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Abstract: Theoretical tire models are often used in tire dynamics analysis and tire design. In the past,
scholars have carried out a lot of research on theoretical model modeling; however, little progress has
been made on its solution. This paper focuses on the numerical solution of the theoretical model. New
force and moment calculation matrix equations are constructed, and different iterative methods are
compared. The results show that the modified Richardson iteration method proposed in this paper
has the best convergence-stability in the steady and unsteady state calculation, which mathematically
solves the problem of nonconvergence of discrete theoretical models in the published reference. A
novel discrete method for solving the total deformation of tires is established based on the Euler
method. The unsteady characteristics of tire models are only related to the path frequency without
changing its parameters, so the unsteady state ability of the tire model can be judged based on this
condition. It shows that the method in the references have significant differences at different speeds
with the same path frequency under turn slip or load variations input, but the method proposed in
this paper has good results.

Keywords: tire model; theoretical; numerical solution; discrete solution; iteration method; load
variations; turn slip; Euler method

1. Introduction

For tire and vehicle dynamics simulations and analyses, different types of tire mod-
els have been developed and categorized as empirical and theoretical models [1,2]. The
empirical model, or combined theoretical and empirical model, is used for vehicle dy-
namics, and its model parameters are obtained by fitting measurements [2], including
the MF/PAC2002 [2–5], TMeasy [6–8], UniTire [9,10], Hankook-Tire [11], TameTire [12,13],
MF-Swift [14,15], FTire [16,17], CDTire [18,19] and RMOD-K [20,21] models, etc.

However, compared with the theoretical tire model, the empirical model is not suitable
for the mechanical analysis of tire dynamics and tire design due to having too many model
parameters and being dependent on experimental data. Tire design engineers should find
the optimal design parameters that can satisfy the engineering requirements simultaneously
and, for more efficient product development, a reliable theoretical model is essential because
it enables systematic parameter study and design optimization. The theoretical models
have advantages over the finite-element models in terms of computational efficiency, and
they can be incorporated into the parameter study and optimization framework more
easily [22]. Furthermore, combined with the static simulation data of the finite-element,
using the theoretical model to achieve the steady and unsteady simulation should be a
good prospect for future tire virtual development.

Fromm and Julien [3,23] proposed the brush tire model, which laid the foundation for
tread modeling and tire theoretical analysis. The beam [1,3,24–36] and string models [3] are
two classical belt/carcass modeling methods. Finally, the latest beam model includes belt
tension, flexural rigidity, shear rigidity [1,22,25,26] and lateral shear force distribution [1],
and the relationship between the parameters of the beam model and the design parameters
of belts is established [1,22].
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H. Sakai [28] pointed out that the previous practice of assuming the shape of the
contact-patch as rectangular, the pressure distribution as lateral uniform and the longitudi-
nal parabolic distribution does not reflect the reality; therefore, he studied the influence of
different load, inflation pressure, camber, side slip angle and lateral force on the contact
length in detail, and established a semi-empirical model of contact length with different
rib along the width. Through the study of the distribution of contact patch-pressure on
each rib, the empirical formula of contact patch pressure on each rib with load was estab-
lished [29]. Guo Konghui established the general function of pressure distribution based
on a rectangular contact patch in which the convexity, uniformity and fore-aft shift of
pressure-distribution were considered [37–39]. Patrick Gruber, Robin S. Sharp and Andrew
D studied normal and shear forces in the contact based on the finite-element model and es-
tablished a 2D semi-empirical contact patch, considering longitudinal grooves as a function
of vertical load and camber angle [40]. Ch. Oertel established the geometric relationship
between the contact patch and vertical load, camber angle and tread profile curvature [41];
however, the contact patch length calculated by this method will be larger than the actual
one, and the contact patch area caused by camber will be larger. Nakajima, Y. and Hidano,
S. proposed two-dimensional contact patch considering that shear force, contact shape and
contact pressure distribution are changed in the fore–aft and lateral direction caused by the
camber, fore–aft and lateral external force [1,42], and the deficiency is that the contact patch
shape is simply expressed as a rectangle or trapezoid.

Analytical [3,39,43–50] and numerical methods are usually used to solve theoretical
models. The advantage of the former is high efficiency, but it is only suitable for simple
theoretical models. With the increase of the complexity of the theoretical model, the numer-
ical method becomes more and more important. TreadSim [3] is a typical representative
for the steady-state numerical solution; however, the iteration process turned out to be
unstable for certain combinations of vertical load, belt yaw and belt bend stiffness [51], and
the method proposed in [51] does not actually solve the problem essentially by iteration.
For unsteady-state numerical solutions, there are two different (but essentially the same)
methods that are both based on the Lagrange description. An element that leaves the
contact patch at one side is redefined in the model so that it will enter the contact patch
at the opposite side. After a new element has entered the contact patch, the elements are
also renumbered so that element number one is always the first element in the contact
patch, and when the traveling distance in an increment time is larger than the distance
between adjacent tread elements, a linear-interpolation method is used [52–55]. How-
ever, this method has some problems under the condition of turn slip or load variations
inputs, which will be discussed in this paper. There are many methods for the iterative
solution of matrix equations, including the traditional [56,57] and the latest [58,59], and
different methods are suited for different application scenarios. For dynamic equations
of tire models which usually consider mass, Newton’s method and the Newmark-beta
method are always used [60,61]. However, in this paper, we do not intend to focus on
the development of new iterative methods, but to reconstruct the matrix equations that
can meet the application requirements of different iterative methods and compare several
common iterative methods to select the most suitable for the discrete theoretical model and
make appropriate optimizations.

