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Abstract—Common spatial pattern (CSP) method is widely
used in brain machine interface (BMI) applications to extract
features from the multichannel neural activity through a set of
spatial projections. The CSP method easily overfits the data when
the number of training trials is not sufficiently large and it is
sensitive to daily variation of multichannel electrode placement,
which limits its applicability for everyday use in BMI systems.
To overcome these problems, the amount of channels that is
used in projections, should be limited. We introduce a spatially
sparse projection (SSP) method that exploits the unconstrained
minimization of a new objective function with approximated �1
penalty. The SSP method is employed to classify the two class
EEG data set. Our method outperforms the standard CSP method
and provides comparable results to �0 norm based solution and
it is associated with less computational complexity.
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I. INTRODUCTION

The BMI technology aims to help disabled people to
establish communication with their environment solely by their
brain signals. With the recent advances in electrode design and
recording technology, the number of recording channels used
in BMI applications is increasing to capture signals from a
larger area of the brain or to get more information from smaller
regions using dense electrode grids. Therefore, a dimension
reduction algorithm needs to be employed to decrease the
correlation between channels and improve the signal to noise
ratio (SNR). In this scheme, the CSP algorithm is widely
used due to its simplicity and lower computational complexity
to extract features from high-density recordings both using
noninvasive and invasive modalities [1], [2].

Despite the benefits of the CSP method, it also has a
number of drawbacks. One major problem of the CSP is that
it generally overfits the data when it is recorded from a large
number of electrodes and when there is limited number of
train trials. Moreover, the chance that CSP uses a noisy or
corrupted channel is linearly increased with increasing number
of recording channels. Robustness over time is also a major
drawback in CSP applications [3], [4]. Since all channels are
used in spatial projections of CSP, the classification accuracy
may reduce in case the electrode locations slightly change
in different sessions. This requires almost identical electrode

positions over time, which is difficult to realize [5]. The
sparseness of the spatial filter might have an important role
to increase the robustness and generalization capacity of the
BMI system.

The CSP method minimizes the Rayleigh Quotient (RQ)
of the spatial covariance matrices to achieve the variance
imbalance between the classes of interest. The RQ is defined
as

R(w) =
wTAw

wTBw
(1)

where A and B are the spatial covariance matrices of two
different classes and w is the spatial filter that we want to
find. One way to reduce the number of channels used in
the projection w, is to transform the CSP algorithm into a
regularized optimization problem in the form of

L(w) = R(w) + λ‖w‖ (2)

where R(w) is the objective function, ‖w‖ is the �1 norm
based penalty and λ is a constant that controls the sparsity of
the solution.

A number of studies investigated putting the CSP into
alternative optimization forms to obtain a sparse solution for
it. Recently, in [6] quasi �0 norm based criterion was used
for obtaining the sparse solution which resulted an improved
classification accuracy. Since �0 norm is non-convex, combi-
natorial and NP-hard, they implemented greedy solutions such
as Forward Selection (FS) and Backward Elimination (BE)
to decrease the computational complexity. It has been shown
that BE was better than FS in terms of classification error but
associated with very high complexity making it difficult to use
in rapid prototyping scenarios. In [7] the authors converted
CSP into a quadratically constrained quadratic optimization
problem with �1 penalty; others used an �1/�2 [3], [8] norm
based solution. These studies have reported a slight decrease
or no change in the classification accuracy while decreasing
the number of channels significantly.

In this paper, we construct a computationally efficient
spatially sparse projection (SSP) based on a novel objective
function with similar characteristics to RQ. This new objective
function can be minimized in the form of (2) to address the
drawbacks of regular CSP method. We show that our new
objective function has the same minimization solution as RQ
and it depends on the magnitude of the spatial filter. The
magnitude dependency of our new objective function allows
us to use a continuous and differentiable function approximat-
ing �1 norm [9] as regularization term in an unconstrained978-1-4673-5563-6/13/$31.00 c©2013 IEEE
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optimization framework and can be solved using standard
algorithms with low complexity. The rest of the paper is
organized as follows. In the following section, we describe
our novel objective function and its relation to RQ. Then we
explain its use in an unconstrained optimization problem. Next,
we apply our method on the BCI competition III EEG dataset
IVa [10] involving imaginary foot and hand movements. We
also compare our method to standard CSP and the �0 norm
based BE solution given in [6]. Finally, we discuss our results
and provide future directions.

