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Abstract. In this paper we describe a new algorithm for nonrigid registration
of brain images based on an elastically deformable model. The use of registra-
tion methods has become an important tool for computer-assisted diagnosis and
surgery. Our goal was to improve analysis in various applications of neurology
and neurosurgery by improving nonrigid registration.
A local gray level similarity measure is used to make an initial sparse displace-
ment field estimate. The field is initially estimated at locations determined by
local features, and then a linear elastic model is used to infer the volumetric de-
formation across the image. The associated partial differential equation is solved
by a finite element approach. A model of empirically observed variability of the
brain was created from a dataset of 154 young adults. Both homogeneous and in-
homogeneous elasticity models were compared. The algorithm has been applied
to medical applications including intraoperative images of neurosurgery showing
brain shift and a study of gait and balance disorder.

1 Introduction

Developed about twenty years ago, nonrigid registration has meanwhile become a fun-
damental method for brain analysis in computer-assisted neurology and neurosurgery.
An important issue thereby is the generation of deformation fields that reflect the trans-
formation of an image in a realistic way with respect to the given anatomy. Due to lack
of image structure, noise, intensity artifacts, computational complexity and a restricted
time frame e.g. during surgery, it is not suitable to measure the deformation for each
voxel. This leads to estimates of the deformation field only at sparse locations which
have to be interpolated throughout the image.

In the last few years physically based elastic and viscous fluid models for nonrigid
registration have become more and more popular [3] because they can constrain the
underlying deformation in a plausible manner. However viscous fluid models [10],[11]
have to be chosen carefully, since they allow large deformations which is not always
suitable for medical applications concerning the brain. Furthermore, viscous fluid mod-
els driven by alignment of similar gray values may allow anatomically incorrect matches
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of different but adjacent structures through the same mechanism that allows large de-
formation matches. For example, one gyri may flow from the source brain to match two
or more different gyri in a target brain, in a manner that may or may not be desirable.

In terms of physically based elastic models various algorithms have been described.
Recent work (e.g. [7],[8]) proposed an active surface algorithm computed at the bound-
ary of a regarded structure for an initial estimate of the deformation field. A drawback
of this method is, that although it has been shown to be accurate close to the object’s
boundary, away from the boundaries the solution could potentially be less accurate. In
[11] this idea was improved using statistical shape informations based on a set of im-
ages with hand-labeled points on the boundary of a structure which was included as
an additional matching criterion. Even though such methods are promising for specific
structures of the brain a robust 3D shape representation of the whole brain still remains
difficult to achieve.

A different approach was proposed by Collins et.al. (see [6]). Their nonrigid reg-
istration algorithm was based on an iterative refinement of a local similarity measure
using a simplex optimization. As this approach is constrained only by smoothing af-
ter correspondence estimation, the derived deformation field can only be accurate for
specific regions of the brain. To achieve better results the method was improved by
introducing various gyri and sulci of the brain as geometrical landmarks [5].

The aim of this paper is to present a new algorithm for computer-assisted neurology
and neurosurgery. In order to get realistic deformations we propose an physically based
elastic model, without requiring a segmentation or having the drawback that initial es-
timates of the deformation are only generated for the boundary of a considered struc-
ture. Therefore we used an enhanced approach based on the local similarity measure
proposed by Collins et.al.. Furthermore we incorporated a model for inhomogeneous
elasticities into our algorithm. The discretization of the underlying equation was done
by a finite element technique, which has become a popular method for medical imaging
applications (e.g. see [4] and [8]).

2 Method

The process of registration can be described as an optimization problem that minimizes
both the difference between a template and a reference image and the deformation en-
ergy. We present a registration method, which basically runs in two steps. Based on a
set of points extracted out of an image as described in (2.1), an initial sparse estimate of
the deformation field is found by a local normalized cross-correlation (2.2). In a second
step nonrigid registration is performed using an elastic model (2.3) which is constrained
at the sparse estimates computed before.