In this paper, a novel matrix equation for the force and moment calculation is con-
structed and different iterative methods are compared under steady-state constant side
slip angle and unsteady-state conditions, including the step side slip, sine side slip, load
variations at constant side slip, sine side slip angle at constant turn slip and sine longitudi-
nal slip at constant side slip inputs. It shows that only the modified Richardson method
proposed in this paper can complete all of the simulations without any convergence. A
novel, discrete solution method for tire total deformation is proposed based on the Euler
method, and time derivatives are replaced by spatial gradients. Furthermore, based on the
condition of the unsteady characteristics of tire models only relating to the path frequency
without changing their parameters, the discrete solution method proposed is compared
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with reference [52–55] under different unsteady-state conditions, including the step side
slip angle, sine side slip angle, load variations at constant side slip angle, step turn slip
simulation, sine longitudinal combined with a constant side slip, sine turn combined with
a constant side slip and load variations at constant longitudinal and side slip inputs. It
shows that the simulation results have little difference by using the proposed method, but
the reference method has a significant difference under turn slip or load variations inputs at
different speed or, more precisely, the ratio between the distance of the contact patch center
traveling in space within the time interval and distance between adjacent tread elements in
the contact patch. However, this paper only studies the numerical solution method of the
theoretical model in detail, and the results of the comparison between the model and the
experiment show that a refined contact patch model considering camber and the influence
of lateral force and longitudinal force on the contact patch model demonstrate the need for
more in-depth research on the dynamic friction model, considering that the influences of
contact pressure and slip velocity are added to the theoretical model.

The sections of this paper are arranged as follows. In Section 2, the tire total defor-
mation discrete solution method based on the Euler method will be given. In Section 3,
the modeling method of belt/carcass deformation, contact patch, stress direction in the
sliding region and anisotropic of tread stiffness is described. In Section 4, according to the
adhesion and sliding region, the matrix equations for the calculation of force and torque
are established, and the advantages and disadvantages of different iterative methods are
compared. In Section 5, the theoretical model is compared with the experiment to verify
the rationality of the theoretical model parameters, and based on the principle that the
unsteady state only depends on the path frequency, the discrete solution method proposed
in this paper is compared with reference [52,53] unsteady-state conditions. Finally, the
discussion and conclusions will be given in Section 6.

2. Tire Total Deformation Discrete Solution Method Based on the Euler Method

The total deformation of tires caused by friction consists of tread and carcass. When the
tire deformation is described, two coordinate systems are used; one is the road coordinate
system (O, X, Y, Z) and the other is the contact patch coordinate system (C, x, y, z), named
as ISO−W. When the tire slips relative to the road surface, the friction forces makes the
tire deform (u, v) relative to the contact patch coordinates (x, y), as shown in Figure 1. P is
the contact point at undeformed state and p is the vector of P relative to the (O, X, Y, Z)
system. C represents the contact patch center and c is the vector C relative to the (O, X, Y, Z)
system. (x, y) represents the contact point vector at undeformed state, (u, v) represents the
total tire deformation vector and q is the vector of P relative to C. α represents the sideslip
angle and ψ represents the yaw angle of the x-axis with respect to the X-axis.

The position of the tread location relative to (O, X, Y, Z) can be expressed as the equation:

→
OP =

→
OC +

→
CP or p=c+q (1)

Herein, q = (x + u)ex + (y + v)ey. So, there is the slip velocity of the tread relative to
the road:

Vg =
.
p =

.
c +

.
q = Vc + (

.
x +

.
u)ex + (

.
y +

.
v)ey +

.
ψ{(x + u)ey − (y + v)ex} (2)

where Vc is the contact patch center velocity and ex and ey are the (C, x, y, z) base vector.
When there is no relative slip between the tread and the road surface, Vg=0, then

.
u = −Vsx +

.
ψ · (y + v) (3)

.
v = −Vcy −

.
ψ · (x + u) (4)
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Herein,
.
x = dx

dt = −ΩRe = Vr, Vsx = Vcx +
.
x,

.
y = 0, expression of Equations (3) and (4)

by the Euler method

.
u =

∂u
∂x
· dx

dt
+

∂u
∂y
· dy

dt
+

∂u
∂S
· dS

dt
= −Vsx +

.
ψ · (y + v) (5)

.
v =

∂v
∂x
· dx

dt
+

∂v
∂y
· dy

dt
+

∂v
∂S
· dS

dt
= −Vcy −

.
ψ · (x + u) (6)

Then, there are:
∂u
∂x

+
∂u
∂S
· Vc

Vr
= −Sx + ϕ · (y + v) (7)

∂u
∂x

+
∂u
∂S
· Vc

Vr
= −Sx + ϕ · (y + v) (8)

Herein, dS
dt = Vc, Sx = Vsx

Vr
= κ

κ+1 , Sy =
Vcy
Vr

= − 1
κ+1 ·

Vcy
Vx

= − 1
κ+1 · tan α, ϕ =

.
ψ
Vr

, and
κ is practical slip, α is side slip angle, Sx is the longitudinal theoretical slip, Sy is the lateral
theoretical slip and ϕ is the turn theoretical slip. Equations (7) and (8) are only related to
the coordinates of the contact patch (x, y) and the space position of the contact patch center.
The expression of Equations (7) and (8) in a discrete method:

u{Sk+1}(xi+1,yj+1)−u{Sk+1}(xi ,yj+1)
xi+1−xi

+
u{Sk+1}(xi+1,yj+1)−u{Sk}(xi+1,yj+1)

