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ABSTRACT Respiratory ailments such as asthma, chronic obstructive pulmonary disease (COPD),
pneumonia, and lung cancer are life-threatening. Respiration rate (RR) is a vital indicator of the wellness
of a patient. Continuous monitoring of RR can provide early indication and thereby save lives. However,
a real-time continuous RR monitoring facility is only available at the intensive care unit (ICU) due to
the size and cost of the equipment. Recent researches have proposed Photoplethysmogram (PPG) and/
Electrocardiogram (ECG) signals for RR estimation however, the usage of ECG is limited due to the
unavailability of it in wearable devices. Due to the advent of wearable smartwatches with built-in PPG
sensors, it is now being considered for continuous monitoring of RR. This paper describes a novel approach
for RR estimation using motion artifact correction and machine learning (ML) models with the PPG signal
features. Feature selection algorithms were used to reduce computational complexity and the chance of
overfitting. The best ML model and the best feature selection algorithm combination was fine-tuned to
optimize its performance using hyperparameter optimization. Gaussian Process Regression (GPR) with Fit a
Gaussian process regression model (Fitrgp) feature selection algorithm outperformed all other combinations
and exhibits a root mean squared error (RMSE), mean absolute error (MAE), and two-standard deviation
(2SD) of 2.63, 1.97, and 5.25 breaths per minute, respectively. Patients would be able to track RR at a lower
cost and with less inconvenience if RR can be extracted efficiently and reliably from the PPG signal.

INDEX TERMS Photoplethysmogram, Respiration Rate, Machine Learning, Feature Selection, Motion
Artifact Correction, Gaussian Process Regression

I. INTRODUCTION

O
NE of the most important physiological parameters that
are used to diagnose abnormality in a human body is

respiration rate (RR). It is one of the four primary vital signs
along with heart rate, blood pressure, and body temperature.
RR is expressed as the number of breaths a person takes

in one minute (breaths/minute). An unusual RR is often a
cause for concern and is often used as an indicator for an
ailing body [1]–[3]. Hence, it is a vital parameter that is
monitored by healthcare personnel when they check for acute
deterioration of the patients [4]. Problems in the respiratory
system [5], cardiac arrest [6] and even death occurring during
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hospital stay [7] can be predicted by an increased RR. So,
hospital patients who are very ill have their RR measured ev-
ery few hours [8]. Its importance is also noted in emergency
departments of hospitals where they use RR for screening
[9]. Furthermore, RR is used to diagnose pneumonia [10],
[11]and sepsis during primary treatment.

RR is also used to identify pulmonary embolism [12],
[13] and hypercarbia [14]. Hence, there must be an accu-
rate way of measuring RR in clinical settings as it would
greatly benefit both the patient and health care providers.
However, even now it is mostly being estimated by counting
the breaths manually. This method is not suitable when the
patient needs to be monitored unobtrusively. It also requires
more effort from the medical personnel when measuring
RR. Furthermore, this method is error-prone [15], [16] and
the other is capnography, where the concentration of partial
pressure of carbon dioxide (CO2) in the respiratory gases
[17] is measured. It is one of the most accurate ways of
measuring RR. However, it is cumbersome to use. As a result,
it is mainly used during anesthesia and intensive care. So,
alternate noninvasive methods need to be developed.

One of the most popular alternatives is to use either
electrocardiogram (ECG) or photoplethysmogram (PPG) to
estimate RR. ECG and PPG signals are easily measured
during a clinical assessment. They can also be measured
easily by devices for health care monitoring. Hence, there
is a potential for automating the process of RR estimation
without the necessity of using capnography machines. Many
algorithms have been proposed for estimating RR from ECG
[18]–[20]. However, it has been observed that respiratory
signals extracted from ECG appeared flat in ICU patients
even though they were breathing sufficiently [21]. Besides,
the clinical ECG system still requires trained professionals
to operate and are bulky. Hence, the PPG signal has become
more appealing for estimating RR.

Several recent developments on the estimation methods
of the RR were comprehensively summarized in this section
[22]–[24]. A diverse range of methodologies was used to test
the efficiency of RR algorithms using ECG and PPG wave-
form and the majority of them used PPG signals. Various
issues make it difficult to reinvestigate the performance of
the reported algorithms. In [23], [24], about 100 algorithms
have been suggested to measure the respiratory rate (RR)
from ECG and PPG. All high-performance algorithms are
composed of innovative variations of time domain RR esti-
mation and modulation fusion techniques. In [10], the authors
proposed a novel method for estimating the respiratory rate
in real-time from the PPG signals. The incremental-merge
segmentation algorithm was used to derive three respiratory-
induced variations (frequency, strength, and amplitude) from
the PPG signal. The smart fusion showed trends of improved
estimation of root mean square error (RMSE) 3.0 breaths per
min (bpm) compared to the individual estimation methods.

In [25], the authors introduced a feasible alternative for
estimating child respiratory rates during evaluation in the
emergency department, particularly if the segments of PPG

contaminated by the movement artifacts were automatically
discarded by an appropriate algorithm. They achieved a mean
absolute error (MAE) of 5.2 bpm for the age group of 5-12
years. In [26], a novel method was proposed to estimate the
RR of the PPG signal using joint sparse signal reconstruction
(JSSR) and spectra fusion (SF). In [27], a smart fusion
method was introduced based on ensemble empirical mode
decomposition (EEMD) to improve RR extraction from PPG.
In [28], they applied EEMD and tested on two different
datasets. In [29], PPG-RR calculations were retrospectively
conducted on PPG waveforms derived from the data ware-
house and compared with RR reference values during the
validation stage of the algorithm. In [30], the use of amplitude
fluctuations of the transmittance mode finger PPG signal in
RR estimation by comparing four time-frequency (TF) signal
representation approaches cascaded with a particle filter was
studied.