2.1 Feature Point Extraction

Let Ω denote the domain of a volume S : Ω → R with voxel positions x = (x, y, z)�,
x ∈ Ω. In order to obtain suitable feature points for an initial sparse estimate of the
deformation field, first the gradient magnitude is calculated out of blurred image in-
tensities where only voxel higher than two standard deviations above the mean of the
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magnitude of the gradient are used for the correspondence detection (2.2). Figure 1
shows this process for one slice of a Magnetic Resonance (MR) scan of the brain.

To overcome the poor edge preserving properties of linear low-pass filters, we use a
nonlinear diffusion filter which can be described as a solution of the partial differential
equation (PDE)

∂tS = div
(
g(|∇Sσ|2) ∇S

)
(1)

with Neumann boundary conditions [15]. In order to reduce the noise sensitivity, the
diffusion function g : R → R depends on the magnitude of the gradient of smoothed
image intensities, computed by convolving S with a Gaussian kernel of standard devi-
ation σ. In our method, we use a diffusion function proposed by Weickert in [15]:

g(x) =
{

1 for x ≤ 0
1 − exp( −C

(x/λ)4 ) for x > 0 . (2)

The parameter λ separates regions of low contrast from those of high contrast. For the
constant C Weickert proposes C = 3.31448 which gives visually good results and sets
the flux f(x) = x·g(x) to an expected behavior, i.e. f is increasing for values smaller or
equal λ and decreasing for values greater than λ . In our approach λ was set interactively
according to the considered volume. Furthermore for computational efficiency we use a
parallel additive operator splitting (AOS) scheme which is stable for arbitrary large time
steps and can be solved in linear time in terms of the image size. See [14] for details.

(a) (b) (c)

Fig. 1. Illustration of feature point extraction. For a better visual impression we only
show a detail of the image. (a) Slice of MR scan; (b) Blurred image using a nonlinear
diffusion filter; (c) Magnitude of the gradient of the blurred image after thresholding.

2.2 Correspondence Detection

After extracting feature points, the correspondence between the reference R and tem-
plate volume T is computed for these points. We use the local normalized cross-corre-
lation (NCC) as a similarity measure [6]

NCC(R, T, d) =

∑
k∈N (x) f(R, k) · f(T, d(k))√∑

k∈N (x) f
2(R, k) · ∑k∈N (x) f

2(T, d(k))
, ∀x ∈ Ω , (3)
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which is maximized in terms of the deformation function d by a brute force search. The
search space in our method is restricted to translations because other transformations
like rotations or scaling would be of higher computational complexity. Assuming a
window of size (w × w × w), the local neighborhood of a voxel x is described by
N (x) ∈ {(x − w, y − w, z − w)�, . . . , (x + w, y + w, z + w)�}. The spatial points
used for the NCC are computed by f : (R, Ω) → R, whose output f(S,x) is given
for voxels with high gradient magnitudes calculated out of blurred image intensities, as
described in section (2.1).

2.3 Interpolation from Sparse Displacement Estimates

The sparse deformation estimates obtained for the feature points computed by a local
NCC, are now introduced as external forces into an elastic model described in Equation
(4). The underlying idea is to restrict the the registration process so that the resulting
deformation field is a priori fixed by the estimates at these points.

For a three dimensional elastic body Ω the total potential energy is defined as the
work of the internal strains minus the potential of the external forces and can be ex-
pressed as [18]:

E(u) =
1
2

∫
Ω

σ�ε dΩ −
∫

Ω

F�u dΩ , (4)

where the variables are given in terms of the strain vector, σ, the stress vector, ε, the
external forces, F and the deformation field, u = (u(x, y, z), v(x, y, z), w(x, y, z))�.
We seek the deformation that minimizes the energy described in Equation (4). As we
assume small deformations in terms of linear elasticities, the strain vector ε is given by

ε =
(
∂u

∂x
,
∂v

∂y
,
∂w

∂z
,
∂u

∂y
+

∂v

∂x
,
∂v

∂z
+

∂w

∂y
,
∂w

∂x
+

∂u

∂z

)�
. (5)

