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A novel mathematical computing analysis for steady magnetohydrodynamic convective flows of radiative Casson fluids moving
over a nonlinearly elongating elastic sheet with a nonuniform thickness is established successfully in this numerical exploration.
Also, the significance of an externally applied magnetic field with space-dependent strength on the development of MHD
convective flows of Casson viscoplastic fluids is evaluated thoroughly by including the momentous influence of linear thermal
radiation along with the temperature-dependent viscosity and thermal conductivity effects. By combining the assumption of the
low-inducing magnetic field with the boundary layer approximations, the governing partial differential equations monitoring the
current flow model are transmuted accordingly into a set of nonlinear coupled ordinary differential equations by invoking
appropriate similarity transformations. Moreover, these derived differential equations are resolved numerically by utilizing a new
innovative GDQLLM algorithm integrating the local linearization technique with the generalized differential quadrature method.
On the other hand, the behaviours of velocity and temperature fields are deliberated properly through various graphical il-
lustrations and different sets of flow parameters. However, the accurate datasets generated for the skin friction coefficient and local
Nusselt number are presented separately in tabular displays, whose physical insights are discussed comprehensively via the slope
linear regression method (SLRM). As main results, it is demonstrated that the higher values of the Casson viscoplastic parameter
reduce significantly the fluid velocity within the boundary layer region, while a partial reverse tendency is observed near the
stretching sheet as long as the wall thickness parameter is increased. Besides the previously mentioned hydrodynamical features, it
is also depicted that the thermal field throughout the medium is enhanced considerably with the elevating values of
these parameters.

1. Introduction

Linear and nonlinear rheological features of complex fluidic
mediums have currently attracted widespread interests and
considerable physical insights in the scientific debates owing
to their valuable applications and widespread benefits over
the whole usual fluids. Additionally, the non-Newtonian
fluids have been extensively investigated during the past few
decades by many scientists to explore their distinguishing

rheological properties and establish new realistic constitu-
tive laws permitting detailed explanations for some anom-
alous experimental observations. Indeed, the dynamic of
most fluids together with their diverse characteristics cannot
be properly described by the classical Navier–Stokes equa-
tions because the most common fluids used in industries are
of a non-Newtonian kind, whose Cauchy stress and strain
tensors can be expressed mathematically by quasilinear or
purely nonlinear relationships depending greatly on their
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rheological behaviours, such as shear-thinning, shear-
thickening, viscoelasticity, viscoplasticity, material memory,
Weissenberg effect, yield stress, die-swelling, and relaxation
and retardation times, which are not defined in the New-
tonian model. For this reason, the non-Newtonian fluids are
widely used in various branches of science and bioengi-
neering, for instance in the modelling of biological struc-
tures, drilling muds, cement slurries, petroleum, coated
sheets, polymer manufacturing, foodstuffs, lubrication
fields, and biomedical flows. Generally, the rheological at-
titudes of non-Newtonian fluids are dissimilar from those of
viscous fluids. Besides, the transport equations governing
the dynamical evolution of non-Newtonian fluids are fully
nonlinear and highly complicated from the handling point
of view compared with the Newtonian fluids. Furthermore,
an analysis of the literature survey shows that there is no
single constitutive equation that reveals all properties of such
fluids. So, several constitutive non-Newtonian models have
been suggested by the scientific communities. (ese models
are principally classified into the differential, integral, and
rate-type categories. In the rate-type rheological fluidmodels
(e.g., Maxwell, Oldroyd-B, Jeffery, and Burgers models), the
shear stress is an implicit relationship of the velocity gradient
and its higher temporal derivatives. However, the differential
rheological model (e.g., Leonov model) has been established
mathematically to explain the existence of a set of discrete
relaxation times. (is phenomenological model is based on
the presence of an internal thermodynamic equilibrium
state, where the equilibrium elastic deformations have been
memorized and any aberration kind from this state can
cause a new nonequilibrium state. In contrast to the
aforesaid models, the extra stress tensor for the integral
constitutive model (e.g., K-BKZ and Wagner models) is
expressed mathematically as the temporal integral of the
memory function and the elastic potential distributions as
well as the Cauchy–Green tensor and its inverse (i.e., Finger
tensor). Moreover, this model shows an excellent capability
of giving comparable upshots against the experimental
rheological results for long dies towards the extrudate swell
occurrence witnessed in some viscoelastic materials, such as
acrylonitrile-butadiene-styrene nanocomposites and other
polymer melts. (is rheological phenomenon is due mainly
to the elastic recovery of deformation, which reflects the
relaxation effect on the material after leaving from the die
state.

Numerous constitutive models have been proposed by
pioneering researchers to describe complex convective
boundary layer flows. For instance, Bilal et al. [1] adopted the
tangent hyperbolic rheological model to examine the
characteristics of an unsteady MHD convective flow of a
non-Newtonian fluid moving over a nonlinear stretching
porous sheet under the combined influence of convective
heating and time-dependent magnetic field in the presence
of magnetized dusty particles, heat generation/absorption,
and variable thermal conductivity. Similarly, Bibi et al. [2]
accomplished comprehensive computational estimations
with the aid of the shooting technique along with the built-in
MATLAB bvp4c package to handle approximatively an
unsteady MHD convective flow of a tangent hyperbolic fluid