In [31], a case study of 10 patients was reported for whom
fewer RR estimates were derived from PPG signals relative
to accelerometry. In [32], the disparity in the precision of
PPG-derived respiration frequency between measurements at
various body sites for normal and deep breathing conditions
was investigated. Respiratory signals were derived from PPG
signals of 36 healthy subjects using the frequency demodu-
lation method to measure respiration frequency via spectral
power density. The linearity between the PPG-derived and
the reference respiratory frequency was highest on the fore-
head. In [33], Charlton’s method [23], [24] was used with
remote PPG (rPPG) based signals to boost the accuracy of
the respiration rate estimation. Few improvements have been
made to make it usable for rPPG signals. Using PPG-contact
algorithms on remote PPG signals can lead to respiratory rate
estimates with an MAE of less than 3 bpm and the reported
MAE and RMSE Of 3.03 and 3.69 bpm, respectively.

Table 1,summarizes a wide variety of RR estimation al-
gorithms from the PPG that have been published in recent
years. None of them used machine learning (ML) models
to estimate the RR from ECG or PPG and their fusion.
Therefore. There is a potential scope to use ML models
to improve the RR estimation algorithm. With the increase
of the availability of annotated datasets, it is possible to
use ML techniques in RR algorithms [22], which is a ma-
jor motivation of this study. However, to the best of our
knowledge, no recent work has derived t- domain, f-domain,
and statistical features from PPG signal to estimate reliably
RR using the machine learning models. However, in real-
world PPG signal is often corrupted with the motion artifact
and it is therefore important to remove motion artifact from
the PPG signals so that feature extraction can be done on
complete dataset to estimate the respiration rate (RR) from
even motion corrupted PPG signals. In our previous studies
[34]–[36], several time-domain features were calculated from
the original signal and its derivatives. Several features were
extracted for RR estimation from the PPG signal in this study,
which was not used before by any other research group.

This manuscript is divided into four sections where Sec-
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FIGURE 1: Overview of the process

tion I addresses the fundamentals of the PPG signal, the
associated works, and the motivation for this study. The
database description, pre-processing, evaluation measures,
and methodology are discussed in Section II while Section

III outlines the results and discusses them, and compares
them with some other research solutions, while, while Sec-

tion V concludes the work.

TABLE 1: Summary of methods for respiration rate estima-
tion

Author Method Used

Karlen et al. [10] Fast Fourier Transformation (FFT)
Orphanidou et al. [19] Ensemble Empirical Mode Decomposition

Pimentel et al. [12], [37] Auto-regressive Model
Philip et al. [16] Spot Assessment

Mirmohamadsadegh et al. [20] Instantaneous Frequency Tracking Algorithm
Lin et al. [38] Wavelet-Based Algorithm

Fleming et al. [39] Auto-regressive Model
Zhou et al. [40] Independent Component Analysis (ICA) Algorithm

Moreno et al. [41] Digital Filtering
Nilsson et al. [42] Digital Filtering

Motin et al. [27], [28] Empirical Mode Decomposition
Jarchi et al. [31] Accelerometer Based

Hartmann et al. [32] Fast Fourier Transformation (FFT)
Pirhonen et al. [30] Wavelet-Based

Zhang et al. [26], [43] Joint Sparse Signal Reconstruction
Madhav et al. [44] Modified multi scale principal component analysis (MMSPCA)

II. METHODOLOGY

This section summarizes the dataset description and the pre-
processing techniques, various features that were extracted,
different feature selection algorithms, and the different ma-
chine learning models that were implemented for RR estima-
tion in this study.

Figure 1 shows the overall methodology where PPG signal
from the publicly available VORTAL dataset [23], [24] is first
segmented into windows of 32 seconds. The PPG signals are
then split into 80% training and 20% test sets, respectively for
5-fold cross-validation. Firstly, the segmented PPG signals
were filtered and the motion artifacts were removed from the
PPG signals . Then their meaningful features were extracted
and feature selection algorithms were used to reduce feature
dimensions to avoid the risk of overfitting and to reduce the
computation time. The selected features were used to train,
validate and test machine learning models. An unseen 20%
test-set per fold was used to predict the RR value from the
PPG features.

TABLE 2: Characteristics of the subjects in Vortal Dataset

median Lower quartile Upper quartile
Sex (female) 54% - -
Age (years) 29 26 32

BMI ((kg/m2)) 23 21 26
Respiration Rate (bpm) 5-32 - -

A. DATASET DESCRIPTION

Electrocardiogram (ECG) and photoplethysmogram (PPG)
signals and the respiration rate (RR) from 39 subjects are
available in the VORTAL dataset. The PPG signals used were
acquired during the resting period and sampled at 500Hz
sampling frequency. The summary of the dataset is shown
in Table 2.

The signals were segmented into windows of 32 seconds
as it allows a sufficient amount of breaths to take place so
that RR can be calculated reliably [10], [23], [24]. A shorter
window will pose a problem to the respiration rate while
the longer window will not be practically feasible. 758 PPG
segments of 32-seconds were obtained.

B. PREPROCESSING

The PPG waveform in the dataset has motion artifact and
high-frequency noise components. These noises can hamper
the feature extraction process. Therefore, to remove the high-
frequency noises, the PPG waveforms were filtered through a
low-pass Butterworth Infinite Impulse Response (IIR) Zero-
Phase Filter [45]. Figure 2 shows the motion-artifact free
raw PPG signal with high-frequency noise overlaid with
the filtered signal. A sixth-order IIR filter with a cut-off
frequency of 25 Hz was implemented in MATLAB.

