-
ing and baseline drift removal is similar to Simulation

Experiment 1. The PLI removal result by adaptive RLS filter
is shown in Figure 6(c). The decomposition results of
IGWO-VMD and CEEMDAN are shown in Figures 7 and 8,
respectively. The CC and Fc of each BLIMF are shown in
Table 5. The SE of each IMF is shown in Table 6. In
Table 5, the calculated CC threshold value is 0.1606, and
the low-frequency effective components (B2 and B3) are
obtained. Correspondingly, the B2 and B3 are reconstructed
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to get the denoised signal by IGWO-VMD. In Table 6, the = method as Simulation Experiment 1 is adopted, and the per-
threshold range of the SE is calculated as 0.0819-0.4096,  formance indicators of different methods are recorded in
and the high-frequency effective components (IMF5-IMF8)  Table 7. It can be seen that for the processing of the synthetic

are selected. Finally, the effective components of the low-  signal ss2(¢), the proposed method significantly outperforms
frequency part and the high-frequency part are reconstructed ~ the other methods in terms of MSE, SNR, and CC.
to obtain the signal processed by the proposed method. Similar to Experiment 1, the synthetic signal ss2(t) with

different decibel noises is denoised by the above methods,
4.2.3. Comparison with Other Methods. To verify the effec-  and the results are shown in Figure 9. As expected, the pro-
tiveness of the proposed method, the same comparison  posed method obtains optimal results. Moreover, it can be



14

10 3
s
10% 4
= E
2 10% 4
= E
= 3
£ 100 o
=] E
£ E
=1 E
-2 ]
5 10
& :
S 10+
S E
A F
107
:

1078 T T T T

0 20 40 60 80

Frequency (Hz)
—— Original signal

—— RLS-IGWO-VMD
—— RLS-IGWO-VMD-CEEMDAN

()

Journal of Sensors

Power spectrum density (dB/Hz)

Frequency (Hz)

—— Original signal
—— RLS-IGWO-VMD
—— RLS-IGWO-VMD-CEEMDAN

(®)

FIGURE 12: PSD of the original MMG signals and processed MMG signals from subject A: (a) SMMG; (b) DMMG.

observed from Figure 9 that all performance indicators of
the proposed method show an almost linear change with
increasing SNR,, values; i.e., MES gradually decreases with
increasing SNR; , SNR_, gradually increases, and CC also
gradually improves. In particular, when the SNRin value is
11 dB, the MSE is reduced to 0.0491, the SNR_,, is improved
to 16.6394 dB, and the CC is improved to 0.9896 using the
proposed method. It also further shows that the proposed
method is suitable for processing strong noisy background
signals with a certain bandwidth. The superiority and reli-
ability of the proposed method are further proved by these
experiments.

4.3. Experimental Results. From the denoising results of the
above two synthesized signals, it can be seen that EMD,
VMD, wavelet, and CEEMDAN are not ideal for suppress-
ing 50 Hz PLI and noise, as well as for removing artifacts.
With the appropriate VMD parameters selected by the
IGWO designed in this paper, the signal can be effectively
decomposed and the denoising effect can be improved.
However, using IGWO-VMD to reconstruct the signal by
directly removing the high-frequency part causes some
information to be lost in the denoised signal. Therefore, in
this paper, the high-frequency part is further decomposed
by CEEMDAN to obtain the effective components, and then
the effective components are reconstructed with the effective
components of the low-frequency part obtained by IGWO-
VMD to obtain a higher quality processed signal, which is
almost consistent with the target signal. All of these further
demonstrate that the proposed method has a better denois-
ing effect on noisy signals with nonlinearity, nonstationarity,
and certain bandwidth, which proves the effectiveness of the
proposed method in this paper.

5. Application to MMG Signals

To verify the application effect of the proposed method in
practical work, MMG signals measured by the acceleration
sensor ADXL335 are analyzed in this section. The MMG
signal acquisition method refers to the previous work [29].
MMG signal segments are randomly selected from two sub-
jects with different force situations. During isometric muscle
contraction, two types of MMG signals can be collected: one
is static muscle force MMG signal (SMMG) which is mea-
sured at 60% of the maximal voluntary contraction
(MVC); the other is dynamic muscle force MMG signal
(DMMG) which is measured at 10-60% MVC. Two healthy
male subjects aged 23 and 43 years are free of neuromuscular
and musculoskeletal diseases.

5.1. Experiment 1: The Measured MMG Signal Segments Are
Selected from Subject A. The measured MMG signal seg-
ments of SMMG and DMMG from subject A are shown in
Figure 10. It can be seen that both signals have PLI, noise,
and artifacts, which completely obscure the effective MMG
information and seriously affect the interpretation and
application of the MMG signals.

Figure 11 shows the denoised signals and their frequency
spectrum processed by the proposed method, IGWO-VMD,
and the classical methods (EMD, VMD, wavelet, and
CEEMDAN). The artifacts are all well corrected to zero
level. However, the classical methods are not ideal for
removing noise, and these methods do not completely
remove the 50 Hz PLI. Compared with the classical methods,
the proposed method and IGWO-VMD show outstanding
results, i.e., 50 Hz PLI and artifacts are significantly removed,
noise is obviously suppressed, and the effective components
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FIGURE 13: The processed MMG signal segments of subject B: (a) SMMG; (b) DMMG.

of the MMG signals are almost unchanged in the frequency
spectrum.