conveying tiny magnetized particles over a linear stretching
permeable sheet characterized by a uniform suction/injec-
tion velocity and affected by the significant effects of variable
thermal conductivity, internal heat source/sink, convective
heating, and time-dependent magnetic field. Otherwise,
Mohebbi et al. [3] utilized the power-law model to evaluate
the shear-thinning and shear-thickening features of a non-
Newtonian fluid by conducting a numerical investigation on
a fully developed forced heat transfer convection for a
laminar non-Newtonian flow confined between two parallel
plates containing partially porous media in the presence of a
uniform internal arrangement of circular obstacles. In the
same way, Liu et al. [4] developed an approximate approach
to scrutinize the non-Newtonian rheological behaviour of
fresh concrete based on the Herschel–Bulkley model [5] and
various available experimental data sources. Sequel to the
aforesaid background, Zhu et al. [6] investigated numerically
the mutual influence of fluid yield stress and finite-size
particles on a turbulent flow of a Bingham fluid [7] flowing
inside a vertical channel under the effect of no-slip velocity
boundary condition and the periodicity physical constraints
in the streamwise and spanwise Cartesian directions. Based
on the Carreau–Yasuda rheological model and Buongiorno’s
nonhomogeneous nanofluid model, Waqas et al. [8] pro-
posed a realistic physical model to analyze the impacts of
second-order velocity slip, zero nanoparticles mass flux
condition, thermal radiation, and chemical reaction on the
features of MHD convective flows over a convectively heated
stretching surface in a porous medium by considering the
coexistence of gyrotactic motile microorganisms and tiny
solid particles and taken into account the thermophoresis
and Brownian motion aspects. Keeping in mind the non-
similarity characteristic of some flow problems causing by
the non-Newtonian behaviour of the flowing fluids, Ama-
nulla et al. [9] carried out an accurate numerical imple-
mentation to find nonsimilar solutions for the momentum
and thermal boundary layers developed in a non-Darcy
porous medium during the steady two-dimensional MHD
free convection flow of a Prandtl–Eyring fluid past over an
isothermal sphere under the effective influences of buoyancy
forces and various slip conditions. Earlier, Muhammad et al.
[10] exploited Buongiorno’s mathematical formulation
along with the generalized Fourier–Fick’s law and Rosse-
land’s approximation to establish a theoretical nanofluid
model allowing to evaluate more efficiently the Cattaneo–
Christov heat transfer for a three-dimensional MHD-
EMHD convective flow of an Eyring–Powell nanofluid
flowing horizontally over an elongated Riga plate by con-
sidering the effects of nonlinear thermal radiation, activation
energy, velocity slip condition, and convective heating. To
explore the impact of shear-thinning and shear-thickening
rheological properties on different kinds of transportation
phenomena in non-Newtonian nanofluids under the com-
bined effect of Brownian motion and thermophoresis dif-
fusion of solid nanomaterials, Hayat et al. [11] extended the
Sisko rheological fluid model [12] along with Buongiorno’s
mathematical formulation [13] and the vanishing mass flux
condition for nanoparticles [14, 15] to simulate a three-
dimensional MHD forced convective nanofluid flow over a
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nonisothermal surface, which is taken to be materially
impermeable, heated convectively, and stretched bidirec-
tionally via linear velocities. In the objective of inspecting the
surface drag forces in nanofluidic mediums, as well as the
feasibility of enhancing their heat and mass transportations,
Hayat et al. [16] addressed an imperative unsteady three-
dimensional MHD squeezing viscoelastic flow of a second-
grade nanofluid between two isothermal parallel disks,
whose chemical species are controlled actively via Buon-
giorno’s two-phase model under the assumption of small
magnetic Reynolds number theory along with the blowing
and suction effects. To foresee the impacts of shear-thinning
and shear-thickening rheological properties, Sajid et al. [17]
performed an approximative analytical investigation on the
two-dimensional coating process for incompressible third-
grade fluid flows in a thin slit located between a moving
substrate and flexible/stiff coater by supposing that the
coating layer thickness is greatly less than the blade length.
Likewise, Arifuzzaman et al. [18] utilized the explicit finite
difference technique to analyze the heat and mass transfer
features of unsteady MHD radiative-convective flows of
fourth-grade fluids moving perpendicularly from an iso-
thermal permeable surface in a porous medium under the
effects of magnetic field, suction/injection velocity, non-
linear order chemical reaction, heat generation, viscous
dissipation, and buoyancy forces.

Due to the progress in the rheology of homogeneous and
nonhomogeneous viscoelastic mixtures employed in wide-
spread industrial and engineering areas, various constitutive
rheological relationships have been developed for biological
and polymeric rate-type liquids to reveal the memory and
elasticity features of these liquids by introducing the re-
laxation and retardation times via the Oldroyd-B rheological
model [19]. In the range of low shear rate model, the dy-
namic viscosity of Oldroyd-B fluids found to be increasingly
varied, while this trend is reversed for higher shear rates
indicating that these materials possess both solid and liquid
characteristics. In particular, these properties can be con-
strained rheologically in some cases to deduce the Maxwell
model [20] by disappearing the retardation time charac-
terized by the solid tendency of viscoelastic fluids, in which
the fluidic medium cannot respond instantaneously to any
change in shear stress. In this direction, it is worth noting
here that the Oldroyd-B model is incapable to explain the
shear-thinning and shear-thickening rheological phenom-
ena observed in some physiological and biological fluids
(e.g., blood, serum, urine, saliva, and tears). Further, this
model exhibits a quasilinear relationship between the shear
stress and the shear strain rate, while this rheological de-
pendency becomes a linear relationship for the Maxwell
model. Among the most common rate-type model that
having a time derivative in its linear rheological constitutive
law and offering the possibility to investigate easily the
viscoelastic behaviour of non-Newtonian fluids, we find the
constitutive rheological Jeffrey’s fluid model [21]. Bearing in
mind the importance of this rheological model and its
simplicity in simulating many realistic viscoelastic flows
encountered widely in the bioscience sector and technology,
this linear rheological law has lately obtained exceptional

interest by researchers. In this regard, Hayat et al. [22]
exploited the constitutive rheological equation of the Jeffrey
model to examine the probable effects of an applied magnetic
field, viscous dissipation, and internal heat source on the
stagnation point flow of a non-Newtonian viscoelastic fluid
towards a nonlinear stretching surface, which is characterized
by a variable surface thickness and heated isothermally via an
appropriate melting process. In another relevant investigation,
Hayat et al. [23] inspected a three-dimensional MHD con-
vective flow of an Oldroyd-B nanofluid moving horizontally
over a bidirectionally stretching surface under the effects of
zero nanoparticles mass flux condition, convective heating,
Brownian motion, and thermophoresis. Because of the sub-
stantial interest given to these non-Newtonian models,
Koteswara Reddy et al. [24] proposed an adjustable rheo-
logical model to analyze the features of MHD mixed con-
vection viscoelastic flows of Maxwell/Jeffery/Oldroyd-B
nanofluids moving vertically over a nonisothermal conical
geometry by considering the existence of an internal heat
source/sink along with the impact of thermophoresis and
Brownian motion of solid nanoparticles. In a particular case,
Awias et al. [25] carried out a numerical implementation via
the bvp4c technique to study three-dimensional mixed con-
vection flows of Maxwellian nanofluids driven by a vertically
rotating and stretching isothermal cylinder, under the influ-
ences of various interactions including thermal/mass buoy-
ancy, magnetic, thermophoretic, and Brownian forces. On the
other hand, the existence of multiple relaxation times in the
response of some materials (e.g., Earth’s mantle and asphalt
mastics) in creep and stress relaxation examinations can be
adequately explained by another specified rate-type fluid
model of higher order. For this purpose, many researchers
prefer modelling numerous complex flow problems with the
help of the Burgers rheological model [26] due to its capability
of describing the coexistence of two different relaxation times.
In the framework of this advanced rate-type fluid category,
Hayat et al. [27] assumed the generalized Fourier–Fick’s law
along with Buongiorno’s nanofluid model to analyze the heat
and mass transportation phenomena occurred during the
steady two-dimensional convective flows of Burgers nano-
fluids over a linearly stretching isothermal sheet.

Later on, various experimental investigations indicated
that the Casson rheological fluid model [28] is still the best
rheological way to understand the non-Newtonian behav-
iour of many viscoplastic fluids, like chocolate, blood, to-
mato sauce, paint, shampoo syrup, some polymer solutions,
and other colloidal suspensions.(is kind of fluids exhibits a
shear-thinning rheological behaviour (i.e., pseudoplastic
feature), whose viscosity decreases with the increasing
shearing rate as long as the stress upsurges above a critical
value recognized as the yield stress. More precisely, the
presence of mineral ingredients in a liquid increases sig-
nificantly the dynamic viscosity of mediums and modifies its
rheological characteristic to a non-Newtonian behaviour
with a rheological tendency to an increase in the fluidity,
when the resulting mixture is sheared. However, the fluidic
mediums show the capability to gel under certain situations,
when it is not sheared. In this context, Kelessidis and
Maglione [29] realized an exhaustive statistical analysis on
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the Casson and Robertson–Stiff rheological models [28, 30]
via various existing experimental viscometric data generated
especially for water-Greek bentonite suspensions to choose
the excellent rheological category permitting a more realistic
description of the studied aqueous medium. After successful
attempts, they concluded that both suggested models can
describe well the addressed sample data, in which the true
shear rates for the Casson and Robertson–Stiff models are
found to be higher compared with the Newtonian shear
rates, whose differences become lesser at higher shear rates.
(ese findings indicate an assessment in the Newtonian
behaviour at greater shear rates. In the framework of the
practical use of non-Newtonian Casson fluids, Qasim and
Noreen [31] exploited the stability analysis theory to illus-
trate more evidently the possibility of generating multiple
solutions for dissipative boundary layer flows of Casson
fluids moving over a porous shrinking surface. More re-
cently, Bhatti et al. [32] studied semianalytically MHD ra-
diative Casson fluid flows from a nonisothermal linear
stretching surface by including the Hall and ion-slip effects
in the momentum equation via the generalized form of
Ohm’s law and imposing local convective heating as a
feasible thermal condition at the horizontal boundary for the
energy conservation equation.