In real-world PPG data acquisition, one common problem
with the PPG signals is that it is often become corrupted
by the motion artifact (MA). MA causes spikes and other
distortion to occur in the signal. This makes it very difficult
to extract meaningful time-domain features. Several signal
processing methods have been used for removing motion
artifacts from the one-dimensional signal. Among these re-
cently Variational Mode Decomposition (VMD) was used
to remove the motion artifacts from the PPG signals [46],
[47]. The quality of the segmented signals was evaluated after
filtering and motion artifact correction to reject unfit data,
however, none of the segments were found unfit.

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3095380, IEEE Access

0 1 2 3 4
−0.1

−5 · 10−2

0

5 · 10−2

0.1

Time [s]

A
m

p
li

tu
d

e

FIGURE 2: Filtered signal overlaid on the raw PPG signal.

FIGURE 3: Reconstruction of PPG signal using different Modes of VMD used for MA correction.

The following section is briefly introducing the concept of
removing motion artifact using VMD technique.

A real valued signal, (x(t)) is decomposed into a set of
modes(k number of µk modes) in VMD. The set of modes,
in frequency domain, are called narrowband intrinsic mode
functions (IMF). IMF are generated using the following
method:

1) Hilbert Transform is used to make the analytic signal
2) The analytic signal is demodulated to baseband tuned

to the estimated center frequency
3) L2-norm of the gradient of the signal is used to calcu-

late the bandwidth

The method described above is posed as an optimization
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FIGURE 4: Motion Artifact Correction from same motion corrupted PPG signal segments

problem. The aim of which is to minimize the total bandwidth
taken by all the modes such that the signal is reconstructed by
the modes collectively.

Equation 1 shows the mathematical formulation of the

optimization problem where {µk} = {µ1, · · · , µk} are set
of all modes and {ωk} = {ω1, · · · , ωk} are its corresponding
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center frequencies.

min
{ωk},{µk}

{Σk||δt[(δ(t) +
j

πt
) ∗ µk(t)]e

−jωkt||22} (1)

s.t Σkµk = x(t)

VMD is robust and can eliminate noise and disturbances.
In this work, empirically decided five modes were extracted
from the PPG signal. It was observed that the last mode
contained most of the motion artifact that corrupts the signal.
The PPG signal was reconstructed using the first 4 modes.

In Figure 3, reconstructed data is shown. The first row
shows signal reconstructed using one mode, the second row
shows the signal reconstruction using the first two modes and
so on. Adding all five modes gives the original data back with
MA. It can be seen that, using the first four modes gives
a good reconstruction of the signal with most of the MA
corruption removed.

In Figure 4, various PPG signals are shown where the MA
has been removed from the PPG signals. It can be noticed that
PPG signals with very large MA corruption were successfully
cleaned by VMD. The IMF modes of the signals are available
in the supplementary materials.

C. FEATURE EXTRACTION

Figure 5 summarizes different types of features extracted
in this study. PPG waveforms are rich in detail and contain
many features of interest. They contain features such as
systolic peak, foot of the waveform, pulse width, peak-to-
peak interval, etc. To extract the meaningful features, as
shown in Table 3, we used the feature extraction techniques
described in [34].

FIGURE 5: Overview of the Feature Extraction method.

The preprocessed signal is used to calculate statistical fea-
tures while the time-domain features were extracted from the
PPG signal and its 1st and 2nd derivatives (in Figure 6 and 7)
From the derivatives of the signal, the main features were the
first peak and first trough of the signal. Time and amplitude
features were calculated afterward and summarized in Table

3 and 4. Mean, standard deviation, and variance of most of
the time-domain features was also calculated. This is because
to capture the distortion and modulation caused by breathing
on PPG, these features are important. These time-domain

features were identified from different previous works [34]–
[36]. Statistical features used in this work were identified
from [35]. In total, 107 features were extracted to feed the
machine learning models.

FIGURE 6: PPG signal with some time-domain features.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5

10

a1

a2

v1

v2

Time [s]

A
m

pl
it

ud
e

1st derivative
2nd derivative

FIGURE 7: 1st and 2nd derivatives of PPG Signal.

D. FEATURE SELECTION

Feature selection decreases the data dimensionality by
choosing only a subset of calculated characteristics (predictor
variables) to construct a model. Feature selection algorithms
(FSA) look for a subset of predictors that optimally model the
responses tested, considering the constraints such as feature
importance and subset size. The Feature Ranking Library
(FSLib) is an often-used MATLAB library [48]. In this
work, 10 Feature selection algorithms have been used and
after several feature combinations, the best feature ranking
technique for this problem is identified.

Fit a Gaussian process regression model (Fitrgp): Fitrgp
can find the predictor weights by taking the exponential of
the negative learned length scales contained in the kernel
information property [49], [50]. In Table 5, It is found that
the most contributory features are 11, out of 107 features
and 5 among the 11 selected features are derived from the
derivative of the PPG signal. And 3 statistical and 3 time
domain PPG signal features participated equally in top 11
features.