Sk+1−Sk
· Vc

Vr

= −Sx + ϕ · [yj+1 + v{Sk+1}(xi+1, yj+1)]
(9)

v{Sk+1}(xi+1,yj+1)−v{Sk+1}(xi ,yj+1)
xi+1−xi

+
v{Sk+1}(xi+1,yj+1)−v{Sk}(xi+1,yj+1)

Sk+1−Sk
· Vc

Vr

= −Sy − ϕ · [xj+1 + u{Sk+1}(xi+1, yj+1)]
(10)

According to Equations (9) and (10), there are tire total deformation:

u{Sk+1}(xi+1, yj+1) = pu1 · [pu2 + ϕ · 1
1
ds ·

Vc
Vr
− 1

dx

· pu3] (11)

v{Sk+1}(xi+1, yj+1) = pv1 · [pv2 − ϕ · 1
1
ds ·

Vc
Vr
− 1

dx

· pv3] (12)

Herein:
dx = −(xi+1 − xi) represents the distance between adjacent tread elements in the

contact patch.
ds = Sk+1 − Sk represents the distance of the contact patch center traveling in space

within the time interval dt.

pu1 = pv1 =
1

1 + ( ϕ
1
ds ·

Vc
Vr −

1
dx
)

2 ·
1

1
ds ·

Vc
Vr
− 1

dx

pu2 = −Sx + ϕ · yj+1 − u{Sk+1}(xi, yj+1) ·
1

dx
+ u{Sk}(xi+1, yj+1) ·

1
ds
· Vc

Vr

pu3 = −Sy − ϕ · xi+1 − v{Sk+1}(xi, yj+1) ·
1

dx
+ v{Sk}(xi+1, yj+1) ·

1
ds
· Vc

Vr

pv2 = −Sy − ϕ · xi+1 − v{Sk+1}(xi, yi+1) ·
1

dx
+ v{Sk}(xi+1, yj+1) ·

1
dx
· Vc

Vr

pv3 = −Sx + ϕ · yj+1 − u{Sk+1}(xi, yj+1) ·
1

dx
+ u{Sk}(xi+1, yj+1) ·

1
ds
· Vc

Vr

If Vc
Vr

is set to zero, it can be transformed into a steady state.
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Figure 1. Top view of tire contact area and its deformations (u, v) with respect to (C, x, y, z).

3. Model Description
3.1. Belt/Carcass Deformation [23,54]

Assuming that longitudinal translation deformation only occurs under longitudinal
force [54]:

uc =
Fx

Kcx0
(13)

where Kcx0 is the longitudinal translational stiffness of carcass. Under lateral force, the
carcass is expressed as the deformation of an infinite beam under concentrated force. The
beam has in-plane flexural rigidity EIz, where Iz is the moment of the inertia of the area,
E is the Young’s modulus of the belt in the circumferential direction, ks is the lateral
fundamental spring rate per unit length in the circumferential direction and the tension T0
is uniformly distributed in the belt width direction [23]. M represents bending moment
and Q represents shear force, as shown in Figure 2. The left diagram shows the equilibrium
of forces of the beam section and the right diagram shows model of the beam on the
elastic foundation.
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Figure 2. Model of the beam on the elastic foundation. (a) The equilibrium of forces for the beam
section; (b) Belt/carcass deformation applied Fy.

The equilibrium of forces acting on the element of length dx along the belt width
results in the following equation:

w(x)dx + Q + dQ + T0 · (
∂y
∂x

+
∂2y
∂x2 · dx)−Q− T0 ·

∂y
∂x
− ks · y · dx = 0 (14)

and for the Euler Bernoulli beam : Q =
dM
dx

(15)

M = −EIz ·
d2y
dx2 (16)

Furthermore, according to (14)–(16), the differential equation of the lateral deformation of
the beam can finally be expressed as:

EIz
∂4y
∂x4 − T0

∂2y
∂x2 + ksy = w(x) (17)

According to boundary conditions, (1) x → ∞, y(x)→ 0 ; (2) x = 0,
.
y(x) = 0;

and (3) Fy = 2ks
∞∫
0

ydx, there is:

y(x) =
δFy

4ks
· e−λ1|x|(cos λ2x +

λ1

λ2
sin|λ2x|) (18)

Herein:

λ1 = 4

√
ks

4EIz

√
(1 +

T0√
4EIz · ks

), λ2 = 4

√
ks

4EIz

√
(1− T0√

4EIz · ks
)

δ =
λ2

1 + λ2
2

λ1
, T0 = ξ ·

√
4EIz · ks

Torsional deformation of carcass under aligning moment [54].

y(x) =
Mz

Nθ
· x (19)

Nθ is the carcass torsion stiffness.
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Therefore, the lateral deformation of the carcass under lateral force and an aligning
moment can be expressed as

vc =
δFy

4ks
· e−λ1|x|(cos λ2x +

λ1

λ2
sin|λ2x|) + Mz

Nθ
· x (20)

3.2. Contact Patch

Reference [41] presents a method for calculating the shape of a contact patch based on
vertical force. Due to the fact that this method usually leads to a large contact patch area
following camber input, this paper does not consider camber.

G(xi, yj) = Rl −
√

R2 − x2
i − R2(

yj

Ry
)

ny
(21)

Rl = R− d (22)

Fz = pFz1 · d + pFz2 · d2 (23)

where R is free radius, Rl is the loaded radius, d is the vertical deflection, Ry is the lateral
radius and ny is the lateral direction curvature exponent.