Building upon the aforementioned literature review, the
authors tackled their flow problems by utilizing various
numerical and semianalytical procedures, such as Run-
ge–Kutta method (RKM), spectral local linearization
method (SLLM), spectral quasilinearization method
(SQLM), spectral relaxation method (SRM), Keller box
method (KBM), homotopy perturbation method (HPM),
and homotopy analysis method (HAM), which are exten-
sively employed in other related investigations. Besides, the
analysis of these previous research works reveals that there is
a greater lack of innovative research studies on the numerical
analysis topic dealing realistically with the heat trans-
portation phenomenon via non-Newtonian flows over
complex geometries (e.g., irregular sheet, needle, cone,
sphere, and cylinder). Motivating by these facts, a new
numerical method is established in this scrutiny to explore
the rheological fluid flow and heat transfer characteristics of
radiative Casson viscoplastic fluids having temperature-
dependent thermophysical properties (i.e., dynamic vis-
cosity and thermal conductivity), surrounding by a non-
uniform applied magnetic field and moving horizontally
over an isothermal stretching sheet with variable thickness.
Moreover, the graphical and tabular highlights produced for
every physical quantity showing up in the present numerical
assessment (i.e., velocity, temperature, skin friction coeffi-
cient, and heat transfer rate) are discussed physically
through plausible explanations. Furthermore, the flow
patterns are further displayed for velocity boundary layers
and streamlines to inspect the consequence of applying a
nonuniform magnetic field on the fluid flow properties.

2. Problem Statement

Let us consider a steady two-dimensional MHD convective
flow of a Casson viscoplastic fluid exhibiting a temperature

dependency for the dynamic viscosity and thermal con-
ductivity and moving over a nonlinearly slender sheet of
variable thickness ε(x), which is heated uniformly via an
imposed temperature Tw and stretched horizontally in the
positive sense of the x-axis with a spatially variable velocity
ux(x) under the impacts of thermal radiation and variable
magnetic field B � B(x) ey, where ε(x) � 2c(x + a)(1− n)/2,
ux(x) � b(x + a)

n, and B(x) � B0(x + a)
(n− 1)/2. Here, the

dimensional constants (a, b, c) are utilized in the expres-
sions of ε(x) and ux(x) to characterize the slender sheet
geometry and its dynamical behaviour, while the exponent
n designates the velocity power parameter. Also, the
constant c is selected properly in this physical problem, in
such a way that the sheet is sufficiently thin compared to its
width ε(x). As schematically portrayed in Figure 1, the
mathematical characteristics of the studied flow geometry
are presented in a Cartesian coordinate system (x, y, z),
whose unit vectors are (ex, ey, ez). In this configuration, the
origin O is located at the leading edge of the transverse
section centre of the sheet, in which the x-axis is positioned
horizontally along the symmetrical axis of the elastic sheet,
while the y-axis is taken perpendicularly to the flow di-
rection. As assumptions, the radiative fluid flow is sup-
posed laminar, incompressible, and having a weaker
electrical conductivity σ and can be developed with a low
Reynolds magnetic number, in which the induced magnetic
field can be neglected reasonably.

By adopting the linearized form of the Rosseland radi-
ative heat flux model [33] along with the boundary layer
approximations, the various transport equations (i.e., mass,
momentum, and energy conservation equations) governing
the present flow problem are stated as follows:
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(3)

As emphasized above, u and v represent the velocity
components in the x and y directions, respectively, ρ means
the fluid density, CP corresponds to the specific heat of the
Casson fluid, β indicates the Casson fluid parameter, μT
refers to the plastic dynamic viscosity of the medium, T
symbolizes the fluid temperature, kT specifies the thermal
conductivity of the fluid, σe signifies the Stefan–Boltzmann
constant, βR designates the mean absorption coefficient, σ
defines the electrical conductivity of the medium, and B(x)
shows the strength of the variable magnetic field.
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By assuming a linear temperature dependency for the
thermophysical quantities (μT, kT), we get [34]

μT � μ 1 − Λμ

T − T∞
Tw − T∞

( )( ),
kT � k 1 + Λk

T − T∞
Tw − T∞

( )( ).
(4)

Moreover, the thermophysical properties (μ, k) shown
above designate the effective values of the variable quantities
(μT, kT) at the stream temperature T∞, whereas dimen-
sionless quantities Λμ and Λk represent the variable viscosity
and thermal conductivity parameters, correspondingly.

For the flow geometry under consideration, the pre-
scribed boundary conditions regulating equations (1)–(3)
are written as follows:

u(x, y) � uw(x) � b(x + a)
n,

v(x, y) � 0,

T(x, y) � Tw,

aty �
ε(x)

2
,

(5)

u(x, y)⟶ 0,

T(x, y)⟶ T∞,

asy⟶∞.
(6)

Accordingly, equations (1)–(3) can be non-
dimensionalized by invoking the following authentic simi-
larity transformations:

u(x, y) � b(x + a)nF′(ζ),

v(x, y) � −
(n + 1)υb(x + a)(n− 1)

2
( )1/2

· F(ζ) +
n − 1

n + 1
( )ζF′(ζ)( ),

ζ �
(n + 1)b(x + a)(n− 1)

2υ
( )1/2

y,

ψ(x, y) �
2υb(x + a)(n+1)

(n + 1)
( )1/2

F(ζ),

Θ(ζ) �
T(x, y) − T∞
Tw − T∞

.

(7)

In this state, the resulting nonlinear ordinary differential
equations (ODEs) with their proper boundary conditions
are given by

1 +
1

β
( )F″′ − 2M

(n + 1)
F′ + FF″ − 2n

(n + 1)
F′2

− 1 +
1

β
( )ΛμF″′Θ − 1 +

1

β
( )ΛμF″Θ′ � 0,

(8)

Slot

Variable magnetic field

: Casson fluid velocity boundary layer

: Casson fluid temperature boundary layer
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u(x, y ∞) = 0

u(x, y ∞) = 0

T(x, y ∞) = T∞

T(x, y ∞) = T∞

uw(x)

Tw

B = B(x)ey

Figure 1: Schematic diagram of the present flow problem.
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1 + RD( )Θ″ + PrFΘ′ + ΛkΘΘ″ + ΛkΘ′
2
� 0, (9)

F(ζ) �
1 − n

1 + n
( )χ,

F′(ζ) � 1,

Θ(ζ) � 1,

at ζ � χ,

(10)

F′(ζ)⟶ 0,

Θ(ζ)⟶ 0,

as ζ⟶∞.
(11)

As underlined above, the prime superscripts designate
the derivation with respect to ζ. Also, the physical param-
eters M, RD, Pr, and χ involved in equations (8)–(10) are
defined formally as follows:

M �
σB2

0

bρ
(magnetic parameter),

RD �
16σeT

3
∞

3βRk
(radiation parameter),

Pr �
ρCP( )υ
k

(Prandtl number),

χ � c
bn + b

2υ
( )(1/2)(wall thickness parameter).