Least absolute shrinkage and selection operator

(Lasso): Lasso minimizes the variance of inference by retain-
ing the sum of the absolute values of the model parameters
smaller than the fixed value [51]. The most contributory
features are 17, out of 107 features where 9 features were
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TABLE 3: Fifteen time-domain features with their mean, standard deviation and variance

Features Definition

Systolic Peak The amplitude of (‘sys’) from the PPG signal
Height of foot The amplitude of (‘amp foot’) from the PPG signal

New Systolic peak The amplitude of (‘x’) from the PPG signal
Systolic peak time The time interval from the foot of the PPG signal to the systolic peak (‘t1’) pulse

Interval The time interval from foot to next foot (‘tpi’)
Peak-to-Peak Interval The time distance between two consecutive systolic peaks (‘tpp’)

t1/x The ratio of systolic peak time to the systolic amplitude of the PPG waveform
t1/tpi The ratio of systolic peak time to pulse interval of the PPG waveform

x/(tpi-t1) The ratio of ’x’ to the difference between ‘tpi’and ‘t1’
Rising area Area from first foot to systolic peak(‘A1’)
Decay area Area from systolic peak to foot(‘A2’)

A1/A2 The ratio from ‘A1’ to ‘A2’
Width (25%) The width of the PPG signal at 25% amplitude of ‘x’
Width (50%) The width of the PPG signal at 50% amplitude of ‘x’
Width (75%) The width of the PPG signal at 75% amplitude of ‘x’

TABLE 4: Sixteen features derived from the first and second derivative with mean, standard deviation, and variance

Features Definition

v1 The first maximum peak from the 1st derivative of the PPG signal
tv1 The first maximum peak time from the 1st derivative of the PPG signal
v2 The first minimum peak amplitude from the first derivative
tv2 The first minimum peak time from the first derivative of the PPG signal
a1 The first maximum peak amplitude from the 2nd derivative of the PPG signal
ta1 The first maximum peak time from the 2nd derivative of the PPG signal
a2 The first minimum peak amplitude from the second derivative of the PPG signal
ta2 the first minimum time amplitude from the second derivative of the PPG signal

v2/v1 The ratio between v2 and v1
a2/a1 The ratio between a2 and a1

tv1/tv2 The ratio between tv1 and tv2
ta1/ta2 The ratio between ta1 and ta2
tv1/ta1 The ratio between tv1 and ta1
tv1/ta2 The ratio between tv1 and ta2
tv2/ta1 The ratio between tv2 and ta1
tv1/ta1 The ratio between tv1 and ta2

derived from the PPG signal (Table 5), where 7 derivative
features and 1 statistical also contributed in top 17.

Relieff feature selection (RFS): RFS works much better
to approximate the significance of the function for distance-
based supervised models that use pairwise distances between
the observations to predict [52], [53]. Table 5, shows that 27
features are the most contributory features and 16 out of them
are PPG signal and 11 features are their derivative.

Feature selection with adaptive structure learning

(Fsasl): Fsasl is focused on linear regression and its only
limitation is the high computational complexity, which can
be expensive for the high-dimensional results [54]. Table

6, shows the most contributory 19 features where 9 are the
derivative features, 8 are the PPG signal features and only 2
are statistical features.

Unsupervised feature selection with ordinal locality

(Ufsol): To implement the selected feature classes, a triplet-
based loss function is added to maintain the ordinal localiza-
tion of original data, which leads to distance-based clustering
activities. And then simplify orthogonal base clustering by
imposing an orthogonal restriction on the function projection
matrix. As a consequence, a general structure for simultane-
ous collection and clustering of features is addressed [55].
Table 6, shows the most contributory 27 features, where 19

are the derivative features, 5 features are from the PPG signal
and 3 from statistical features.

Laplacian method (LM): Another unsupervised approach
is the LM, where the value of a feature is determined by its
capacity to conserve the locality. This approach builds the
closest neighbor graph to model the local geometric structure.
LS algorithm is searching for features that respect the struc-
ture of this graph [56]. Table 6, lists the most contributory 25
features where 14 features were extracted from the derivative
of the PPG signal and 11 features from the signal.

Unsupervised dependence feature Selection (UDFS):
UDFS is a projection-free function selection model based
on l2.0-standard equality constraints. UDFS conducts the
collection of function subsets by optimizing two terms: one
term increases the dependency on the original results, while
the other term maximizes the dependence of selected features
on cluster labels to direct the phase of subset feature selection
[57]. It was found that 11 out of 20 most contributory features
were from the PPG signal (Table 6) and 6 statistical and
3 derivative features were also participated in the top 20
features.

Infinite Latent feature selection (ILFS): ILFS is a prob-
abilistic approach to latent feature selection that performs the
ranking stage by taking into consideration all feasible sub-
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TABLE 5: Top-ranked features using Fitrgp, Lasso, and Relieff based Feature Selection Algorithms

Algorithm Best Selected Features

Fitrgp (11)
47.mean(tv1) 103.iqr(sig) 106. signal_entropy(sig)
54.mean(v2/v1) 104. skewness(sig) 5.mean(tpi)
7.mean(t1/x) 53.mean(ta2) 4.mean(t1)
55.mean(a2/a1) 49.mean(tv2)

Lasso (17)

46.mean(v1) 9.mean(x/(tpi-t1)) 39.var(x/(tpi-t1))
1.mean(sys amp) 49.mean(tv2) 5.mean(tpi)
56.mean(tv1/tv2) 44.var(w_50) 14.mean(w_50)
93.var(tv2/ta2) 16.std(sys amp) 85.var(ta2)
106.signal_entropy(sig) 27.std(A1/A2) 92.var(tv2/ta1)
25.std(A1) 86.var(v2/v1)

Relieff (27)