II. MATERIAL AND METHODS

A. Standard CSP and a New Objective Function

In the CSP framework, the spatial filters are a weighted
linear combination of recording channels, which are tuned
to produce spatial projections maximizing the variance of
one class and minimizing the other. The spatial projection is
computed using

XCSP = WTX (3)

where the columns of W are the vectors representing each
spatial projection and X is the multichannel EEG data.

Maximizing the RQ (1) is identical to the following opti-
mization problem.

maximize
w

wTAw

subject to wTBw = 1.
(4)

After writing this optimization problem in the Lagrange
form and taking the derivative with respect to w, we obtain
the identical problem in the form of Aw = μBw which is the
Generalized Eigenvalue Decomposition (GED). The solutions
of this equation are the joint eigenvectors of A and B and μ
is the associated eigenvalue of a particular eigenvector.

We assume that the discriminatory information is embed-
ded in a few channels where the number of these channels is
much smaller than the actual number of all recording channels.
So the discrimination can be obtained with a sparse spatial
projection, which uses only informative channels. In this
scheme assume that the data was recorded from K channels.
We are interested in obtaining a sparse spatial projection using
an unconstrained minimization problem in the form of (2),
where w has only k nonzero entries, card(w) = k and k � K.

Since R(w) does not depend on the gain of w, the optimizer
arbitrarily reduces the gain of w to minimize regularization
term λ‖w‖ after finding the direction that minimizes R(w).
Thus, the solution of the optimization problem that uses R(w)
as an objective function is essentially the same as the GED
solution.

To find a sparse solution we need to have an objective
function that depends on the gain of w. In this scheme, we
replaced R(w) with the following objective function.

G(w) = wTAw +
1

wTBw
(5)

This function is bounded from below and has interesting
properties. Let us define a = wTAw and b = wTBw . If we

define RQ in terms of a and b such that R = a/b then our
new objective function can be expressed as

G(w) = a+
1

b
=

ab

b
+

1

b
= Rb+

1

b
(6)

The derivative of G(w) with respect to R is equal to b
which is always positive. This indicates that our objective
function G(w) decreases with a decrease in R value. After
taking the derivative of G(w) with respect to b and finding the

roots of the derivative, we note that b is equal to
√
R−1. By

inserting b value into the Equation 6 we obtain the minimum
value of G(w) as 2

√
R. This result shows that the direction

that minimizes R also minimizes G(w).

We plug G(w) into unconstrained optimization formulation
in (2) as the objective function. Rather than working to solve
(2) with a non-differentiable �1 penalty, we replaced it with
a twice differentiable smooth version of �1 (epsL1) which is
sufficiently close to minimizing �1 [9]. The main advantage
of this approach is that, since epsL1 and G(w) are both
twice differentiable, we can directly apply an unconstrained
optimization method to minimize L(w) [11].

The solution w that minimizes the function L(w) tends
to become sparse as λ gets bigger. The entries of w generally
were not exactly equal to zero, so we normalized w to its max-
imum absolute value and eliminated the weights consequently
corresponding channels that do not exceed a predefined thresh-
old (=10−2). We used "fminunc" function of Matlab to find
the solution of our unconstrained minimization problem. We
computed the desired cardinality by implementing a bisection
search [12] on the λ. The upper border of λ was determined
initially using the G(wc)/‖wc‖ ratio where wc is the full CSP
solution. In case the initial upper border results a cardinality
larger than the desired value, we kept doubling the λ parameter
until we obtained a λ that results a cardinality which is less
than or equal to the target value.