The elastomechanical relation between stresses and strains can be expressed as

σ = (σx, σy , σz, τxy, τyz, τzx)� = Dε (6)

with the elasticity matrix D. See [18] for the full details.
For the discretization we choose the finite element method (FEM), i.e. the domain

Ω is approximated by a sum of elements. In our approach we use a regular mesh of
tetrahedra. For every element the deformation ue can now be described as a linear
combination of so-called shape functions Ne

i (x, y, z) = 1
6V (ai + bix + ciy + diz). A

detailed computation for the volume V of a tetrahedron and the coefficients is given in
[18]. We assume a uniformly continuous transition between two elements, which leads
to

ue(x, y, z) =
4∑

i=1

ue
i (x, y, z)N

e
i (x, y, z) , ∀e ∈ Ωa , (7)

where Ωa represents an approximation of the continuous domain Ω.
A large system of equations can be computationally expensive to solve. To work

against this, the resulting system of equations is solved in parallel with the Portable
Extensible Toolkit for Scientific Computation (PETSc) package [2] in less than five



A Novel Nonrigid Registration Algorithm and Applications 927

minutes for a 256×256×124 volume. Usually the NCC search is much more expensive
than solving this system.

Typically elasticity parameters have been set arbitrarily and homogeneously [3].
Recently Lester et.al. [10] applied an inhomogeneous viscous fluid model to brain and
neck registration using the manually segmented bone of the reference image as a region
of high stiffness. Davatzikos et.al. [7] applied inhomogeneities to brain warping setting
the elasticity parameters of the brain four times higher than their value in the ventricles.

Our approach differs in that the inhomogeneous elasticity parameters are derived
from an empirical estimate of anatomical variability. We used a set of 154 MR scans
of the brain, first segmented into white matter, grey matter, cerebro-spinal fluid (CSF)
and background using an EM-based statistical classification algorithm [16]. Then the
head of each scan was aligned to an arbitrarily selected scan out of this database, us-
ing global affine transformations [13] and our nonrigid registration. In order to gen-
erate a model for inhomogeneous elasticities, we use a maximum-likelihood classifi-
cation, where for each voxel the most likely structure and its frequency of occurrence
at the voxel on all cases was stored. According to these results, the elasticity param-
eters are computed for every voxel. We choose a linear mapping for the computed
frequency of occurrence of the identified brain tissues where the Poisson ratio ν was
scaled in a range of ν ∈ [0.1, 0.4] while Young’s elasticity modulus E has a range of
E ∈ [2000kPa, 10000kPa]. The background was set to a low stiffness E = 1000kPa
and incompressibility parameter ν = 0.05, respectively. Figure 2 shows a slice of the
computed model and the associated intensities for ν.

(a) (b)

Fig. 2. Computed model of empirically observed variability. (a) Slice of the model
after maximum-likelihood classification; (b) Computed incompressibility parameter
(Poisson ratio ν) for each voxel of the same slice. Dark regions imply a low value
for ν.

3 Experimental Results

To evaluate the two different methods presented in this paper, we show some results
obtained for varying medical applications. In case of homogeneous elasticities we use
E = 3000kPa for the Young elasticity modulus, and ν = 0.4 for the Poisson ratio, as
used by Ferrant et. al. [8].
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3.1 Illustration of Nonrigid Registration with Homogeneous and Inhomogeneous
Elasticities

In order to show the behavior of a deformation model with homogeneous and inhomo-
geneous elasticities, the algorithm was applied to register 159 MR scans of the brain of
young adults. Therefore each scan was first globally registered to an arbitrarily chosen
dataset by an affine transformation [13]. The nonrigid registration with homogeneous
and inhomogeneous elasticities was then applied to the aligned data (Figure 3).

An analysis of the summed squared differences showed an improvement of 2%
using inhomogeneous elasticities. This rather small effect is due to the setting of feature
points in our experiments. As it can be seen in Figure 2 large regions of white matter
only have a small range of anatomical variability, i.e. large number of fixed deformation
estimates constrain the interpolation done by the elastic model. Further research will
investigate new approximation schemes to address this.