1.mean(sys amp) 2.mean(foot amp) 4.mean(t1)
5.mean(tpi) 7.mean(t1/x) 8.mean(t1/tpi)
12.mean(A1/A2) 13.mean(w_25) 16.std(sys amp)
17.std(foot amp) 19.std(t1) 20.std(tpi)
22.std(t1/x) 25.std(A1) 28.std(w_25)
37.var(t1/x) 47.mean(tv1) 48.mean(v2)
49.mean(tv2) 51.mean(ta1) 52.mean(a2)
54.mean(v2/v1) 55.mean(a2/a1) 56.mean(tv1/tv2)
57.mean(ta1/ta2) 58.mean(tv1/ta1) 59.mean(tv1/ta2)

TABLE 6: Top-ranked features using Fsasl, Ufsol, Laplacian and UDFS based Feature Selection Algorithms

Algorithm Best Selected Features

Fsasl(19)

38.var(t1/tpi) 41.var(A2) 40.var(A1)
36.var(tpp) 105.kurtosis(sig) 75.std(tv1/ta2)
68.std(a2) 94.maxfreq 86.var(v2/v1)
48.mean(v2) 84.var(a2) 93.var(tv2/ta2)
91.var(tv1/ta2) 33.var(x) 39.var(x/(tpi-t1))
85.var(ta2) 88.var(tv1/tv2) 32.var(amp of foot)
8.mean(t1/tpi)

Ufsol (27)

3.mean(x) 11.mean(A2) 10.mean(A1)
2.mean(foot amp) 1.mean(sys amp) 25.std(A1)
26.std(A2) 33.var(x) 40.var(A1)
39.var(x/(tpi-t1)) 82.var(a1) 12.mean(A1/A2)
42.var(A1/A2) 78.var(v1) 9.mean(x/(tpi-t1))
17.std(amp of foot) 38.var(t1/tpi) 93.var(tv2/ta2)
99.std(sig) 105.kurtosis(sig) 100.mad(sig)
79.var(tv1) 80.var(v2) 57.mean(ta1/ta2)
41.var(A2) 27.std(A1/A2) 106.signal_entropy(sig)

Laplacian(25)

78.var(v1) 66.std(a1) 62.std(v1)
63.std(tv1) 68.std(a2) 24.std(x/(tpi-t1))
31.var(sys amp) 36.var(tpp) 73.std(ta1/ta2)
38.var(t1/tpi) 21.std(tpp) 89.var(ta1/ta2)
18.std(x) 79.var(tv1) 75.std(tv1/ta2)
64.std(v2) 35.var(tpi) 23.std(t1/tpi)
70.std(v2/v1) 88.var(tv1/tv2) 74.std(tv1/ta1)
34.var(t1) 67.std(ta1) 20.std(tpi)
25.std(A1)

UDFS (20)

103.iqr(sig) 45.var(w_75) 15.mean(w_75)
101.25% quantile 102.75% quantile 100.mad(sig)
99.std(sig) 2.mean(amp of foot) 3.mean(x)
9.mean(x/(tpi-t1)) 11.mean(A2) 10.mean(A1)
1.mean(sys amp) 106.signal_entropy(sig) 46.mean(v1)
50.mean(a1) 52.mean(a2) 7.mean(t1/x)
6.mean(tpp) 5.mean(tpi)

TABLE 7: Top-ranked features using IlFS, mCFS and CFS based Feature Selection Algorithms

Algorithm Best Selected Features

IlFS (21)

32.var(amp of foot) 61.mean(tv2/ta2) 15.mean(w_75)
65.std(tv2) 45.var(w_75) 8.mean(t1/tpi)
6.mean(tpp) 96.maxratio 13.mean(w_25)
44.var(w_50) 106.spectral_entropy 43.var(w_25)
10.mean(A1) 11.mean(A2) 41.var(A2)
50.mean(a1) 74.std(tv1/ta1) 105.kurtosis(sig
9.mean(x/(tpi-t1)) 86.var(v2/v1) 57.mean(ta1/ta2)

mCFS (24)

3.mean(x) 32.var(foot amp) 40.var(A1)
41.var(A2) 11.mean(A2) 10.mean(A1)
1.mean(sys amp) 2.mean(foot amp) 82.var(a1)
33.var(x) 100.mad(sig) 46.mean(v1)
57.mean(ta1/ta2) 47.mean(tv1) 50.mean(a1)
49.mean(tv2) 99.std(sig) 51.mean(ta1)
84.var(a2) 59.mean(tv1/ta2) 5.mean(tpi)
61.mean(tv2/ta2) 6.mean(tpp) 38.var(t1/tpi)

CFS (14)

40.var(A1) 61.mean(tv2/ta2) 66.std(a1)
8.mean(t1/tpi) 49.mean(tv2) 97.mean(sig)
4.mean(t1) 32.var(amp of foot) 15.mean(w_75)
45.var(w_75) 69.std(ta2) 6.mean(tpp)
5.mean(tpi) 65.std(tv2)
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sets of features that circumvent the combinatorial issue [58].
Table 7, shows the top-ranked 21 features among which 14
were from the PPG signal and 5 derivative and 2 statistical
features are also contributed in top 21.

Multi cluster feature selection (mCFS): mCFS requires
a sparse eigen problem and an L1- regularized least squares
question to efficiently solve the corresponding optimization
problem [59]. Top-ranked 24 features were identified where
12 are PPG signal features, 10 derivative and 2 statistical
features were mostly contributed in the top 24.

Correlation based feature selection (CFS): CFS is an
embedded process that selects features in a sequential back-
ward exclusion fashion to rank top features using linear SVM
[60]. In Table 7, the most contributory features are 14 of the
107 features and 8 of the 15 features contributed only on the
PPG signal. And rest of the 5 are the derivative and 1 from
statistical features.

