
A Novel Non-Iterative Parameter Estimation Method for Interval
Type-2 Fuzzy Neural Networks Based on a Dynamic Cost Function

Mojtaba Ahmadieh Khanesar1, Saima Hassan2 and Erik Cambria 3, Erdal Kayacan 4

Abstract— Non-iterative methods for parameter estimation
for interval type-2 neuro-fuzzy structure are fast to implement,
when compared to online methods, and need no –or a few–
parameters to be tuned. In this paper, a novel dynamic cost
function, which defines a relationship between the current and
past errors, is defined. The minimization of the aforementioned
cost function results in a decreasing sequence of error which
makes the proposed method numerically more stable when
compared to least squares-based methods. It is a well-known
phenomenon that a matrix inversion may cause problems if the
matrix to be inverted is ill-defined i.e. its condition number is
far bigger than one. The use of a dynamic relationship between
the current and past error adds more degrees of freedom
which makes it possible to improve the condition number of the
matrix. Comprehensive simulation studies are presented for the
prediction of financial data sets. The simulation results shows
the superior numerical stability of the proposed method as the
mean value of the condition number is smaller. This finding
results in more accurate matrix inversion to be done in the
two-step matrix inversion.

I. INTRODUCTION

Interval type-2 fuzzy logic systems (IT2FLSs) become
well-known systems for their ability to deal with uncertainty,
noisy and incomplete data. IT2FLSs benefit from type-2
membership functions (MFs) with fuzzy membership grades
[1]. This structure demonstrated superior performance over
their type-1 counterparts specially when high levels of noise
and uncertainties exist in the system [2]–[5].

Among various learning algorithms, the Gradient descent-
based algorithms have been dominantly utilized for training
the neural networks (NNs) [6]. The back-propagation (BP)
algorithms and its variants suffer from various learning issues
including stop criteria, number of learning epoch and the
possibility of entrapment in a local minimum during training
of NNs [7] and [8]. Such issues have emerged novel non-
iterative learning schemes [9]. Various least squares (LS)
based methods are proposed to solve the limitations of BP
algorithms and has shown its efficiency in training the NNs
[10]. This method is a non-iterative method and makes
it possible to find the results in two iterations. The fact
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that there is no need to tune any parameters, makes this
algorithm a very fast algorithm which does not necessitate
any iterations to select its parameters.

The LS based method in [8] can be considered as a
feed-forward NN (FFNN) where learning of the system
takes place in two stages. In the first stage, the weights
connecting input layer and the hiddden layer are selected
randomly [11], [12]. In the second stage, the connections
with output neurons (weights of output layer) are analytically
determined. This makes LS training of FFNN as a linear
learning problem where only the connections with output
neurons need to be adjusted. Solving a linear system with
the random parameters reduces computation time than that of
the iterative BP algorithms without sacrificing the prediction
accuracy. The efficacy of this method over the support
vector machines and its variants has been empirically shown
[13]. Other variants of non-iterative learning algorithms
are evolutionary ELM [7], optimally pruning ELM (OP-
ELM) [14], and bidirectional ELM (B-ELM) [15] that tries
decreases the number of hidden nodes without affecting
learning effectiveness of the algorithm. In these algorithms
the optimal nodes are selected in a way that the ones with
lower residual error among the several randomly generated
hidden nodes.

In this paper, an innovative non-iterative training algorithm
to tune the parameters of IT2FLSs is introduced. Although
previous non-iterative optimization methods are based on
the minimization of sum of squared error, in the proposed
method, the cost function is sum of squared of a discrete
time dynamic relationship in the form of s(t) = e(t) +
λe(t − 1), |λ| < 1. Such cost function has been previously
used in [16], but not solved using non-iterative approaches.
Since absolute value of the parameter λ is less than one,
minimization of the sum of squares results in decreasing error
with respect to time. Although, it can be proved that existing
non-iterative training methods can optimally tune the con-
sequent part parameters of IT2FLSs, the proposed method
shows superior performance with the test data. This is mainly
because of the numerical stability caused by the minimization
of dynamic relationship. One of the main challenges with
existing non-iterative optimization is that they include matrix
inversion which may cause numerical instability. However,
the minimization of the proposed cost function which is
based on the current and past error improves the condition
number of the matrices to be inverted. The condition number
in this case depends on the selection of the parameter λ
which adds more degrees of freedom to the optimization
method. To test the performance of the proposed training



method in dealing with real time datasets, it is applied on
the prediction of SGD/USD and EURO/USD exchange rates.
The simulation results show superior performance for the test
data when compared to the existing non-iterative algorithms
for training of the IT2FLSs.