(12)

For further simplifications, we set the following feasible
changes:

ζ � η + χ,

F(ζ) � F(η + χ) � f(η),

Θ(ζ) � Θ(η + χ) � θ(η).

 (13)

(erefore, the nonlinear differential system described by
equations (8)–(11) is altered to

1 +
1

β
( )f″′ − 2M

(n + 1)
f′ + ff″ − 2n

(n + 1)
f′2

− 1 +
1

β
( )Λμf″′θ − 1 +

1

β
( )Λμf″θ′ � 0,

(14)

1 + RD( )θ″ + Prfθ′ + Λkθθ″ + Λkθ′
2
� 0, (15)

f(η) �
1 − n

1 + n
( )χ,

f′(η) � 1,

θ(η) � 1,

at η � 0,

(16)

f′(η)⟶ 0,

θ(η)⟶ 0,

as η⟶∞.
(17)

Here, the prime notations are utilized to refer to the
derivation for the variable η.

3. Engineering Quantities of Interest

In this physical problem, the significance of the principal
engineering quantities of major importance can be scruti-
nized appropriately by estimating locally the magnitude of
dragging forces and heat transfer rate at the stretching
surface in terms of the skin friction coefficient Cfx and
Nusselt number Nux. (ese physical quantities are defined
as follows:

Cfx �
2τxy(x, y � ε(x)/2)

ρfu
2
w(x)

,

Nux �
(x + a)qT
k Tw − T∞( ),

(18)

in which

τxy x, y �
ε(x)

2
( ) � μT 1 +

1

β
( ) zu

zy
( ) + zv

zx
( )( )

y�(ε(x)/2)

,

qT � − kT +
16σeT

3
∞

3βR
( ) zT

zy
( )

y�(ε(x)/2)

.

(19)
By making use of equations (5), (7), and (13), we get the

following expressions:

Cfr �
(2n + 2)(1/2)

β(β + 1)−1
Λμθ(0) − 1( )f″(0),

Nur � −
n + 1

2
( )(1/2) Λkθ(0) + 1 + RD( )( )θ′(0).

(20)

As mentioned above, the physical quantities Cfr and
Nur represent the reduced forms of the local skin friction
coefficient Cfx and Nusselt numberNux, which are given by

Cfr � −Re
1/2
x Cfx,

Nur � Re−1/2x Nux.
(21)

Here, Rex denotes the local Reynolds number, where
Rex � ((x + a)uw(x)/υ).

4. Numerical Modeling Strategy

A new efficient numerical procedure is presented exclusively
in this investigation to solve the nonlinear differential system
described in the fluid motion and heat transfer features of a
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non-Newtonian viscoplastic fluid possessing temperature-
dependent viscosity and thermal conductivity and flowing
over an isothermal stretching sheet with irregular and
axisymmetric geometry under the influence of a nonuniform
applied magnetic field with the presence of thermal radia-
tion. (e proposed numerical algorithm is built on a purely
theoretical framework. In this regard, the resulting nonlinear
differential system of equations (14)–(17) can be linearized
and decoupled accordingly to reduce them into a sequence

of dependent subsystems of linear ODEs. After several
successful rearrangements, the constructed differential
subsystems are discretized spatially to be tackled numerically
by utilizing the generalized differential quadrature local
linearization method (GDQLLM).

Based on the pioneering mathematical findings reported
by Bellman and Kalaba [35], the present flow model can be
handled iteratively by applying the local linearization
technique (LLT) to the following generated system:

SNL( ):

θ � 1, when η � 0,

1 + RD( )θ″ + Prfθ′ + Λkθθ″ + Λkθ′
2
� 0, where 0< η< η∞,

θ � 0, when η � η∞,

g � 1, when η � 0,

1 +
1

β
( )g″ − 2Mg

n + 1
+ fg′ − 2ng2

n + 1
− 1 +

1

β
( )Λμg″θ − 1 +

1

β
( )Λμg′θ′ � 0, where 0< η< η∞,

g � 0, when η � η∞,

f �
1 − n

1 + n
( )χ, when η � 0,

f′ � g, where 0< η< η∞.



(22)

As highlighted in equation (22), the value η∞ corre-
sponds to the estimated dimensionless boundary layer
thickness assuring the asymptotical achievement of the
stream boundary conditions with higher precision. Conse-
quently, the linearized form of the nonlinear differential
system (SNL) is written as follows:

SL( ):

θr+1 � 1, when η � 0,

A1θr+1″ + A2θr+1′ + A3θr+1 � R1, where 0< η< η∞,

θr+1 � 0, when η � η∞,

gr+1 � 1, when η � 0,

B1gr+1″ + B2gr+1′ + B3gr+1 � R2, where 0< η< η∞,

gr+1 � 0, when η � η∞,

fr+1 �
1 − n

1 + n
( )χ, when η � 0,

fr+1′ � R3, where 0< η< η∞.


(23)

Moreover, the solutions of the linear differential system
(SL) can be adjusted iteratively through the functions
(Ai(η), Bi(η), Ri(η))/1≤ i≤ 3 and 0≤ η≤ η∞{ }, which are
expressed as follows:

A1(η) � 1 + RD( ) + Λkθr(η),

A2(η) � Prfr(η) + 2Λkθr′(η),

A3(η) � Λkθr″(η),

(24)

B1(η) �
1 − Λμθr+1(η)( )

β(β + 1)−1
,

B2(η) � fr(η) −
Λμθr+1′ (η)

β(β + 1)−1
,

B3(η) � −
2M + 4ngr(η)

n + 1
( ),

(25)

R1(η) � Λkθr(η)θr″(η) + Λkθ′2r (η),

R2(η) � −
2ng2r(η)

n + 1
,

R3(η) � gr+1(η).

(26)
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Here, the iterative subscripts r and (r + 1) are utilized in
equations (23)–(26) to indicate the previous and current
estimations, respectively.

Furthermore, to boost the numerical procedure ap-
proved during the resolution steps, it is preferable to ini-
tialize the iterative process by testing solutions
(f0(η), g0(η), θ0(η))/0≤ η≤ η∞{ } verifying all the boundary
conditions imposed on the differential system (SL). (ese
initial guessed solutions take the following expressions:

f0(η) � 1 + χ
1 − n

1 + n
( ) − e− η,

g0(η) � e− η,

θ0(η) � e− η.

(27)

By applying the generalized differential quadrature
method (GDQM) along with the modified Gauss–Lobatto
collocation points [36–41], the resulting linearized system
(SL) can be discretized spatially to give three decoupled
linear algebraic subsystems (Sθ), (Sg), and (Sf), whose
unknowns are the approximate discrete values of the
functions θr+1(η), gr+1(η), andfr+1(η) in the computational
domain [0, η∞]. (ese subsystems can be written in the
following matrix forms:

Sθ( ): AT
r+1

� R1, whereA(1, :) � I(1, :),A(N, :) � I(N, :),R1(1) � 1 andR1(N) � 0{ },
Sg( ): BG

r+1
� R2, whereB(1, :) � I(1, :),B(N, :) � I(N, :),R2(1) � 1 andR2(N) � 0{ },

Sf( ): CF
r+1

� R3, whereC(1, :) � I(1, :) andR3(1) �
1 − n

1 + n
( )χ{ }.