Since the real MMG is not directly available, the power
spectral density (PSD) is used to further evaluate the denois-
ing effects of the proposed method and IGWO-VMD. PSD is
an excellent performance measurement tool that can be used
to understand the performance of filtering techniques for
noise reduction. In contrast to the frequency spectrum,
PSD emphasizes the analysis of the average energy in the fre-
quency range, which is essentially a representation of the
energy distribution in the frequency domain [51]. In this
paper, the Welch method is used to calculate the PSD of

MMG signals, so as to obtain the energy distribution at dif-
ferent frequencies.

In Figure 12, the blue line is the PSD curve of the original
MMG signal; the red line is the PSD curve of the MMG sig-
nal obtained by the proposed method; the green line is the
PSD curve of the MMG signal obtained by IGWO-VMD.
As can be seen from Figure 12, the original MMG signal
has a large energy distribution in the low-frequency band,
which is mainly caused by DC and artifacts. For MMG sig-
nals between 5 and 100 Hz, MMG energy is mainly distrib-
uted in the range of 10-40Hz [52]. It can be seen that
using the proposed method and IGWO-VMD, the PSD of



16
10
:
10* 4
’l;l\ 3
o) E
E 102 _:
< E
iy s
£ 100+
o E
=) E
=1 3
-2 ]
g 10 :
@ g
A
S E
o) E
A :
107 4
s
1078 T T T T T
0 20 40 60 80 100

Frequency (Hz)

—— Original signal
—— RLS-IGWO-VMD
—— RLS-IGWO-VMD-CEEMDAN

()

Journal of Sensors

10° 3
]
o 10%4
=
== 1
. 109
!
< E
g 10° 1
2 3
g ;
AT VR
£ ] N
g
107 1
i
1076 T T T T
0 20 40 60 80
Frequency (Hz)
—— Original signal

—— RLS-IGWO-VMD
—— RLS-IGWO-VMD-CEEMDAN

()

FIGURE 14: PSD of the original MMG signals and processed MMG signals from subject B: (a) SMMG; (b) DMMG.

MMG signals decreases significantly below 5Hz and above
40 Hz, artifacts and noise are well suppressed, and the PSD
values are close to those of the original MMG in the frequency
band of 10-40 Hz. The analysis shows that the proposed
method and IGWO-VMD can retain useful information in
the original signal. Nevertheless, comparing the PSD curves
of the proposed method and IGWO-VMD, it can be found
that the proposed method is optimal.

5.2. Experiment 2: The Measured MMG Signal Segments Are
Selected from Subject B. To further prove the effectiveness of
the proposed method in the measured signals, the measured
MMG signals of subject B are processed, and the denoising
results are shown in Figures 13 and 14. There are some dif-
ferences between Figures 12 and 14, mainly because different
subjects, with different physical qualities, induce different
recruitment and firing rates of MUs during muscle contrac-
tion. Figure 13 presents the denoising effect of three SMMG
signal segments and three DMMG signal processing, respec-
tively. It can be seen from Figure 13 that the proposed
method is very successful in noise suppression and artifact
removal. In addition, the proposed method has better
denoising performance than IGWO-VMD. Specifically, the
proposed method has a slightly larger signal amplitude than
IGWO-VMD, mainly because the IGWO-VMD recon-
structed signal ignores some useful signals in the high-
frequency part. Furthermore, it can also be seen from
Figure 14 that the proposed method preserves the effective
components of the signal better than IGWO-VMD, i.e., the
PSD values of the proposed method are closer to those of
the original MMG in the frequency band of 10-40 Hz. This
experiment confirms again that the proposed method is
effective in MMG signal denoising, not only extracting the

effective components of the actual measured MMG signals
but also maintaining more signal details.

5.3. Experimental Results. The above two experimental
results show that the proposed method in this paper outper-
forms the classical methods and IGWO-VMD in terms of
noise suppression and artifact removal. In addition, the pro-
posed method better maintains the main energy compo-
nents of the original signal in the range of 10-40 Hz, which
further indicates that the proposed method is most appro-
priate and effective in extracting the effective components
of the measured MMG signals. Therefore, the proposed
method could lay a good foundation for further MMG signal
identification and application.

6. Conclusions

To improve the denoising performance of the measured
MMG signals, a novel noise suppression and artifact
removal method based on RLS, IGWO-VMD, and CEEM-
DAN is proposed in this paper. The proposed method is
easy to use and can effectively remove noise from the signal
and correct artifacts. The proposed method is compared
with the classical methods and the IGWO-VMD method
by a large number of repeating simulation experiments.
The results show that the proposed method is superior to
the classical methods and the IGWO-VMD method in terms
of quantitative denoising performance indexes. In the actual
MMG signal processing experiments, The proposed method
not only effectively eliminated the noise and PLI of the mea-
sured signal but also well corrected the artifacts to zero level.
In addition, compared with other methods, the internal
mechanical vibration components of muscles are effectively
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extracted using the proposed method, maintaining the main
energy components of the original MMG signals with almost
no energy loss. Therefore, it is concluded that the proposed
method in this paper is effective and feasible.

Although the effectiveness of the proposed method has
been verified by the denoising results of the synthetic and
measured signals, the results still have some limitations; for
example, the synthetic signal types are not comprehensive
enough, and the measured signals are limited to healthy sub-
jects. Therefore, the universality of the proposed method
needs to be further investigated. In addition, the feasibility
of the proposed method in practical engineering applications
such as muscle function assessment and human intention
recognition needs to be further tested. A further work will
be carried out to investigate the universality of the proposed
method and apply the denoised MMG signals to practical
engineering applications.
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