This paper is organized as follows. The structure of
IT2FLSs and existing non-iterative optimization methods are
introduced in Section II. In Section III, the proposed non-
iterative optimization method based on proposed dynamic
cost function is discussed. Simulation results are presented
in Section IV. The concluding marks are presented in Section
V.

II. STRUCTURE OF THE INTERVAL TYPE 2 FUZZY LOGIC
SYSTEM

Type-2 fuzzy MFs benefit from a secondary MFs which
make the membership grade fuzzy. The fuzzy system, which
is constructed using this type of MFs, are called general-
ized type-2 fuzzy logic systems. However, if the secondary
membership grades are considered as either equal to zero
or one, the resulting fuzzy system is called IT2FLS. This
simplification makes it possible for IT2FLSs to be executed
much faster than the general IT2FLSs. The main difference
between T2FLSs and T1FLSs is that in IT2FLS output
processing block which consists of a type-reducer followed
by a defuzzifier block replaces defuzziffier block of T1FLSs
(see Fig. 1).
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Fig. 1: Structure of the IT2FLS.

A generalized IF-THEN rule (Rn) with N number of rules
for an IT2FLS is as follows [17]:
Rn: IF x1 is X̃n

1 ∧ x2 is X̃n
2 ∧ · · · ∧ xd is X̃n

d

THEN yn(x) = cn0 + cn1x1 + · · ·+ cndxd, n = 1, · · · , N
The input to each fuzzy rule a vector of d−dimensional

input x = [x1, x2, · · · , xd]T , which maps the fuzzy set to a
varying singleton yn. X̃n

i , i = 1 · · · , d, are the ith interval
type-2 fuzzy subset generated from the input variable xi in
the nth rule domain with N being the total number of fuzzy
rules. cn = [cn0 , c

n
1 , · · · , cnd ]T represents the parameters of

nth fuzzy rule.
Since Gaussian MF are sufficiently smooth functions

which are one of the most frequently used fuzzy MFs.
However, in the case an interval value is considered for the
center of the Gaussian MF, the resulting upper and lower
Gaussian MFs are not differentiable. Such Gaussian type-
2 MF with a fixed σn

i parameter and an interval center
value that takes on values in [mn1

i ,mn2
i ], [18] and [17] is as

follows:
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The type-2 fuzzy MF µX̃n
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(3)

The firing strength of a rule corresponding to an input set
is an interval value, Fn = [fn, f

n
], where

fn(x) = µ
X̃n
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The output of the IT2FLS is obtained as follows:

Y = [yl, yr]

=

∫
y1∈[y

1
,ȳ1]

· · ·
∫
yN∈[y

N
,ȳN ]

(6)

∫
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1
,f̄1]

· · ·
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N
,f̄N ]

1

/∑N
n=1 fny

n∑N
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where:

yn = cn0 +

d∑
i=1

cni xi =

d∑
i=0

cni xi (7)

and x0 = 1.
The indices l and r in the IT2 fuzzy sets [yl, yr] represent

left and right limits, respectively. There exists different
approaches to calculate the outputs of IT2FLSs [19], among
which Enhanced Karnik-Mendel (EKM) method [20] is used
because of its efficacy and most frequently usage. Assume
y = [y1, · · · , yN ]T as the original rule-ordered consequent
values, and ỹ = [ỹ1, · · · , ỹN ]T as the reordered consequent
values, where ỹ1 ≤ ỹ2 ≤ · · · ≤ ỹN . The parameters f

n
and f̄n are also reordered corresponding to ỹs. The resulting
vectors are represented by f̃

n
and ¯̃

fn, respectively. Finally,
outputs yl and yr in (6) are obtained as follows.
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where L and R are computed using several iterations of
EKM. Detailed step by step procedure of EKM model is
presented in in [21] and [22]. The final crisp value of IT2FLS
is obtained using the mean of yl and yr as follows.

y =
(yl + yr)

2
(10)

A. Basic Non-iterative Optimization Algorithm

Type-2 fuzzy extreme learning algorithm (T2FELA) is a
successful non-iterated algorithm designed for SLFNs using
interval type-2 fuzzy premise parts [23]. This algorithm is
summarized as follows.

For a training tuple in the form of (xi, yi)
D
i=1 ⊂ Rd ×

Rm, an arbitrary SLFN with Ñ number of hidden nodes is
represented as follows.