E. MACHINE LEARNING

Training, validation, and testing of the machine learning
models were performed using 5-fold cross-validation. Table

8 summarizes the number of PPG signal segments were used
for training, validation, and testing. 80% of 758 recordings
were used for training while 20% out of training samples
were used for validation and 20% of 758 recordings were
used for testing. We then extracted the features. Regression
Learner App of MATLAB 2019b [61] was used to estimate
respiration rate (RR). Five different algorithms (Support Vec-
tor Regression (SVR), Gaussian Process Regression (GPR),
Ensemble Trees Linear Regression, and Regression Trees)
with 19 different variations were evaluated. Furthermore, Ar-
tificial Neural Network (ANN), and Generalized Regression
Neural Network (GRNN) were also investigated.

TABLE 8: Description of train, validation, and test set

Train set Validation set Test set
486 121 151

Gaussian Process Regression (GPR): GPR is a Bayesian
regression approach, which works well on small datasets.
Where most of the supervised machine learning algorithms
learn the exact values of the function for each parameter,
GPR learns a distribution of probability over all possible
values [62].

Ensemble Trees: In this algorithm, multiple regression
trees are combined using a weighted combination. The main
idea behind this type of model is to use the strength of
multiple weak learners to create a strong learner [63].

Support Vector Regression (SVR): It is a supervised
learning algorithm where SVR is trained using the sym-
metrical loss function that punishes both higher and lower
misprediction [64].

Artificial Neural Network (ANN): ANN tries to under-
stand the relations between a set of data in a way that
mimics the process of human brain behavior. It uses a set of
interconnected artificial neurons in the layered structure and

ANN can work very well on different types of data using this
layered structure [65].

Generalized Regression Neural Network (GRNN):
GRNN is a special type of neural network architecture where
it has a radial basis layer and a special linear layer [66]. The
uniqueness of GRNN is that it does not require a repeated
training procedure like back-propagation networks compared
to ANN where back-propagation is vital.

F. HYPERPARAMETER OPTIMIZATION

Initial training of machine learning algorithms was carried
out using the default parameters of Regression Learner App
of MATLAB 2019b [61]. The performance of these machine
learning algorithms can be increased by tuning or opti-
mization of the hyper-parameters of the algorithm. Bayesian
Optimization was used in this work which was tuned for 30
iterations.

G. EVALUATION CRITERIA

In this study, five performance matrices were used. Here, Xp

is the data that was predicted while X is the ground truth data
and n denotes the number of samples or recordings.

I) Mean Absolute Error (MAE): The Mean Absolute
Error is the mean of the absolute of the predicted errors.

MAE =
1

n

∑

n

|Xp −X| (2)

II) Root Mean Squared Error (RMSE): RMSE measures
the standard deviation of the prediction error or residu-
als, where residuals measure the distance of data points
from the regression line. Therefore, RMSE is a way of
measuring the spread of residuals, and the smaller the
spread, the better the model.

RMSE =

√

∑

|Xp −X|
2

n
(3)

III) Correlation Co-efficient (R): R is used to measure how
closely two variables (prediction and ground truth) are
related. It is a statistical technique that also tells us how
close the prediction matches with the ground truth.

R =

√

1−
MSE(Model)

MSE(Baseline)
(4)

where MSE(Baseline) =
∑

|X−mean(X)|
n

IV) 2SD : Standard deviation(SD) is a statistical technique
that measures the spread of data relative to its mean.
It is calculated by computing the square root of the
variance. 2SD is the double of SD. 2SD is important
because it represents the 95% confidence interval.

2SD = 2×SD = 2×

√

∑

(error −mean(error))
2

n
(5)

where error = Xp −X
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V) Limit of Agreement(LOA):Limit of agreement calcu-
lates the interval in which a percentage of the dif-
ferences between two measurements (prediction and
ground truth) lie. LOA captures both random (preci-
sion) and systematic (bias). It is therefore a useful way
of measuring the performance of ML models. 95%
LOA were computed in this study.

Among these criteria, RMSE and 2SD were chosen as the
main criteria based on the reporting in the literature [22]–
[24], [26].

III. RESULTS AND DISCUSSION

This section describes the evaluation results of the different
machine learning algorithms used in this work. Out of the 19
classical machine learning algorithms evaluated in this study,
SVR, GPR, and Ensemble trees were outperformers.

TABLE 9: Comparative performance of different machine
learning models with different feature selection techniques

Algorithm Metric GPR SVR Ensemble

All Features
RMSE 2.92 3.14 3.38
2SD 5.89 6.30 6.67

Relieff
RMSE 2.85 3.17 3.61
2SD 5.70 6.33 7.12

Laplacian
RMSE 3.95 4.12 4.38
2SD 7.88 8.25 8.57

mCFS
RMSE 2.88 3.18 3.75
2SD 5.73 6.29 7.31

UDFS
RMSE 3.35 3.74 4.09
2SD 6.70 7.37 8.03

Llcfs
RMSE 3.13 3.57 3.98
2SD 6.26 7.04 7.74

CFS
RMSE 3.27 3.68 4.12
2SD 6.49 7.22 8.01

Fsasl
RMSE 3.26 3.56 4.07
2SD 6.49 7.03 7.96

Ufsol
RMSE 3.82 3.94 4.58
2SD 7.64 8.04 9.36

Lasso
RMSE 3.05 3.30 3.80
2SD 6.21 6.53 7.50

Fitrgp
RMSE 2.66 2.96 3.57

2SD 5.30 5.90 7.02

In Table 9, it can be seen that the features selected by the
Fitrgp technique were outperforming for different algorithms
(SVR, GPR, and Ensemble Trees). This feature selection
algorithm produced the best results for each ML model.
However, the GPR model in combination with the Fitrgp
feature selection technique provides superior performance
with the state-of-the-art RMSE and 2SD of 2.66 and 5.30,
respectively.