However, directly according to this method, the obtained contact length will be larger.
A correction method is proposed as follows:

Glim = G1 · d2 + G2 · d (24)

Then, the contact patch can be obtained when G(xi, yj) < Glim.
The pressure distribution of ground imprinting is expressed as follows [41,54]:

η(
xi
hj
) = A · (1− (

xi
hj
)

2n
) · (1 + λ · ( xi

hj
)

2n
) · (1− B · xi

hj
) (25)

Fzij(xi, yj) = F0ij · η(
xi
hj
) · (1 + aFz1(

yj

bi
)

2
− (aFz1 + 1) · (

yj

bi
)

6
) (26)

assuming that F0ij is a constant, which can be obtained according to Fz = ∑ Fzij(xi, yj).
hj is the contact length at position yj, bi is the contact width at position xi and aFz1 is

the convexity factor along the contact width.

A =
(2n + 1)(4n + 1)
2n(4n + 1 + λ)

, B = −3(2n + 3)(4n + 3)(4n + 1 + λ)

(2n + 1)(4n + 1)(4n + 3 + 3λ)
· ∆

hj

where λ is convexity factor of contact pressure along contact length, ∆
hj

is the contact
pressure center-offset factor and n is the contact pressure-uniformity factor.

When considering the tread pattern longitudinal groove, the Fzij(xi, yj) of the corre-
sponding position is set to zero. The contact patch example is shown as in Figure 3.
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Figure 3. The contact patch model results.

3.3. Direction of Stress in the Sliding Regions

As shown in Figure 4, Bi, Pi, Ti are the upper (which is attached to the belt) and lower
end of the bristle and the bristle deformation, respectively, at previous times. Bi+1, Pi+1, Ti+1
correspond to the current time. dG is the bristle slip displacement vector relative to the road.

dG = Vgdt = (VB+VT)dt = dB+dT = dB+Ti+1 − Ti (27)

then
dG− Ti+1 = dB− Ti =

→
PiBi+1 (28)

Figure 4. Tread element deformation and its slip displacement vector relative to the road.

For sliding regions, the sliding direction Vg determines the direction of deformation,

so the vector dG is in the same direction as Ti+1 and Ti+1 is on vector
→

PiBi+1; that is to say
→

PiBi+1 determines the direction of Ti+1.
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3.4. Stiffness of the Tread Element

The pattern block structure usually leads to the anisotropy of tread element stiffness.
It is assumed that the stiffness satisfies the elliptic equation, as shown in Figure 5:

(
kt · cos θ

ktx
)

2
+ (

kt · sin θ

kty
)

2
= 1 (29)

then:

kt =

√√√√ 1

( cos θ
ktx

)
2
+ ( sin θ

kty
)

2 (30)

where θ is the deformation direction angle of the tread element.

Figure 5. Tread element stiffness ellipse.

4. Iterative Method for Force and Moment Calculation
4.1. Deformation and Stress Calculation of Tread Element

When the tread element is in the adhesion region, the deformation is calculated
as follows

uT = u− uc (31)

vT = v− vc (32)

Herein, u and v are obtained from Section 2, Equations (11) and (12); uc and vc are
obtained from Section 3.1, Equations (13) and (17). The deformation direction angle of the
tread element is expressed as

tan θ =
vT
uT

(33)

The longitudinal and lateral stresses of tread element are expressed as

qxa = kt · uT , qya = kt · vT , qa =
√

q2
xa + q2

ya (34)

If qa ≤ µ · qz
qx = qxa, qy = qya (35)

else
qx = qxs =

qxa

qa
· µ · qz = µ · qz · cos θ (36)
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qy = qys =
qya

qa
· µ · qz = µ · qz · sin θ (37)

uT =
qx

kt
, vT =

qy

kt
; u = uT + uc, v = vT + vc (38)

Above are the stress and deformation of tread element in the sliding region.

4.2. Calculation of Force and Moment
4.2.1. Fx Calculation

Fx =
s

qxdA = ∑ ∑ ktuTdA + ∑ ∑ qxsdA
= ∑ ∑ ktudA− Fx·∑ ∑ kt

Kcx0
dA + ∑ ∑ qxsdA

(39)

then:
(1 + pFx)Fx = Fxr (40)

where:

pFx = ∑ ∑
kt

Kcx0
dA, Fxra = ∑ ∑ ktudA, Fxrs = ∑ ∑ qxsdA, Fxr = Fxra + Fxrs

4.2.2. Fy Calculation

Fy =
s

qydA = ∑ ∑ ktvTdA + ∑ ∑ qysdA
= ∑ ∑ ktvdA− Fy·∑ ∑ ktηdA−Mz∑ ∑ ktςdA + ∑ ∑ qysdA

(41)

then:
(1 + pFy)Fy = Fyr + Mz · pMTF (42)

where:
η =

δ

4ks
· e−λ1|x| · [cos(λ2x) +

λ1

λ2
sin(|λ2x|)], ς =

x
Nθ

pFy = ∑ ∑ ktηdA, pMTF = −∑ ∑ ktςdA, Fyra = ∑ ∑ ktvdA, Fyrs = ∑ ∑ qysdA

Fyr = Fyra + Fyrs

4.2.3. Mz Calculation

Mz =
s

qy(x + u)dA−
s

qx(y + v)dA
= ∑ ∑ ktvT · (x + u) + ∑ ∑ qys · (x + u)−∑ ∑ ktuT · (y + v)−∑ ∑ qxs · (y + v)