(28)

Additionally, the square matrices A,B,C{ } and vector
columns Tr+1,Gr+1, Fr+1,R1,R2,R3{ } are expressed as
follows:

A � diag A1 ηj( )( )
1≤j≤N[ ]D(2)

+ diag A2 ηj( )( )
1≤j≤N[ ]D(1)

+ diag A3 ηj( )( )
1≤j≤N[ ]I,

B � diag B1 ηj( )( )
1≤j≤N[ ]D(2)

+ diag B2 ηj( )( )
1≤j≤N[ ]D(1)

+ diag B3 ηj( )( )
1≤j≤N[ ]I,

C � D
(1),

T
r+1

� θr+1 ηj( )( )
1≤j≤N[ ],

G
r+1

� gr+1 ηj( )( )
1≤j≤N[ ],

F
r+1

� fr+1 ηj( )( )
1≤j≤N[ ],

R1 � R1 ηj( )( )
1≤j≤N[ ],

R2 � R2 ηj( )( )
1≤j≤N[ ],

R3 � R3 ηj( )( )
1≤j≤N[ ].

(29)
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As shown above, D(1) � [(d(1)ij )1≤ i,j≤N] and
D(2) � [(d(2)ij )1≤ i,j≤N] symbolize the first- and second-order
differentiation matrices, respectively, I denotes the unit
matrix, the set ηj/1≤ j≤N{ } highlights the modified

Gauss–Lobatto collocation points, and N represents the
number of collocation nodal points ηj.

According to Shu [42], the components of the modified
differentiationmatricesD(1) andD(2) can be computed from
the following general system:

d
(p)
ij �

∏N
k�1, k≠ i τi − τk( )

η
p
∞ τi − τj( )∏N

k�1, k≠ i τi − τk( ), forp � 1 and i≠ j, where 1≤ i, j≤N,

d
(p)
ij �

p

η
p
∞

d
(p−1)
ii d(1)ij −

d
(p−1)
ij

τi − τj
 , forp≥ 2 and i≠ j, where 1≤ i, j≤N,

d
(p)
ij � −

1

η
p
∞

∑N
k�1,k≠ i

d
(p)
ik , forp≥ 1 and i � j, where 1≤ i, j≤N,

τj �
ηj
η∞

�
1

2
−
1

2
cos

πj − π

N − 1
( ), where 0≤ ηj ≤ η∞, 0≤ τj ≤ 1 and 1≤ j≤N.



(30)

Furthermore, it bears noting that, after discretizing the
differential system (SL), the derivative terms can be handled
numerically in each collocation point ηi as follows:

f
(p)
r+1 ηi( ) �∑N

j�1

d
(p)
ij fr+1 ηj( ) � D

(p)
(i, :)Fr+1,

g
(p)
r+1 ηi( ) �∑N

j�1

d
(p)
ij gr+1 ηj( ) � D

(p)
(i, :)Gr+1,

θ
(p)
r+1 ηi( ) �∑N

j�1

d
(p)
ij θr+1 ηj( ) � D

(p)
(i, :)Tr+1,



(31)

where p is the order of derivation concerning the variable η.
During the progression in the iterative procedure, the

reduced quantities Cfr and Nur are computed as follows:

Cfr �
(2n + 2)(1/2)

β(β + 1)−1
ΛμTr+1(1) − 1( )D(1)

(1, :)Gr+1,

Nur � −
n + 1

2
( )(1/2) ΛkTr+1(1) + 1 + RD( )( )D(1)

(1, :)Tr+1.

(32)

5. Accuracy and Convergence of the Proposed
Numerical Algorithm

(e convergence and constancy of the sequential iterative
schemes established for the present boundary layer flow
problem can be assessed fittingly from the nonlinear dif-
ferential system (SNL) by considering the following residual
functions:

Resg(η) �
gr+1″ (η)

β(β + 1)−1
+ fr+1(η)gr+1′ (η) −

2gr+1(η) M + ngr+1(η)( )
n + 1

−
Λμ gr+1″ (η)θr+1(η) + gr+1′ (η)θr+1′ (η)( )

β(β + 1)−1
{ },

Resθ(η) � 1 + RD( )θ″(η) + Prf(η)θ′(η) + Λkθ(η)θ″(η) + Λkθ′
2
(η).

(33)

After discretization, these residual functions take the
following vector forms:
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Resg �

D(2)Gr+1

β(β + 1)−1
+ diag diag Fr+1( )[ ] diag D

(1)
Gr+1( )[ ]( )

−
2

n + 1
MGr+1 + n diag diag Gr+1( )[ ]2( )( )

−
Λμ

β(β + 1)−1
diag diag D

(2)
Gr+1( )[ ] diag Tr+1( )[ ]( )

−
Λμ

β(β + 1)−1
diag diag D

(1)
Gr+1( )[ ] diag D

(1)
Tr+1( )[ ]( )





,

Resθ �

1 + RD( )D(2)Tr+1 + Pr diag diag Fr+1( )[ ] diag D(1)Tr+1( )[ ]( )
+Λkdiag diag Tr+1( )[ ] diag D(2)Tr+1( )[ ]( ) + Λk diag diag D(1)Tr+1( )[ ]2( )


.

(34)

For the whole computational domain, we define the
following infinite norms:

Resg

 ∞ � Max Resg(i)
∣∣∣∣∣ ∣∣∣∣∣, where 1≤ i≤N{ }( ),

Resθ
 ∞ � Max Resθ(i)

∣∣∣∣ ∣∣∣∣, where 1≤ i≤N{ }( ). (35)

By applying the above definitions on the constructed
vectors (Resg,Resθ) at any advanced iteration step (r + 1),
the efficiency of the computed results can be authenticated
persuasively for every set of the control parameters
(i.e., η∞, N, n, χ, β, Pr,M, RD,Λμ, andΛk) by utilizing the
following convergence criteria:

Ed � Max Cfr( )
r+1
− Cfr( )

r

∣∣∣∣∣ ∣∣∣∣∣, Nur( )r+1 − Nur( )r∣∣∣∣ ∣∣∣∣( )≤ εd,

ERes � Max Resg

 ∞, Resθ
 ∞( )≤ εRes.


(36)

Based on the above considerations, the iterative nu-
merical schemes converge strongly to higher accurate out-
comes, when the systematic errors Ed and ERes are less or
equal than the specified convergence tolerance levels εd and
εRes, respectively. On the other hand, the error values εd and
εRes are generated adequately with magnitude orders of
about 10− 9 and 10− 7, correspondingly, to get more precise
numerical results. Moreover, the computational cost cor-
responding to the GDQLLM code execution can be assessed
automatically by measuring the CPU time via the MAT-
LAB’s Tic-Toc function. In parallel, various proper nu-
merical implementations are carried out via this numerical
code to estimate the approximate possible values of Cfr,
Nur, ‖Resg‖∞, ‖Resθ‖∞, and CPU time in Table 1 against
various iteration numbers, when η∞ � 100, N � 250, n � 2,
χ � 0.5, β � 0.5, Pr � 7, M � 2, RD � 1, Λμ � 0.8, and
Λk � 1. From this tabular illustration, it is clear that the
proposed numerical method GDQLLM exhibits a faster

convergence response, higher flexibility, slighter computa-
tional CPU time, and higher robustness, in which the
necessary convergence criteria can be attained excellently
after just 10 repetitions with a CPU time less than 0.66 s.