Ñ∑
j=1

βj,kgj(xi) =

Ñ∑
j=1

βjg(xi; wj , bj) = yi,k, i = 1, · · · , D

k = 1, · · · ,m

where g(xi; wj , bj) is the activation function acting on the
hidden layer and wj and bj are its parameters. The prediction
error is considered as follows:

eik = yi,k −
Ñ∑
j=1

βj,kgj(xi) i = 1, · · · , D

k = 1, · · · ,m

III. MODIFIED NON-ITERATIVE TRAINING BASED ON
DYNAMIC COST FUNCTION

A discrete time dynamic relationship between current and
past error is defined as follows:

sik = eik + λe(i−1)k i = 1, · · · , D
k = 1, · · · ,m (11)

where λ > 0 is a design parameter which is chosen as
|λ| < 1 to guarantee the stability of the dynamic surface.
The equation (11) can be represented in the following matrix
form:

H2,Dβ + λH1,D−1β = Y2,D + λY1,D−1 (12)

where

Hi,j(xi, · · · , xj ; w1, · · · ,wÑ , b1, · · · , bÑ ) (13)

=

g(xi; w1, b1) · · · g(xi; wÑ , bÑ )
...

. . .
...

g(xj ; w1, b1) · · · g(xj ; wÑ , bÑ )


(i−(j+1))×Ñ

β =

β
T
1
...

βT
Ñ


Ñ×m

=

β
1
1 · · · βm

1

· · ·
. . . · · ·

β1
Ñ
· · · βm

Ñ


Ñ×m

(14)

and

Yi,j =

yTi
...

yTj


(j−(i+1))×m

(15)

where H is a matrix composed of the outputs of hidden layer;
generated randomly with parameters wj and bj . β is the
output weight matrix and yT represent the transpose of vector
y. The parameter β̂, the optimal values of β is obtained as
the solution to (12) as follows.

β̂ =
(
H2,D + λH1,D−1

)†(Y2,D + λY1,D−1

)
(16)

where H† is the Moore-Penrose generalized inverse of matrix
H [24] and [25].

The proposed parameter update rule based on (16) is
presented in Fig. 2.

Remark 1. Since the most important novelty of the present
paper lies in its novel cost function, this cost function needs
to be justified in more details. In the case this cost function
made equal to zero, a relationship between the past and
current error is satisfied. In this relationship, the current error
is equal to the past error when it is multiplied by a value
λ which is less than one. This means that the error has a
decreasing value which may result in more stability for the
training phase.

Remark 2. It is important to note that although the
parameter λ adds more degrees of freedom, its selection may
be challenging and may require trial and error. Based on our
experiments, an appropriate selection of this parameter would
be λ = −0.5. However, the tunning of this parameter may
result in superior performance.

IV. SIMULATION RESULTS

A. Performance indexes

The proposed algorithm is tested according to the most
common performance indexes namely mean absolute per-
centage error (MAPE), adopted mean absolute percentage
error (AMAPE) [26], symmetric mean absolute percentage
error (SMAPE) and root mean squared error (RMSE).

MAPE =
1

N

N∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣× 100 (17)

AMAPE =
1

N

N∑
t=1

∣∣∣∣∣ At − Ft

1
N

∑N
t=1At

∣∣∣∣∣× 100 (18)

RMSE =

√√√√ 1

N

N∑
t=1

(At − Ft)2 (19)

where N represent test sample number. The parameters At

and Ft represent actual and foretasted values at time instance
t.

Symmetric mean absolute percentage error (SMAPE) is
an error indicator based on the relationship between absolute
error and the average value of real and predicted values. This
performance index is represented as follows:
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Fig. 2: Sequential diagram of the proposed training algorithm

SMAPE =
1

N

n∑
t=1

|Ft −At|
(|At|+ |Ft|)/2

× 100 (20)

where N , At and Ft are defined in the same way as in (19).

B. Prediction of the SGD/USD exchange rate

Cross border activities and foreign exchange market re-
quire the prediction of exchange rate between major cur-
rencies across the globe. Accurate forecast of the exchange
rate results in considerable decrease in risks and makes
the overall financial activity profitable. Singapore Dollar
as one of the major currencies is chosen here to test the
prediction accuracy of the proposed approach when it comes
to financial data. The data is chosen from 3−Jan−1994 to
29−Apr−2016. Totally, the number of entries in investigated
data set is equal to 5735 samples. The missing data appears
in the dataset as a result of holidays, in which the latest
exchange rate is used to fill the missing data entry. The data
samples from 3−Jan− 1994 till 14−Jan− 2005 are used
for training and the data samples from 15− Jan− 2005 till
29−Apr−2016 are used for testing of the proposed method.