Since it has been observed in Table 9 that GPR performed
the best among all classical machine learning techniques
tested in this work, the hyper-parameter optimization perfor-
mance of GPR was compared with ANN and GRNN. The
process can be seen in Figure 8. The best model having a
Sigma of 4.318, a linear basis function, an isotropic expo-
nential kernel function and a kernel scale of 0.54439.

The comparative performance of ANN, GRNN, and op-
timized GPR is shown in Table 10. It can be seen that
the Fitrgp is outperforming the rest of the feature selec-

FIGURE 8: Hyperparameter Optimization of GPR model.

tion techniques. Among the machine learning algorithms,
the optimized GPR marginally outperforms GRNN while
performing significantly better than ANN. Therefore, the
optimized GPR model was selected as the best performing
model in this work.

TABLE 10: Performance comparison of optimized machine
learning models using different feature selection techniques

Algorithm Metric
Optimized
GPR

ANN GRNN

All Features
RMSE 3.07 4.93 3.67
2SD 6.09 9.81 6.92

Relieff
RMSE 2.83 4.07 3.28
2SD 5.73 8.42 6.67

Laplacian
RMSE 3.47 5.66 4.39
2SD 7.90 11.27 8.74

mCFS
RMSE 2.81 4.53 3.09
2SD 5.70 9.03 6.14

UDFS
RMSE 3.34 4.50 3.59
2SD 6.52 8.98 7.17

Llcfs
RMSE 3.10 4.51 3.85
2SD 6.20 9.09 7.07

CFS
RMSE 3.17 5.09 3.67
2SD 6.39 10.15 7.29

Fsasl
RMSE 3.16 5.39 3.69
2SD 6.01 10.15 7.34

Ufsol
RMSE 3.84 5.24 4.21
2SD 7.65 10.47 8.41

Lasso
RMSE 2.72 4.77 3.46
2SD 5.45 9.42 6.83

Fitrgp
RMSE 2.63 4.05 2.84

2SD 5.26 8.08 5.68

Figure 9, shows the best performing GPR model with and
without the use of the feature selection algorithm. The result
is visualized using regression and a Bland-Altman plot. The
regression plot allows seeing how close the predictions are to
the ground truth with the help of a trendline. The closer the
trendline is to the y = x line, the better the model. Bland-
Altman plot allows us to see the spread of the data and also
allows us to see the 95% limit of agreement (LOA) of the
data, where a smaller LOA means a better model. Figure 9,
shows that with all features, the algorithm had an R-value
of 0.857 and an LOA of -5.82 to 5.67 bpm. With the feature
selection algorithm (Fitrgp), the R-value is increased to 0.883
and the LOA reduces to -5.16 to 5.28 bpm.
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(c) Fitrgp based features Regression Plot
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(d) Fitrgp based features Bland-Altman Plot

FIGURE 9: GPR model with Regression and Bland-Altman plot (a-b) for all features and (c-d) for Fitrgp based features.

The effect of hyperparameter optimization of the GPR
model is shown in Figure 10. When comparing both the
optimized models, it can be seen that the model with no
feature selection had an R-value of 0.841 and an LOA of
-5.83 to 6.26 bpm while the optimized GPR model with
feature selection provides an R-value of 0.885 and the LOA
of -5.16 to 5.25 bpm. Hence, it can be concluded that the
feature selection algorithm helps in increasing the perfor-
mance of the GPR model. Comparing Figures 9 and 10, it
can be noticed that hyperparameter tuning has helped only
feture selection model. However, the best performance can be
observed with the optimized GPR along with the Fitrgp fea-
ture selection algorithm. Several factors made it difficult to
compare the reported performance of algorithms of different

research groups in the literature, such as the use of different
statistical tests, data from different subject groups, and the
lack of consistent algorithm implementations. As a result, it
is not possible to decide from the literature which algorithms
score higher. A comprehensive comparison of RR estimation
is summarized with the state-of-the-art literatures in Table

11. As shown in Table 11 Motin et al. [27] introduced a
novel approach to the continuous control of PPG-based RR
estimation using a smart fusion strategy based on EEMD is
one of the best performing approaches. Estimating RR under
daily living conditions is challenging, as the PPG signal is
affected by the motion artifacts. The median absolute error
(MAE) in [27].

L’Her et al. [29] described the accuracy of measurements
of the respiratory rate using a specially developed reflex-
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(c) Fitrgp based features Regression Plot
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FIGURE 10: Optimized GPR model with Regression and Bland-Altman plot (a-b) for all features and (c-d) for Fitrgp based
features.

mode photoplethysmographic pathological signal analysis
(PPG-RR) and validated its implementation within medical
devices. They experimented with this on 30 intensive care
unit (ICU) patients where a correlation coefficient for RR of
0.78 was achieved. Motin et al. [28] used the EMD family
and PCA-based hybrid model to remove RR from PPG, a
natural extension of their previously built hybrid PCA-EMD
(EEMD) system. The MAE for the model tested on MIMIC
datasets of 53 subjects were varied from 0 to 5.03 bpm.

With the assistance of Time Frequency (TF) reassignments
and a particle filter, Pirhonen et al. [30] suggested the use of
amplitude fluctuations of the PPG signals to approximate RR.
Vortal database was used in that study. The highest results

were achieved using wavelet synchrosqueezing transform,
which produced an MAE and RMSE of 2.33 and 3.68 bpm,
respectively.