Following the above procedure, we computed the first
spatial filter w that minimizes the G(w) which also minimizes
the R(w). The solution that maximizes R(w) is also a useful
spatial filter. Therefore, we interchanged the matrix A and
B to find a solution that maximizes R(w). In order to find
multiple sparse filters we deflated the covariance matrices with
sparse vectors using the Schur complement deflation method
described in [13].

B. EEG Dataset

We applied the SSP method on two class EEG of the BCI
competition III dataset IVa [10]. The dataset is recorded from
five subjects (aa, al, av, aw, ay) who were asked to imagine
either right foot or right index finger movements. The sampling
rate of the data was 1 kHz and data was recorded from 118
channels. The EEG signal was filtered in the range of 8-30 Hz.
There were 140 trials available for each class. Once again, one
second data following the cue was used in the analysis.

The signal was transformed into four spatial filters by
taking first and last two eigenvectors for each CSP methods.
After computing the spatial filter outputs, we calculated the
energy of the signal and converted it to log scale for each
sparse filter and we used them as input features to lib-SVM
classifier with an RBF kernel [14].
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We compared the SSP to the standard CSP and to the �0
norm based BE method of [6] as it provided superior results
in terms of classification accuracy and reduced cardinality. We
studied the classification accuracy as a function of cardinality.
With the purpose of finding optimum sparsity level for the
classification, we computed several sparse solutions, with
decreasing number of cardinality on the training data. The
sparse CSP methods were employed with k ∈ {80, 60, 40,
30, 20, 15, 10, 5, 2, 1} levels. For each level we computed the
corresponding RQ value. We studied the inverse of the RQ
(IRQ) curve and determined the optimal cardinality where its
value suddenly dropped indicating we started to lose informa-
tive channels.

The dataset contains 140 trials per class and subject. We
used 70 trials in training to estimate the sparse filters, and 70
trials for testing. The value of the ε in epsL1 regularization
term was chosen to be 10−6.

III. RESULTS

We observed that for the SSP method, any particular λ
value can lead to different cardinality and normalized IRQ
values for different subjects as shown in Fig. 1. In particular,
this inter subject variability of IRQ did not allow us to use
the same λ value for all subjects (See Fig. 1a). However, the
variability of IRQ values of different subjects was lower when
we fixed the cardinality as shown in Fig. 1b. Consequently, due
to this reduced variability and to compare our method to the BE
technique, we studied the classification error as a function of
cardinality. In order to decide on the optimal cardinality level
to be used on the test data, the IRQ values were computed on
the training data, scaled to their maximum value and averaged
over subjects. In the following step, we computed the slope of
the IRQ curve and normalized it to its maximum value to get
an idea about the relative change in the IRQ.
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Figure 1: Normalized IRQ values are shown in (a). The
Normalized IRQ values vs cardinality for each subject is shown
in (b).

We depicted the change in IRQ values for each cardinality
as shown in Fig. 2a. As expected, decreasing the cardinality
of the spatial projection resulted to a decrease in the IRQ
value. To determine the optimum cardinality to be used in
classification on the test data, we selected the cardinality that is
below 10 % of the maximum relative change (See the dashed
lines in Fig. 2a). The cardinality value was found to be 15
for the SSP method. For the BE method this value was 10.
These indices perfectly corresponded to the elbow of the IRQ
curve, which indicates loss of informative channels. In Table I,
we provide the classification results and selected cardinalities

using different methods including SSP, CSP and �0 based
greedy solution, BE. In order to give a flavor about the change
in error rate versus the cardinality, we provided the related
classification error curves in Fig 2b. Although the minimum
classification error was obtained at cardinality 5 for the BE
method, we noticed that we identified the optimum cardinality
as 10 on the training data.

Normalized IRQ

Normalized
∂IRQ

∂C

(a) (b)

Figure 2: The average IRQ of all subjects versus cardinality
(a). The red line is the 10 percent threshold that determines the
optimum cardinality to be used in the test data. The optimum
cardinality level is 15. The classification error curves of SSP
and BE methods versus the cardinality are given in (b). The last
data point corresponds to the results obtained from standard
CSP which uses all channels.