(43)

then:
(1 + pMz)Mz = Mzr + Fy · pFTM (44)

where:
pMz = ∑ ∑ ktς · (x + u)dA, pFTM = −∑ ∑ ktη · (x + u)dA
Mzrxa = −∑ ∑ ktuT · (y + v)dA, Mzrxs = −∑ ∑ qxs · (y + v)dA
Mzrya = ∑ ∑ ktv · (x + u)dA, Mzrys = ∑ ∑ qys · (x + u),
Mzr = Mzrxa + Mzrxs + Mzrya + Mzrys
According to Equations (33) and (35), there are

(1 + pFy −
pFTM · pMTF

1 + pMz
)Fy = Fyr +

pMTF
1 + pMz

·Mzr (45)

(1 + pMz −
pFTM · pMTF

1 + pFy
)Mz = Mzr +

pFTM
1 + pFy

· Fyr (46)
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Make:

A11 = 1 + pFx, A22 = 1 + pFy −
pFTM · pMTF

1 + pMz
, A33 = 1 + pMz −

pFTM · pMTF
1 + pFy

B1 = Fxr, B2 = Fyr +
pMTF

1 + pMz
·Mzr, B3 = Mzr +

pFTM
1 + pFy

· Fyr

There are A11 0 0
0 A22 0
0 0 A33

 Fx
Fy
Mz

 =

 B1
B2
B3

 (47)

Make:

A =

A11 0 0
0 A22 0
0 0 A33

, B =

 B1
B2
B3

, X =

 Fx
Fy
Mz

 (48)

Finally, there are
AX = B (49)

A reasonable iterative method can be constructed according to this matrix equation.

4.3. Iterative Strategy
4.3.1. Matrix Splitting Method

Make:
A = M−N (50)

then:
Xm+1 = M−1NXm + M−1B (51)

where
Nij
Mij

= IR, IR < 1 and Mij =
Aij

1−IR , Nij =
IR

1−IR · Aij.

4.3.2. Steepest-Descent Method

rm = B−AXm
pm = rm

αm =
rT
mpm

pT
mApm

Xm+1 = Xm + αmpm

(52)

4.3.3. Richrdson Method

Xm+1 = Xm + ω(B−AXm) (53)

where ω = 2
λ1+λn

, λ1 and λn are the maximum and minimum eigenvalues of A, respectively.

4.3.4. Extrapolation Acceleration Method

According to matrixes M and N from Section 4.3.1, the extrapolation acceleration
method can be made:

Xm+1 = (1−ω)Xm + ω(M−1NXm + M−1B) (54)

where ω = 2
2−(λ1+λn)

, λ1 and λn are the maximum and minimum eigenvalues of M−N,
respectively.
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4.3.5. Method in References [54,55]

This method obtains the solution directly from the matrix equation:

Xm+1 = A−1B (55)

This method is equivalent to Section 4.3.1 where IR is equal to zero.

4.3.6. Method in References [3,51]

This method is equivalent to that of the matrix M whose coefficients are equal to one,
and the method is the same as in Section 4.3.1.

4.3.7. Iterative Error

ERR = B−AXm+1 (56)

If ERRTERR ≤ Tol, the iterative reaches convergence, where Tol is the iterative
error tolerance.

4.3.8. Comparison of Iterative Methods

A comparison of the iterative methods at a steady state under a constant side slip
angle = three deg is shown in Figure 6, and method 4 and 5’s iterative processes coin-
cide completely.

Figure 6. Curves of lateral force and aligning moment with iteration times (a) Fy responses with
iteration times; (b) Mz responses with iteration times.

The unsteady comparison results of different iterative methods are shown in Table 1.

Table 1. The iterative CPU times of different methods at different conditions.

Iterative Method
Iterative CPU Time [s] and the Simulation Time Is Set to 3 s

Step Side Slip Sine Side Slip Load Variations at
Constant Side Slip

Sine Side Slip Angle at
Constant Turn Slip

Sine Longitudinal Slip
at Constant Side Slip

Method 1 35.11 94.10 69.40 no convergence no convergence
Method 2 33.97 71.46 59.99 no convergence no convergence
Method 3 55.34 136.21 141.71 154.96 280.46
Method 4 33.61 65.07 59.67 no convergence no convergence
Method 5 32.50 66.26 60.14 no convergence no convergence
Method 6 no convergence no convergence no convergence no convergence no convergence
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Figure 6 shows that method 6 has the fastest iteration speed at a steady state, followed
by method 3. It can be seen from Table 1 that although method 3 has the slowest iteration
speed in unsteady state, it has the most stable convergence. As such, method 3 is selected
as the iterative strategy of the discrete theoretical model. However, it should be noted
that in the case of unsteady large slip, due to the fact that the coefficients of the A matrix
parameters tend to one but the B matrix changes, the solution is sometimes not convergent,
so it is necessary to improve the iterative method. Through research, it is found that the
following equation can improve convergence:

ω =
2

λ1 + λn +
pλ

λ1+λn

(57)

The adjustment of pλ can better improve the convergence, but it will reduce a certain
convergence speed. The greater pλ is, the better the convergence will be, but the iteration
speed will be reduced, and this parameter can be reasonably selected for specific situations.
This paper recomments pλ = 20, and the simulation in Table 1 uses this parameter.

5. Simulation of the Discrete Theoretical Model
5.1. Model Parameters and Verification

The model parameters are listed in Table 2, Figures 7–11 show the comparison between
the model and the test and the test information is shown in Table 3.

Table 2. The discrete tire model parameters.