Jarchi et al. [31] presented a case study on 10 subjects to
estimate RR from the PPG signals relative to accelerometer
and achieved an MAE of 2.56 bpm. Zhang et al. [26], [43]
proposed the estimation of the RR from the PPG signal using
joint sparse signal reconstruction (JSSR) and Spectra Fusion
(SF) from 42 subjects and achieved an LOA and RMSE of
-5.58 to 4.88, 2.81 and -6.24 to 5.45, 3.25 bpm, respectively.
Pimentel et al. [37] estimated RR using autoregressive model
from two publically available database, where they achieved
an comparable MAE of 4.0 (0.3-3.3) and 1.5 (1.8-5.5) for a
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TABLE 11: Comparison of the proposed method with the recent related works concerning the database, methodology, and
estimation error

Author Year Database Subject Method Metric Result

Motin et al.
[27]

MAE 3.05
Own 10 Empirical RMSE -

2020 Database Subjects Mode R -
Decom- 2SD -
position LOA -

L’Her et al.
[29]

MAE -
Own 30 RMSE -

2019 Database ICU Own R 0.78
Patient Approach 2SD -

LOA -

Motin et al.
[28]

MAE 0 - 5.03
MIMIC 53 Empirical RMSE -

2019 Database Subjects Mode R -
Decom- 2SD -
position LOA -

Jarch et al. [31]

MAE 2.56
BIDMC 10 Accelero- RMSE -

2018 Dataset Subjects meter R -
2SD -
LOA -

Pirhonen et al.
[30]

MAE 2.33
Vortal 39 Wavelet RMSE 3.68

2018 Database Subjects Synchro- R -
squeezing 2SD -
Transform LOA -

Zhang et al.
[26]

Joint MAE -
Capnobase 42 sparse RMSE 2.89

2017 Dataset Subjects signal R -
Reconstr- 2SD -
action LOA -5.6 to 4.9

Zhang et al.
[43]

Joint MAE -
Capnobase 42 sparse RMSE 3.25

2016 Dataset Subjects signal R -
Reconstr- 2SD -
action LOA -6.24 to 5.45

Pimentel et al.
[37]

MAE 4.0 (0.3-3.3)
BIDMC 53 Autoregressive- RMSE -

2016 Dataset Subjects model R -
2SD -
LOA -

Pimentel et al.
[37]

MAE 1.5 (1.8-5.5)
Capnobase 42 Autoregressive- RMSE -

2016 Dataset Subjects model R -
2SD -
LOA -

Charlton et al.
[23]

MAE -
Vortal 39 92 RMSE -

2016 Dataset Subjects Different R -
Algorithm 2SD 6.20

LOA -5.2 to 7.2

This Work

MAE 1.97

Vortal 39 Machine RMSE 2.63
2021 Database Subjects Learning R 0.88

2SD 5.25

LOA -5.16 to 5.25

windows size of 32 second. But one of their limitation was,
they discarded 36% of windows due to motion artifact effect.
Charlton et al. [23] divided the algorithm into three phases:
respiratory signal extraction, RR estimation, and estimation
fusion and 314 different algorithms were assessed and the
best algorithm had 95 percent LOA and 2SD of -5.1 to 7.2,
and 6.2 bpm, respectively.

There is no exact medical standard regarding the estima-

tion of RR. However, in a review paper [22] where over
196 traditional RR extraction technique were reviewed, they
stated that an MAE less than 2 bpm should provide a suitable
indicator for a good estimator. The machine learning model
suggested in this analysis was measured with much higher
precision and accuracy which shown in Table 11.

The computational complexity reduction mentioned in the
paper is due to the usage of feature optimization and ma-
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chine learning technique which reduces the computational
complexity of the estimation system while make the system
robust for motion-corrupted PPG signal. On the other hand,
traditional approach [23], [24] extracts respiratory signal
from PPG signals using amplitude modulation (AM), fre-
quency modulation (FM) and baseline wandering. This esti-
mation only works with motion-free PPG signals to estimate
respiratory rate. In the proposed system, the inference time
for estimating PPG depends on VMD and feature extraction
techniques but the regression process is quite fast while other
approaches fails on the motion corrupted PPG signals even
though these might be faster than ML based approach. Since
the respiration is a slow changing signal, we believe ML
model can work in real-time if deployed in the mobile devices
or smart watches. our approach is computationally expensive
but reliable and robust now.

IV. LIMITATIONS

The key limitation of this study is that the VORTAL dataset
was collected from the young healthy subjects at rest. In our
future work, we are aiming to estimate respiratory rates from
patients with different age groups and with different clinical
conditions.

V. CONCLUSIONS

In this study, the authors proposed and developed a machine
learning-based method for predicting RR from the PPG sig-
nal features. This successfully shows how the motion artifact
corrected PPG signal can be used to correctly estimate the
RR value invasively. The entire prepossessing process of the
PPG signals to extract the features, feature selection, and
training of the algorithms were discussed. The method used
107 time-domain, frequency-domain, and statistical features
to extract meaningful information from the PPG signal. ANN
and GRNN and 19 other machine learning models were
trained, validated, and tested for RR estimation, where the
performance of GPR, SVR, ensemble trees, ANN and GRNN
were promising. To reduce computational complexity and
the risk of over-fitting, different feature selection algorithms
were investigated. It was observed that a combination of
Fitrgp feature selection and GPR machine-learning algorithm
produced the best result. However, hyper-parameter opti-
mization can improve the model performance further. The
fine-tuned model provides an RMSE, MAE, R, and 2SD
score of 2.63, 1.97, 0.88, and 5.25 bpm for the estimation
of RR. This state-of-the-art performance of the proposed
model will make it possible to deploy this for ambulatory and
intensive care units as well for remote health care monitoring.
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