On all subjects we studied, we observed that the SSP
method consistently outperformed the CSP method. As ex-
pected the full CSP solution did not perform as good as the
other sparse methods and likely overfitted the training data. We
obtained comparable results on EEG data using the SSP and
BE methods (p-value = 0.5, paired t-test). The error difference
between regular CSP and SSP is 3.8%. We studied the effect
of the amount of training data on the classification accuracy
and presented the results in Fig. 4a. When a small number
of training trials, as low as 15 are used in the EEG dataset,
the difference between the sparse and standard CSP technique
was more than 6%. Interestingly, with increasing number of
training trials the SSP method consistently provided better
results and the difference remained between 3-4%. There was
no noticeable difference between SSP and BE.

Fig. 3 illustrates the distribution of the spatial filters
obtained using SSP and CSP algorithms for all subjects. We
observed that the SSP filter coefficients are localized on the
left hemisphere and the central area, which is in accordance
with the cortical regions related to right hand and the foot
movement generation.

Arvaneh et al. [8] used the �1/�2 ratio as a penalty term
and they applied their algorithm to the BCI competition III
EEG dataset IVa [10] which we used in this paper as well.
They achieved a mean error rate of 17.7 ± 15.4% using

Table I: Classification error rates (%) for each subject

Cardinality aa al av aw ay Avg

BE 10 13.6 2.9 30.7 2.1 5.0 10.9

SSP 15 19.3 1.4 23.6 4.3 5.7 10.9

CSP 118 23.6 3.6 32.1 2.9 11.4 14.7
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Figure 3: The CSP and SSP filters for hand and foot movement
imagination.

22.6± 11 channels. Here, we compared our method with the
study of Arvaneh et al. by extracting one filter from each
end of the sparse solutions. The SSP method achieved a mean
error rate of 12± 11.3% with an average number of channels
25.6±2.3. The obtained results indicated that the SSP method
provided a significant improvement (p-value= 0.024, paired
t-test) over the �1/�2 based algorithm on the classification
accuracy without any significant difference between number
of channels used (p-value=0.28).
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Figure 4: (a) The minimum error vs. the number of trials. (b)
The average elapsed time to estimate a spatial filter with a
cardinality of two vs. the number of total recording channels.

In order to compare the computational complexity of SSP
method to the BE, we computed sparse filters with a cardinality
of two from an increasing number of recording channels
on simulated data. The training was performed on a regular
desktop computer with 4 GB of RAM and equipped with
a CPU running at 2.66 GHz. The elapsed time per filter
computation increased exponentially for the BE method and
linearly for the SSP method as shown in Fig. 4b. With 128
channels, the BE algorithm computed a single spatial filter
with two nonzero entries in 90 seconds. For the SSP method
with the same setup above, the elapsed time was less than a
second. Although, we used the relative change in the IRQ to
identify the optimum sparsity level, one can also run a typical
k-fold cross validation procedure to identify the optimum level.
However, in such a case training the system with BE method
will take several hours which may not be feasible for BMI
applications. On the other hand with the SSP method training
through cross validation can be executed in a few minutes.

IV. CONCLUSION

The need for the sparse filters is apparent when there is
large number of recording electrodes and insufficient amount
of training data. To minimize overfitting on the training data
and eliminate noisy channels, we introduced a spatially sparse
projection technique (SSP) based on a novel objective function.
Unlike the RQ, this new objective function has a dependency
on the filter magnitude. By using an approximated �1 norm, we
computed the sparse spatial filters through an unconstrained
minimization formulation with standard optimization algo-
rithm. We applied our method to EEG dataset and compared
its efficiency to standard CSP, and to a �0 norm based greedy
technique. The SSP method outperformed the standard CSP
and provided comparable results to �0 norm based method,
which is associated with higher computational complexity. The
SSP method provided 26% decrease in the error rate. The
SSP algorithm was able to reach a minimum error rate with
only 15 channels. Our results indicate that SSP method can
be effectively used to extract features from EEG dataset with
large number of recording channels.
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