6. Validation of Numerical Results

More importantly, the engineering applicability of
GDQLLM as a new innovative numerical method can be
realistically corroborated by making use of the aforemen-
tioned accuracy criteria and linking the present flow model
with other existing related literature studies. For this pur-
pose, the developed GDQLLM code is scrutinized exten-
sively by comparing appropriately its particular results
against those obtained previously by Fang et al. [43], Wang
[44], and Mabood et al. [45] for the quantities −f″(0) and
−θ′(0), when β− 1 �M � RD � Λμ � Λk � 0. Sequel to these
multiple comparative tests enlisted in Tables 2 and 3, the
accurateness of the GDQLLM results is strengthened more
by the SLLM upshots generated by the spectral local line-
arization method [46]. A quantitative analysis of the tabular
data proves that the implemented GDQLLM code exhibits
very satisfactory numerical outcomes, which lends a high
level of credibility to the present investigation.

7. Discussion of Results

After choosing the more appropriate values for the extra
parameters (η∞, N), the GDQLLM results can be obtained
successfully, when the number of iterations is achieved a
sufficient value Nit providing smaller residual errors with a
higher order of precision. For this main purpose, it is
preferable to select η∞ � 100,N � 250, andNit � 100 as the
main key parameters controlling the correctness of the
present outcomes in all subsequent numerical imple-
mentations. By exploiting the accuracy numerical datasets
(fNit

(ηi), θNit
(ηi))/1≤ i≤N and 0≤ ηi ≤ η∞{ } outputted

during the completion of the code execution for specified
flow parameter values (i.e., n, χ, β, Pr,M, RD,Λμ, andΛk),
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the fluid flow properties and heat transfer characteristics are
revealed throughout the medium in terms of velocity and
temperature fields, as well as locally via the skin friction
coefficient and Nusselt number at the slender sheet. (ese
physical features are presented and discussed via numerous
graphical and tabular displays by taking n � 2, χ � 0.5,
β � 0.5, Pr � 7, M � 2, RD � 1, Λμ � 0.8, and Λk � 1 as
default flow parameter values, unless otherwise indicated.
Furthermore, to elucidate exhaustive physical insights from

the graphical representations, the velocity and temperature
profiles are clipped from 0 to 8 to show the impacts of every
embedded parameter more visibly and avoid the overlap
between the curves in each graphical illustration.

As exhibited below, the graphical and tabular repre-
sentations displayed in Figures 2–10 and Tables 4 and 5
reflect completely the fluid motion and heat transfer char-
acteristics (i.e., velocity profiles, temperature profiles, skin
friction coefficients, heat transfer rates, velocity boundary

Table 1: Convergence scrutiny of results in terms ofCfr andNur, when n � 2, χ � 0.5, β � 0.5, Pr � 7,M � 2, RD � 1,Λμ � 0.8, andΛk � 1.

Iterations Cfr Nur ‖Resg‖∞ × 107 ‖Resθ‖∞ × 107 CPU time (s)

1 3.702831704 2.600241925 192683.7059 6303740.354 0.089999999
2 3.535770962 2.040731388 10688.54111 285108.4748 0.155999999
3 3.530451924 2.019105826 266.4202916 2524.981398 0.218999999
4 3.530392709 2.018913864 4.454512438 35.36734701 0.282999999
5 3.530392158 2.018911916 2.013120419 0.429543517 0.346999999
10 3.530392147 2.018911882 1.845482356 0.002530055 0.659999999
15 3.530392147 2.018911882 1.957319967 0.003233739 0.978999999
20 3.530392147 2.018911882 1.789523721 0.001979357 1.299999999
25 3.530392147 2.018911882 1.957241065 0.002838344 1.616999999
30 3.530392147 2.018911882 1.677725372 0.002606886 1.939999999
35 3.530392147 2.018911882 1.901322070 0.003316371 2.250000000
40 3.530392147 2.018911882 2.069078297 0.003263944 2.561999999
45 3.530392147 2.018911882 2.013159302 0.002646396 2.871999999
50 3.530392147 2.018911882 2.069039035 0.002260189 3.180999999

Table 2: Comparison of the present numerical findings for −f″(0) with the latest existing literature results, when
β− 1 �M � RD � Λk � Λμ � 0.

n

Existing results Present results

Fang et al. [43] GDQLLM SLLM

χ � 0.5 χ � 0.25 χ � 0.5 χ � 0.25 χ � 0.5 χ � 0.25

10 1.0603 1.1433 1.060324666 1.143320620 1.060324666 1.143320620
9 1.0589 1.1404 1.058915793 1.140392519 1.058915794 1.140392519
7 1.0550 1.1323 1.055044823 1.132285178 1.055044823 1.132285178
5 1.0486 1.1186 1.048611305 1.118590380 1.048611306 1.118590381
3 1.0359 1.0905 1.035868281 1.090492254 1.035868282 1.090492254
2 1.0234 — 1.023407744 1.061402504 1.023407744 1.061402505
1 1.0000 1.0000 1.000000000 1.000000000 1.000000000 1.000000000
1/2 0.9799 0.9338 0.979944970 0.933825409 0.979944970 0.933825410
0 0.9576 0.7843 0.957643151 0.784279230 0.957643151 0.784279231
−1/3 1.0000 0.5000 1.000000000 0.500000000 1.000000000 0.500000000

Table 3: Comparison of the present numerical findings for −θ′(0) with the latest existing literature works, when n � 1 and
β− 1 �M � RD � Λk � Λμ � 0.

Pr
Existing results Present results

Wang [44] Mabood et al. [45] GDQLLM SLLM

0.07 0.0656 0.0665 0.065622569 0.065622569
0.2 0.1691 0.1691 0.169088573 0.169088573
0.7 0.4539 0.4539 0.453916157 0.453916157
2 0.9114 0.9114 0.911357683 0.911357683
7 1.8954 1.8954 1.895403258 1.895403258
20 3.3539 3.3539 3.353904143 3.353904143
70 6.4622 6.4622 6.462199430 6.462199531
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Figure 2: Influence of n on f′(η) and θ(η).
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Figure 3: Influence of χ on f′(η) and θ(η).
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Figure 7: Effect of M on (a) velocity boundary layers and (b) streamlines.
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Figure 8: Influence of RD on f′(η) and θ(η).
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layers, and streamlines) of the studied non-Newtonian fluid
against sundry influencing parameters, namely, velocity
power parameter n, wall thickness parameter χ, Casson fluid
parameter β, Prandtl number Pr, magnetic parameter M,
radiation parameterRD, variable viscosity parameterΛμ, and
variable thermal conductivity parameter Λk. Generally, it is
observed that the dimensionless profiles of the horizontal
velocity distributions
f′(ηi) � g(ηi)/1≤ i≤N and 0≤ ηi ≤ η∞{ } are monotonically
declining functions and tends asymptotically to the van-
ishing boundary condition f′(η⟶ η∞) � 0 as long as the
similarity variable η exceeds a certain distance η � δ (≤ 8),
which indicates the approximate value of the velocity
boundary layer thickness.

(e probable evolution of the dimensionless velocity and
temperature profiles (f′(η), θ(η)) in response to the in-
creasing change in the values of the power index parameter n
are delineated quite clearly in Figure 2. Graphically, it is
shown that the dynamical parameter n exhibits a height-
ening effect towards the thermohydrodynamic profiles
(f′(η), θ(η)) with a significant widening in the thermo-
hydrodynamic boundary layer thicknesses. (ese circum-
stances can be explainedmore by the higher increment in the
magnitude of the nonlinear stretching velocity of the heated
slender sheet as long as the velocity exponent n is upsurged,
which leads to thicker thermohydrodynamic boundary
layers.