Parameters Name Parameters Value Parameters Name Parameters Value

ktx[N/m3] 1.3377 × 108 Kcx0[N/m] 4.3735 × 105

kty[N/m3] 1.0332 × 108 EIz[Nm2] 1 × 103

n[−] 2 ks[N/m2] 1.25 × 105

λ[−] 0 ξ[−] 0.2
∆[−] 0 Nθ [Nm/rad] 1.2994 × 104

aFz1[−] −0.05 µ[−] 1.11
pFz1[N/m] 2.01 × 105 R0[m] 0.3465

pλ[−] 20 ny[−] 5.4
G1[−] 3.64 Ry[m] 0.145
G2[−] −0.74 Tol 10

dx[mm] 2 dy[mm] 2

Table 3. The test information.

Test No. Test Conditions Inflation Pressure Road Speed Steer Angle Steer Cycle Vertical Load

1 Contact Pressure 250 kPa 0 0 0 s 5415 N
2 Parking Maneuver 250 kPa 0 15~−15◦ 32 s (Slope) 5386 N

3 Sideslip Angle Step 250 kPa 0→ 10 kph −1◦ - 5414 N
250 kPa 0→ 10 kph −4◦ - 5407 N

4 Sine Sideslip Angle 250 kPa 10 kph −15~15◦ 20 s (0.05 Hz) 5406 N

The contact pressure is performed on the TekScan. The other three conditions are
performed on the MTS CT Flat-trac machine (MTS System Corporation). For the sideslip
angle step condition, the test procedure is to turn the steer angle first, then load and finally
apply the belt speed of the MTS to 10kph within one second. It should be noted that the
sign of steer angle in the table is the opposite to that of the slip angle which is determined
by the MTS Flat-trac machine.

It should be noted that the response of normalized lateral force instead of lateral force
with travel distance is used, which does not affect the assessment of transient behavior.

As shown in Figure 11, the aligning moment is quite different from the experimen-
tal data, and a reasonable reason is whether the local camber of the carcass caused by
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the lateral force is not considered, which can lead to greater aligning moment if taken
into consideration.

Figure 7. Contact patch shape comparison between model and test.

Figure 8. Contact pressure comparison between model and test. (a) Contact pressure along x center
line; (b) Contact pressure along y center line.
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Figure 9. Parking comparison between model and test.

Figure 10. Step side slip angle comparison between model and test. (a) Side slip angle = 1 deg;
(b) Side slip angle = 4 deg.
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Figure 11. Pure side slip comparison between model and test at 0.05 Hz at V = 10 km/h. (a) Side
force Fy; (b) Aligning moment Mz.

The unsteady characteristics of tire models are only related to the path frequency
without changing its parameters, so the unsteady state-ability of the tire model can be
judged based on this condition and changing the ratio between the distance of the contact
patch center traveling in space within the time interval and the distance between adjacent
tread elements in the contact patch by changing speed. The path frequency is defined as:

ωs =
2π f

V
(58)

where ωs[m−1] represents the path frequency, f [s−1] represents the time frequency and
V[m/s] represents the contact patch center velocity.

Next, the discrete method proposed for tire total-deformation calculation in this paper
(Section 2) will be compared with the references [52,53], and the comparison results of two
methods are given. The comparison error calculation method is as follows:

err =

√√√√∑ (yp − yr)
2

∑ y2
p

× 100% (59)

where yp represents the proposed method in this paper and yr represents the proposed
method in reference [52,53].

5.2. Pure Side Slip Simulation
5.2.1. Step Side Slip Angle

The simulation results of step side slip angle with the proposed method and the
reference method are as shown in Figure 12.

5.2.2. Sine Side Slip Angle

The simulation results of sine side slip angle with the proposed method and the
reference method are as shown in Figure 13.

5.2.3. Load Variations at Constant Side Slip Angle

The simulation results of load variations at constant side slip angle with the proposed
method and the reference method are as shown in Figure 14.
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5.2.4. Discussion

The above simulations have the same path frequency, and the simulation results for
different speeds should also be the same, in theory. The simulation results of the proposed
method are slightly different, but significant differences occur in reference methods under
the load variations condition at different speeds. The simulation errors of the two methods
at 3m/s are listed in Table 4.

Table 4. The simulation errors at pure side slip simulation.

Simulation Conditions Compare Items Error [%]

Step Side Slip Angle
Fy 0.28

Mz 1.12

Sine Side Slip Angle
Fy 1.37

Mz 2.18

Load Variations at Constant
Side Slip Angle

Fy 5.86

Mz 7.59

5.3. Step Turn Slip Simulation

The simulation results of step turn slip with the proposed method and the reference
method are as shown in Figure 15.

The method proposed in the references is obviously not suitable for the turn slip
simulation because the steady-state simulation results at different speeds are quite different.
The reason is that the method proposed in the reference is based on the principle of linear
interpolation in the leading edge, while the tread deformation is nonlinear during turn
slip and the method fails when ds is much larger than dx. At the same time, it can be seen
that the aligning moment responds quickly in the initial position, which is explained in
Section 5.5.2. The simulation errors of the two methods at 3m/s are listed in Table 5.

Table 5. The simulation errors at the step turn slip simulation.

Simulation Conditions Compare Items Error [%]

Step Turn Slip Simulation
Fy 141.40

Mz 142.20

5.4. Combined Slip Simulation
5.4.1. Sine Longitudinal Combined with a Constant Side Slip

The simulation results of sine longitudinal combined with a constant side slip with
the proposed method and the reference method are as shown in Figure 16.