Six individual fuzzy rules are used to predict the financial
data with their center and sigma variables being completely
random variables. The data set is normalized between zero
and one and the centers are uniformly distributed in this
interval. The sigma values are chosen uniformly from the
interval of [0.2, 0.5]. In order to have statistically meaningful
results, the experiments are repeated for 30 times and the
mean values are reported in the Table I. As can be seen from
this table, performance of the proposed method is better than
T2FELA considerably. Moreover, the prediction performance
for test data is illustrated in Fig. 3a. This figure shows that
it is possible to use the data points between 3−Jan− 1994
and 14 − Jan − 2005 and the trained system is capable of
predicting the exchange rate of 15 − Jan − 2005 till 29 −
Apr − 2016. Figure 3b depicts that the graph of identified
data with respect to real data is very close to y = x line.

As mentioned earlier, the reason behind better perfor-
mance of the proposed algorithm over T2FELA is that the
addition of a parameter to the cost function makes it more
stable. In this case, the mean value of condition number
for the proposed method is obtained as 1.8619× 106 while
it is being equal to 1.1345 × 107 for T2FELA. Similar to
the previous case, this fact clearly shows the reason why

TABLE I: Results of comparison between the proposed SMC
based non-iterative optimization method and T2FELA.

Test Data Train Data
Index The proposed T2FELA The proposed T2FELA

method method
MAPE % 0.4325 0.7353 0.2505 0.4715
AMAPE % 0.4477 0.7561 0.2465 0.4642
RMSE 0.0044 0.0074 0.0024 0.0045
SMAPE % 0.4342 0.7374 0.2505 0.4715

the results obtained by the proposed method outperform the
results obtained by T2FELA.

C. Prediction of the Euro/USD exchange rate

In this section, the proposed non-iterative algorithm is
used to predict the daily exchange rate of Euro versus
USD for 4558 days in the interval of 30 − Oct − 1998 to
15 − Aug − 2016. For missing data resulted from holidays
or unavailable data samples, the latest exchange rate is used.
The data samples from 30−Oct−1998 till 8−Aug−2007 is
used for training and the data samples from 9−Aug−2007
till 15−Aug−2016 are used for testing the proposed method.

Four rules are considered for the fuzzy system with com-
pletely random center and sigma variables. For the prediction
purpose, the exchange rates are normalized to the interval
of [0, 1] and the centers are uniformly distributed in this
interval. However, the indices are all evaluated based on the
true data. The sigma values are chosen uniformly from the
interval of [0.2, 0.5]. Similar to the previous case, Table II
illustrates that the proposed method outperforms T2FELA
considerably. In order to have statistically meaningful results,
the experiments are repeated for 30 times and the mean
values are reported in the table. Moreover, the prediction
performance for test data is presented in Fig. 4a. Moreover,
Figure 4c shows how identification error is distributed around
zero. Figure 4d depicts that the graph of identified data with
respect to real data is very close to y = x line.

Similarly, the authors believe that the reason behind better
performance of the proposed algorithm over T2FELA is the
proposed method is numerically more stable. The fact that
the mean value of condition number for the proposed method
is obtained as 3.5774×108 while it is being equal to 1.9220×
109 for T2FELA supports this idea.
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V. CONCLUSION

The use of dynamic cost function in this paper results
in overcoming the numerical problems caused by matrix
inversion needed to estimate the parameters of the conse-
quent part of IT2FLSs when using the T2FELA. Using the
proposed dynamic cost function, a novel formula is extracted
for the consequent part parameters of IT2FLS. Since the
proposed cost function benefits from a parameter, it has
more degrees of freedom which makes it possible to obtain a
more numerically stable parameter update rule which results
in better approximation of the true values. The proposed
method is applied to predict financial datasets. Having a good
prediction is required for decreasing the risk of decisions.
This is the main reason why a foreign exchange dataset is
selected in this study to test the prediction capability of the
proposed approach. As can be inferred from the simulation
results, the proposed method makes the condition number for
the matrix inversion in the estimation of the parameters of the
consequent part of IT2FNN closer to one, which is highly

TABLE II: Results of comparison between the proposed
SMC based non-iterative optimization method and T2FELA.

Test Data Train Data
Index The proposed T2FELA The proposed T2FELA

method method
MAPE % 0.8009 1.4422 0.5316 0.9952
AMAPE % 0.8400 1.5065 0.5198 0.9730
RMSE 0.0189 0.0332 0.0073 0.0139
SMAPE % 0.8088 1.4541 0.5316 0.9953

desirable. Furthermore, the proposed algorithm shown to be
capable of outperforming T2FELA if appropriate parameter
values are selected for this algorithm.
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