Additionally, Figure 3 is plotted to elucidate the
sensitive effect of the wall thickness parameter χ on the
dimensionless velocity and temperature profiles
(f′(η), θ(η)). Seemingly, the fluid flow shows a dual
behaviour concerning the geometrical parameter χ
depending on the nearness or the farness from the
stretching sheet, whereas a thermal enhancement is dis-
closed throughout the fluidic medium. After analysing
carefully the graphical results highlighted in Figure 3, it is
found that the higher values of the wall thickness

parameter χ cause a tenuous increase in the fluid velocity
near the stretching sheet; however, a slower fluid motion is
observed far from the horizontal boundary to get almost a
thinner velocity boundary layer. Since the velocity ex-
ponent n is greater than the unit value in this problem
(i.e., n � 2), the function f(η) takes negative values near
the stretching sheet and decreases with the increasing
values of the wall thickness parameter χ, due to the im-
posed boundary condition f(0) � ((1 − n)χ/(1 + n)). So,
the rising trend revealed for the velocity profile f′(η) near
the stretching sheet against the increasing values of the
geometrical parameter χ can be explicated quite clearly by
invoking the vanishing boundary condition for the di-
mensional transversal velocity v(x, y), considering the
positive sign of the dimensionless horizontal velocity
f′(η) and making use of the transformations defined in
equations (7) and (13) for the expression of v(x, y).
Furthermore, the thermal improvement noticed in the
fluidic medium can be clarified by the blowing impact
arising from the augmentation in the wall thickness pa-
rameter χ.

Rheologically, the Casson parameter β reflects the vis-
coplastic non-Newtonian behaviour of the present boundary
layer flow. Moreover, the Casson viscoplastic fluid model
can be reduced to the Newtonian viscous fluid case just by
escalating the rheological parameter β to an extremely
higher value (i.e., β⟶∞). Also, an increase in the Casson
parameter β rises the plastic dynamic viscosity of the Casson
fluid and decreases the resulting yield stress. (ereby, a
viscous resistance is induced to the flow in the fluidic
medium. For this reason, the fluid velocity lessens with the
escalating values of the Casson viscoplastic parameter β,
while an opposite effect is detected for the fluid temperature
as portrayed in Figure 4. Consequently, the Casson pa-
rameter β has the proclivity to suppress the velocity
boundary layer region and heighten the thermal boundary
layer thickness.
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Figure 10: Influence of Λk on f′(η) and θ(η).
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Via a physical standpoint, the temperature dependency
involved in the dynamic viscosity and thermal conductivity
expressions causes a fully mathematical coupling between
the conservation equations (i.e., momentum and energy
equations) and engenders an implicit effect of the Prandtl
number Pr on the fluid flow and heat transfer features as
depicted in Figure 5. Due to the augmenting values of the
Prandtl number Pr, the temperature of the medium di-
minishes and the fluid slows down slightly near the iso-
thermal horizontal boundary, while an accelerating impact is
achieved after a certain distance from the sheet, which in
turn provides an enhancement in the velocity boundary
layer thickness. Besides, the Prandtl number Pr illustrates a
direct link between the fluid motion inside the velocity
boundary layer region and its corresponding temperature,
since it represents the ratio between the kinematic viscosity
υ (� μ/ρ) of the viscoplastic medium to its thermal diffu-
sivity α (� k/(ρCP)). (erefore, an enhancement in the
Prandtl number Pr weakens the thermal diffusive influence
in front of the momentum diffusive impact. As a result of the
viscous dominance, the thermal boundary layer becomes
more thinner and the fluid motion shows a weak deceler-
ation near the stretching sheet, whilst an opposite behaviour

is perceived whenever we get away from the isothermal sheet
because of the thermophysical interference noticed between
the impacts of the variable properties arising from the
temperature-dependent parameters (Λμ,Λk) introduced in
the governing equations.

On the one hand, the illustrative variations in the di-
mensionless velocity and temperature profiles (f′(η), θ(η))
against the varying values of the magnetic parameterM are
established graphically in Figure 6. From this graphical
visualization, it is evident that an increase in this flow pa-
rameter leads to a lessening in the fluid velocity.(is slowing
behaviour demonstrated for the fluid velocity towards the
intensifying values of the magnetic parameter M can be
attributed to the existence of Lorentz forces, which are
happened in the electrically conducting fluidic medium due
to the presence of an external magnetic field applied
transversely to the fluid flow. Besides, these magnetic forces
act meaningfully as a resistive factor by weakening the ve-
locity boundary layer thickness as evidenced in Figure 7(a)
and enlarging its corresponding thermal width. (ese facts
are occurred because of both the deceleration in the fluid
motion and the elevation in its temperature. On the other
hand, Figure 7(b) proves that the flow patterns are affected

Table 4: Various numerical results for Cfr via GDQLLM and SLLM.

n χ β Pr M RD Λμ Λk
Cfr Slope (linear regression)

GDQLLM SLLM GDQLLM SLLM

1

0.5 0.5 7 2 1 0.8 1

3.438280856 3.438280856

0.15161435 0.15161436
2 3.530392147 3.530392147
3 3.697942773 3.697942774
4 3.887811830 3.887811831

2

0.25

0.5 7 2 1 0.8 1

3.739895693 3.739895694

−0.83621408 −0.83621408
0.5 3.530392147 3.530392147
0.75 3.320809783 3.320809783
1 3.112911418 3.112911419

2 0.5

0.2

7 2 1 0.8 1

5.586732509 5.586732511

−6.76385072 −6.76385072
0.3 4.505453930 4.505453930
0.4 3.910624300 3.910624301
0.5 3.530392147 3.530392147

2 0.5 0.5

7

2 1 0.8 1

3.530392147 3.530392147

0.00638393 0.00638393
15 3.818808341 3.818808341
30 4.071512266 4.071512266
120 4.404651535 4.404651535

2 0.5 0.5 7

0

1 0.8 1

2.583396991 2.583396991

0.34450298 0.34450298
2 3.530392147 3.530392147
4 4.161445943 4.161445944
6 4.669732284 4.669732284

2 0.5 0.5 7 2

0

0.8 1

3.678361324 3.678361324

−0.10859003 −0.10859003
1 3.530392147 3.530392147
2 3.427353550 3.427353550
3 3.350740762 3.350740762

2 0.5 0.5 7 2 1

0

1

6.578902921 6.578902924

−3.78728476 −3.78728476
0.3 5.801347590 5.801347593
0.5 5.118622501 5.118622503
0.8 3.530392147 3.530392147

2 0.5 0.5 7 2 1 0.8

0 3.687725276 3.687725277

−0.11216701 −0.11216701
1 3.530392147 3.530392147
2 3.425271152 3.425271152
3 3.348875572 3.348875573
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noticeably by the presence of an externally applied magnetic,
in which the values of the dimensionless stream function
decline notably, due to the slowing down of the fluid velocity
within the momentum boundary layer. Moreover, the
streamline shapes become wider and tend to be parallel as
long as we go away from the stretching sheet.