5.4.2. Sine Turn Combined with a Constant Side Slip

The simulation results of sine turn combined with a constant side slip with the pro-
posed method and the reference method are as shown in Figure 17.

5.4.3. Load Variations at Constant Longitudinal and Side Slip

The simulation results of load variations at constant longitudinal and side slip with
the proposed method and the reference method are as shown in Figure 18.

5.4.4. Discussion

In the case of load variations or turn slip input the reference method has obvious
problems, and the conclusions are consistent with Sections 5.2 and 5.3. The simulation
errors of the two methods at 3m/s are listed in Table 6.
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Figure 12. Response of lateral force and aligning moment under side slip angle input. (a) Response
of lateral force using the proposed method. (b) Response of lateral force using the reference method.
(c) Response of aligning moment using the proposed method. (d) Response of aligning moment
using the reference method.

Figure 13. Cont.
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Figure 13. Response of lateral force and aligning moment under sine side slip angle input. (a) Re-
sponse of lateral force using the proposed method. (b) Response of lateral force using the reference
method. (c) Response of aligning moment using the proposed method. (d) Response of aligning
moment using the reference method.

Figure 14. Response of lateral force and aligning moment under load variations at constant side
slip angle input. (a) Response of lateral force using the proposed method. (b) Response of lateral
force using the reference method. (c) Response of aligning moment using the proposed method.
(d) Response of aligning moment using the reference method.
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Figure 15. Response of the lateral force and aligning moment under step turn slip input. (a) Response
of lateral force using the proposed method. (b) Response of lateral force using the reference method.
(c) Response of aligning moment using the proposed method. (d) Response of aligning moment
using the reference method.

Figure 16. Cont.
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Figure 16. Response of lateral force and aligning moment under sine longitudinal combined with
a constant side slip. (a) Response of longitudinal force using the proposed method. (b) Response
of longitudinal force using the reference method. (c) Response of lateral force using the proposed
method. (d) Response of lateral force using the reference method. (e) Response of aligning moment
using the proposed method. (f) Response of aligning moment using the reference method.

Figure 17. Response of lateral force and aligning moment under sine turn combined with a constant
side slip. (a) Response of lateral force using the proposed method. (b) Response of lateral force using
the reference method. (c) Response of aligning moment using the proposed method. (d) Response of
aligning moment using the reference method.
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Figure 18. Responses of longitudinal force and lateral force aligning moments under load variations
at constant longitudinal and side slip input. (a) Response of longitudinal force using the proposed
method. (b) Response of longitudinal force using the reference method. (c) Response of lateral
force using the proposed method. (d) Response of lateral force using the reference method. (e) Re-
sponse of aligning moment using the proposed method. (f) Response of aligning moment using the
reference method.
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Table 6. The simulation errors at combined slip simulation.

Simulation Conditions Compare Items Error [%]

Step Turn Slip Simulation

Fx 2.54

Fy 1.23

Mz 3.67

Sine Turn Combined with a
Constant Side Slip

Fy 61.01

Mz 6.43

Load Variations at Constant
Longitudinal and Side Slip

Fx 3.95

Fy 8.49

Mz 8.86

5.5. Deformation Analysis of Tread Element
5.5.1. Deformation of Tread Element under Step Side Slip Angle

In the side slip angle step condition, with the increase of the travel distance, the defor-
mation of the tread element approximately changes shape from rectangular to trapezoidal
and finally to triangular, as shown in Figure 19.

Figure 19. Cont.
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Figure 19. Lateral deformation of the tread element at different traveling distances under the step
side slip angle input. (a) Response of lateral force and aligning moment. (b) Deformation of the tread
element at the contact patch center line under different travel distance. (c) Deformation of the tread
element at A position. (d) Deformation of the tread element at B position. (e) Deformation of the
tread element at C position. (f) Deformation of the tread element at D position. (g) Deformation of
the tread element at E position. (h) Deformation of the tread element at F position.

5.5.2. Deformation of the Tread Element under Step Turn Slip

In the turn slip step condition, the lateral deformation is first symmetrically distributed
relative to the longitudinal center of contact patch, which is the reason why the slope of
lateral force with the travel distance is zero at the starting position and also explains why
aligning moment responds so quickly, as shown in Figure 20.

With the increase of the travel distance, the intersection point of the lateral deformation
curve with the contact patch longitudinal axis gradually shifts from the center to the
intersection point of the steady state. In this process, the lateral force increases continuously,
and the increment gradient of the aligning moment caused by the lateral deformation
decreases, which leads to a peak of the aligning moment which then decreases and finally
tends to the steady state value.

At the same time, the lateral deformation is approximate to the nonlinear change of
the parabolic shape, which also explains why the reference method will have problems in
the turn slip input simulation.
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Figure 20. Lateral deformation of the tread element at different traveling distances under the step
turn slip input. (a) Response of lateral force and aligning moment. (b) Deformation of the tread
element at the contact patch center line under different travel distance. (c) Deformation of the tread
element at A position. (d) Deformation of the tread element at B position. (e) Deformation of the
tread element at C position. (f) Deformation of the tread element at D position. (g) Deformation of
the tread element at F position. (h) Deformation of the tread element at E position.
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5.5.3. Deformation of the Tread Element under Load Variations at a Constant Side
Slip Angle

Figure 21 shows the that the lateral deformation of the proposed method is more
regular and stable than reference. It explains why under load variations conditions at the
same path frequency, when the traveling distance in an increment time is larger than the
distance between adjacent tread elements, the lateral force and aligning moment of the
reference method will be different.