(a) (b) (c) (d)

Fig. 3. Results of study applying rigid and nonrigid registration to 159 subjects. (a)
Slice of reference volume; (b)-(d) Result after registration and averaging over all scans
using: (b) affine registration; (c) nonrigid registration with homogeneous elasticities;
(d) nonrigid registration with inhomogeneous elasticities.

3.2 Capturing Brain Shift

During neurosurgery the shape of the brain changes which can be considered as non-
rigid deformation. Recently a fast biomechanical simulation of this brain shift was pro-
posed in [12]. This algorithm used segmentation to identify key structures and to re-
move noise and intensity artifacts. In our new method we can derive sparse estimates
without a segmentation so long as noise and intensity artifacts are minimal. This allows
estimates to be obtained in a larger region of the brain. Figure 4 shows images of the
brain before (Fig. 4 (a)) and after craniotomy (Fig. 4 (b)) as well as the reference image
after craniotomy with overlayed initial (Fig. 4 (c)) and deformed image (Fig. 4 (d)). It
can be observed, that the brain shift was successfully captured. Even though the results
show some artifacts in the area of the brain surface. This is due to a massive change in
the patients brain structure during craniotomy resulting in a large cavity which cannot
be computed with an elastic model out of the initial image. As this area only contains
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cerebro-spinal fluid we haven’t addressed this issue in our current studies. More valida-
tion experiments will be required to appropriately assess the potential for this method.
These are currently under way.

(a) (b)

(c) (d)

Fig. 4. Elastic matching applied to MR scan of the brain obtained during neuro-
surgery. (a) Image at the beginning of the surgery; (b) Image after craniotomy; (c) Slice
of reference volume with overlayed contours of initial scan; (d) Slice of reference vol-
ume with overlayed contours of deformed volume;

3.3 Analysis of Balance and Gait Disorders

Impaired mobility caused by gait and balance disorders is common in older adults. Cen-
tral nervous system disease, as revealed by white matter signal abnormalities (WMSAs)
observed by MRI, is believed to play a significant role in gait disorder while still being
common in asymptomatic elderly subjects [9]. Therefore it is interesting to understand
the spatial distribution of WMSAs in impaired and asymptomatic subjects. The align-
ment of impaired mobility subjects and controls in a common coordinate system can
help to determine the spatial distribution of such WMSAs. A commonly applied but
relatively low order nonrigid registration algorithm is that provided by SPM [17],[1].
We wished to investigate the use of our high dimensional nonrigid registration to de-
termine spatial distribution of WMSAs associated with gait disorder by comparing the
spatial distribution of WMSAs between two groups - 16 subjects with impaired mobil-
ity, and 12 age matched control subjects without impaired mobility.

Figure 5 (a) shows the slice of one subject used as reference image. The results of the
nonrigid registration after averaging over all scans are presented in Figure 5 (b). Figure
5 (c) illustrates the results of a Chi-square test, with values significant at the α = 0.01
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level shown as bright pixels, and with lower values scaled linearly in intensity to zero
(black). The results show clearly that people with balance and gait disorders have a
statistically significant increase in lesions in two specific regions of the white matter of
the brain, as compared to asymptomatic elderly subjects.

(a) (b) (c)

Fig. 5. Results of a study analyzing balance and gait disorders. (a) Slice of reference
volume; (b) Averaged cases of the study after nonrigid registration using inhomoge-
neous elasticities; (c) Result of a voxel independent chi-square statistic.

4 Discussion and Conclusion

We have presented a method for nonrigid registration which was used for various appli-
cations in neurology and neurosurgery including simulation of brain shift and a study
of balance and gait disorders. The applied elastic model provides us thereby with the
ability to simulate realistic deformation applying inhomogeneous elasticities derived
by a model of empirically observed variability. A local similarity measure was used to
constrain the model which was discretized by the finite element method.

Further work will investigate alternative similarity measures and features extrac-
tions, e.g. local structure features. We also plan to enhance this approach incorporating
the anisotropy of certain brain tissue structures.
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