Energetically, the thermal radiation parameter
RD(� (16σeT

3
∞)/(3βRk)) represents the effective contribu-

tion rate between the radiative and conductive heat trans-
ports. So, an intensification in the radiation parameter RD
causes an increase in the radiative manner of heat transfer,
which in turn leads to a strengthening effect on the fluid
motion near the hot slender sheet with an enhancement in
both the temperature field and its boundary layer thickness
as emphasized graphically in Figure 8. Also, it is witnessed
that the fluid motion shows a slowing behaviour towards an
upsurge in the values of the radiation parameter RD when
going away from the stretching sheet, which implies a re-
duction in the velocity boundary layer thickness.

Additionally, the inevitable features of the variable
viscosity parameter Λμ(> 0) on the dimensionless velocity
and temperature distributions
(f′(ηi), θ(ηi))/1≤ i≤N and 0≤ ηi ≤ η∞{ } are underlined

obviously in Figure 9. From this graphical representation, it
is revealed that the rising values of the variable viscosity
parameter Λμ have a decelerating impact on the horizontal
fluid motion, while a thermal enhancement is depicted in the
medium due to this increasing variation in the control
parameter Λμ. As mentioned before, the linear temperature
dependency adopted for the physical propriety μT implies
that the variable viscosity parameterΛμ has a declining effect
on the dynamic viscosity μT, which results in turn to a shear-
thinning rheological characteristic for the studied non-
Newtonian fluid. Indeed, the increasing values of the vari-
able viscosity parameter Λμ cause a stronger temperature
difference (Tw − T∞ ) between the stretching sheet and the
free-stream fluid. So, larger values of the variable viscosity
parameter Λμ increase the fluidity of the medium and
strengthen the fluid motion in the vertically upward di-
rection as compared with its horizontal flow. For this reason,
a diminishing trend is seen for the hydrodynamic boundary
layer thickness, while an opposite upshot is found for the
thermal boundary layer thickness.

Unlike the aforediscussed results for the variable
viscosity parameter Λμ, the consequences of supposing a
linear temperature dependency for the thermal

Table 5: Various numerical results for Nur via GDQLLM and SLLM.

n χ β Pr M RD Λμ Λk
Nur Slope (linear regression)

GDQLLM SLLM GDQLLM SLLM

1

0.5 0.5 7 2 1 0.8 1

2.328014017 2.328014017

−0.12682904 −0.12682904
2 2.018911882 2.018911882
3 1.935477626 1.935477626
4 1.933061942 1.933061942

2

0.25

0.5 7 2 1 0.8 1

2.480970502 2.480970502

−1.71716862 −1.71716862
0.5 2.018911882 2.018911882
0.75 1.588471020 1.588471020
1 1.193476939 1.193476939

2 0.5

0.2

7 2 1 0.8 1

2.359394987 2.359394987

−1.13000738 −1.13000738
0.3 2.212663880 2.212663880
0.4 2.104105813 2.104105813
0.5 2.018911882 2.018911882

2 0.5 0.5

7

2 1 0.8 1

2.018911882 2.018911882

0.01118628 0.01118628
15 2.926415233 2.926415233
30 3.704016463 3.704016463
120 3.821481472 3.821481472

2 0.5 0.5 7

0

1 0.8 1

2.478226379 2.478226379

−0.17754976 −0.17754976
2 2.018911882 2.018911882
4 1.682903617 1.682903617
6 1.406564006 1.406564006

2 0.5 0.5 7 2

0

0.8 1

1.609470214 1.609470214

0.29129307 0.29129307
1 2.018911882 2.018911882
2 2.293768176 2.293768176
3 2.488828352 2.488828352

2 0.5 0.5 7 2 1

0

1

2.688132140 2.688132140

−0.82609556 −0.82609556
0.3 2.561008484 2.561008484
0.5 2.429164586 2.429164586
0.8 2.018911882 2.018911882

2 0.5 0.5 7 2 1 0.8

0 1.759358147 1.759358147

0.20547491 0.20547491
1 2.018911882 2.018911882
2 2.218779372 2.218779372
3 2.377652036 2.377652036
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conductivity kT on the dimensionless velocity and tem-
perature profiles (f′(η), θ(η)) are underscored in Fig-
ure 10. Generally, an elevation in the variable thermal
conductivity parameter Λk leads to an important en-
richment in the fluid thermal conductivity, which in turn
improves the fluid temperature. However, a significant
depletion in the dynamic viscosity μT is inspected within
the fluidic medium due to the augmentation in its li-
quidity. Keeping in mind that the flow and heat transport
mechanisms are notably influenced by the thermal con-
ductivity along the transverse direction, the fluid motion
is reinforced near the heated starching sheet with the
increasing values of the variable thermal conductivity
parameter Λk, while a reverse trend is seen away from the
stretching sheet because of the vertical motion tendency.
Consequently, the variable thermal conductivity param-
eter Λk has a diminishing influence on the hydrodynamic
boundary layer thickness, whilst an enlargement is no-
ticed for the thermal boundary layer zone.

By applying the statistical procedure SLRM [47–49] on the
accurateGDQLLMand SLLMdatasets generated for the present
viscoplastic flow model, the fluid flow and heat transfer features
against the rising values of each involved flow parameter
(i.e., n, χ, β, Pr,M, RD,Λμ, andΛk) are studied systematically
based on the reduced physical quantitiesCfr andNur arranged
in Tables 4 and 5. From these tabular demonstrations, it is found
that the surface frictional effect arising from the amplifying
values of the engineering quantity Cfr can be minimized either
by intensifying the values of wall thickness parameter χ, Casson
fluid parameter β, radiation parameter RD, variable viscosity
parameter Λμ, and variable thermal conductivity parameter Λk
or by lowering the values of velocity power parameter n, Prandtl
number Pr, and magnetic parameter M. However, an en-
hancement in the surface heat transfer rate can be attained either
by mounting the values of the parameters Pr, RD, and Λk or by
lessening the values of the parameters n, χ, β, M, and Λμ.

8. Concluding Remarks

Numerous interesting physical and mathematical insights
have been realistically drawn for the present MHD radiative-
convective flow problem in the case of an enhanced Casson
viscoplastic fluid having temperature-dependent thermo-
physical properties (i.e., dynamic viscosity and thermal
conductivity) and moving horizontally over an irregular
isothermal stretching sheet by employing an innovative
numerical approach, called the generalized differential
quadrature local linearization method (GDQLLM). In this
framework, noteworthy GDQLLM outcomes have been
derived from this numerical investigation, which can be
itemized as follows:

(i) (e proposed GDQLLM algorithm exhibits ex-
cellent robustness and flexibility towards the
present nonlinear flow problem

(ii) (e GDQLLM results can be fastly reached with a
higher level of precision with a scarce number of
iterations

(iii) (e fluid velocity profiles show a decreasing be-
haviour against the flow parameters β, M, and Λμ,
while a hastening trend is noticed for larger values
of the parameter n

(iv) (e fluid motion can be strengthened slightly near
the stretching sheet either by escalating the values
of χ, RD, andΛk or by lessening only the value of Pr,
whilst opposite dynamical features are revealed for
these parameters away from the stretching sheet

(v) Larger values of n, χ, β, M, RD, Λμ, and Λk yield a
significant enhancement in the fluid temperature,
while a reverse thermal feature is depicted for the
mounting values of Pr

(vi) (e strength of the resulting surface drag forces can
be reduced either by escalating the values of χ, β,
RD, Λμ, and Λk or by weakening the values of n, Pr,
and M

(vii) An enrichment in the surface heat transfer rate can
be achieved either by intensifying the values of Pr,
RD, and Λk or by lessening the values of n, χ, β,M,
and Λμ
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