Figure 21. Lateral deformation of tread element at different traveling distance under load variations
at a constant side slip angle. (a) Response of vertical force and lateral force for proposed method.
(b) Response of vertical force and lateral force for the reference method. (c) Tread deformation at
different positions for the proposed method. (d) Tread deformation at different positions for the
reference method.

6. Discussion and Conclusions
6.1. Discussion

Figures 7 and 8 show that the contact patch parameters are reasonable, and the
simulation results are consistent with the experiments. Figures 9, 10 and 11a show that
the belt/carcass parameters are reasonable, and simulation and test results are consistent
as well. However, Figure 11b shows that the aligning moment is quite different from the
experimental data, and a reasonable reason is that the local camber of the carcass caused by
the lateral force is not considered, which can lead to greater aligning moment if considered.

Figure 6 shows that different iterative methods converge to the same value and that
the iterative method in reference [54,55] has the fastest iteration speed, followed by the
modified Richardson method proposed in this paper. Table 1 shows that the modified
Richardson has the best convergence and then method in reference [54,55] and the worst is
the method in reference [3,51].

Figures 12, 13 and 16 show that whether the discrete method proposed or the ref-
erences [52–55] are considered, the simulation results at different speeds with the same
path frequency are only slightly different under side slip angle or longitudinal slip input.
Figures 14, 15, 17 and 18 show that for the discrete proposed method the simulation results
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still have slight differences, but the results of the method in the references [52–55] have
significant differences at different speeds with the same path frequency, and the greater the
speed difference, or more precisely the greater the ratio between the distance of the contact
patch center traveling in space within the time interval and distance between adjacent tread
elements in the contact patch, the greater the simulation difference. The calculation errors
in Tables 4–6 also confirm the above analysis. Figure 19 shows that the tread deformation
varies nearly linearly at the leading edge of the contact patch under step side slip angle, but
Figure 20 shows that the tread deformation varies nonlinearly in an approximate parabolic
under step turn slip. Figure 21 shows that the tread deformation is more stable by using
the proposed method under the load variations input. Tread deformation explains why
the methods in the reference [52–55] have problems under the turn slip or load variations
inputs, since the method performs a linear interpolation process at the leading edge which
is not suitable for nonlinear deformation and deformation instability. The above conclu-
sions may be able to explain the reasons for the reference [3] “at each time step in which the
wheel is rolled further over a distance equal to the interval between two successive tread
elements” simulation settings.

6.2. Conclusions

In this paper, novel numerical methods for discrete theoretical tire model steady- and
unsteady-state simulations are proposed. Some conclusions are as follows.

The comparison between the theoretical model and the experiment shows that the
accuracy of the aligning moment needs further improvement, which may be affected by
tire local carcass camber caused by lateral force, but the model parameters are reasonable.

New basic matrix equations for force and moment calculation are constructed for the
convenient application of different iterative methods. Different iterative methods are stud-
ied and compared. The results show that the new modified Richardson iteration method
proposed in this paper has the best convergence stability in the unsteady calculation, which
mathematically solves the problem of nonconvergence of discrete theoretical models in the
published references [3,51,55].

A novel discrete method for solving the total deformation of tires is established based
on the Euler method. The unsteady characteristics of tire models are only related to the path
frequency without changing its parameters, so the unsteady-state ability of the tire model
can be judged based on this condition. It shows that the methods in the references [52–55]
have significant differences at different speeds with the same path frequency, and the
greater the speed difference, or more precisely the greater the ratio between the distance of
the contact patch center traveling in space within the time interval and distance between
adjacent tread elements in the contact patch, the greater the simulation difference under
the turn slip or load variations inputs. However, the method proposed in this paper has
good results.

This paper only studies the numerical solution method of the theoretical model in
detail. In the future, the following work needs to be carried out. The establishment of
a refined contact patch model considering camber and the influence of lateral force and
longitudinal force on the contact patch model and of a dynamic friction model considering
the influence of contact pressure and slip velocity is added to the theoretical model. System
verification of theoretical models with experiments. Furthermore, it is hoped that theoretical
models can be used in tire virtual development, since the computational efficiency of the
finite element model is low and virtual data simulation, especially for turn slip input
because the existing test machines cannot carry out this condition. Combined with the static
simulation data of the finite element, using the theoretical model to achieve the steady and
unsteady simulations should be a good prospect for the future of tire virtual development.
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Abbreviations

Symbol Description
κ Practical longitudinal slip
α Side slip angle
Sx Theoretical longitudinal slip
Sy Theoretical lateral slip
ϕ Theoretical turn slip
dx Distance between adjacent tread elements
ds Distance of the contact patch center traveling in space within the time interval dt
Kcx0 Longitudinal translational stiffness of carcass
EIz In-plane flexural rigidity of belt
ks the lateral fundamental spring rate per unit length in the circumferential direction
Nθ Carcass torsion stiffness
R Tire free radius
Rl Tire loaded radius
d Tire vertical deflection
Ry Tire lateral radius
ny Lateral direction curvature exponent
G1 Contact patch shape correction quadratic coefficient
G2 Contact patch shape correction primary coefficient
λ Convexity factor of contact pressure along contact length
n Contact pressure uniformity factor
∆ Contact pressure center offset factor
µ Friction coefficient
Tol Iterative error tolerance
ktx Tread element longitudinal stiffness
kty Tread element lateral stiffness
kt Tread element stiffness
pFz1 Convexity factor of contact pressure along the contact width
pλ Iterative correction coefficient
Fyss Steady-state lateral force
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