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Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification
wherein negative data sampling is still an open problem to be addressed. The commonly used random
sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile
rational constraints are seldom exerted onmodel selection to reduce the risk of false positive predictions for
most of the existing computational methods. In this work, we propose a novel negative data sampling
method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein
interactions betweenHTLV retrovirus andHomo sapiens, wherein one-class SVM is used to choose reliable
and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive
feedback for rationalmodel selection. Computational results suggest that one-class SVM ismore suited to be
used as negative data sampling method than two-class PPI predictor, and the predictive feedback
constrained model selection helps to yield a rational predictive model that reduces the risk of false positive
predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based
clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis ofHTLV
retrovirus.

P
rotein-protein interaction (PPI) plays an important role inmediating biological processes, cellular signaling
pathways and development of organismal systems. Accurate mapping of the proteome-wide interactome is
a central problem of proteomics and system biology. Although recent years have witnessed much progress

in experimental identification and computational prediction of PPIs1, high risk of false discovery rate is still a
problem to be effectively addressed1,2. For instances, in vitro detection methods such as affinity purification are
prone to capture false interactions, in vivo yeast two-hybrid (Y2H) is likely biased towards non-specific interac-
tions3 and gene co-expression that could induce synthetic lethality is not efficient to detect pathogen-host protein
interactions4,5. Recent critical assessments of experimentally obtained PPI data suggest that these data exhibit an
unacceptably high fraction of false positives and low agreement between each other6–8. Meanwhile, computational
methods also takes the risk of high false discovery rate for the following reasons. Firstly, the experimentally
identified PPI data are likely to contain a certain level of noise (false interactions). Secondly, the negative data
needed for two-class PPI prediction are usually obtained by random sampling9–15, which may introduce consid-
erable false negative. Thirdly, model selection is generally conducted by cross validation on the training PPI data,
and the trained models, if used for proteome-wide predictions, are prone to overpredictions. For pathogen-host
PPI prediction, these issues become worse because the training data available are much smaller and less repres-
entative. Thus the intra-speciesmodels12–20 are likely to yieldmore false positive predictions than the inter-species
PPI prediction models9–11.

At present the negative data required for computational reconstruction of PPI networks are in general not
available. Recently some negative data from biological experiments have been collected into database, e.g. the
reference set of negatome21, but the negative data are not enough train a two-class classifier. To meet the need of
computational modeling, random sampling is often used to generate negative data9–15. The assumption behind
random sampling is that the non-interactome space is much larger than the interactome space, so that random
sampling could hit the non-interactome space with a large probability to sample true negatives (non-interac-
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tions). However, random sampling is supposed to introduce uncer-
tainty and complexity to the model behaviour, simple as it is. There
are several major factors that affect model performance, such as the
learning algorithm, feature construction method and the data qual-
ity. The uncertainty introduced by random samplingmakes it hard to
discriminate which factor leads to the poor model performance. For
instance, Yu et al.22 cast a doubt on the PPI predictive ability of simple
sequence k-mer feature construction, while Park et al.23 argued that it
was not the k-mer feature construction but the random sampling
method that resulted in poormodel performance. Nomatter whether
the arguments catch the point, the quality of negative data is
undoubtedly critical to the model performance. To obtain reliable
negative data, Ben-Hur et al.24 proposed to exclude those subcellular
co-localized proteins, andMei25 further showed that exclusiveness of
subcellular co-localized proteins outperformed random sampling
without introducing predictive bias. Intuitively, the negative data
obtained by excluding those subcellular co-localized proteins seem
to be more reliable but less representative, because the negative data
do not represent the proteins pairs that are subcellular co-localized
but do not interact. Tomake a detour around negative data sampling,
one-class learning/clustering methods have been proposed for
PPI prediction, e.g. association rule mining17, one-class SVM26,27,
ensemble non-negative matrix factorization based clustering28, etc.
These methods, though much simplified, are more likely to yield a
large fraction of false positive predictions, because they do not learn
the negative (non-interaction) patterns. A wise choice is not to evade
negative data sampling but to properly ensure that the obtained
negative data are reliable and representative.
Model selection is a second critical concern of computational

modeling for PPI prediction. Most of the existing methods generally
conduct model selection by optimizing model parameters and
empirically tuning hyper-parameters merely on the training data9–19.
The assumption behind the practice is that amodel optimally trained
on the training PPI data can generalize well to the gigantic unseen
space of protein pairs. This assumption does not always hold true,
especially when the training PPI data is rather small. To gain know-
ledge about the quality of model selection, one simple and natural
method is to use themodel to predict all possible (proteome-wide) or
a large percentage of protein pairs, and then check the false positives.
However, lack of experimental evidences makes it hard for us to
determine the false positive rate. Nevertheless, the rationality of
the predictions still can be estimated through the predicted positive
rate. Jansen et al.2 has estimated that the expected number of nega-
tives (non-interacting protein pairs) is several orders of magnitude
higher than the number of positives (interacting protein pairs). This
estimation can be used to check the quality of model selection. If the
predicted positives account for a large percentage of the proteome-
wide protein pairs (e.g. .50%), we can infer that the predictions go
against the estimation in ref2 and thus there is a large fraction of false
positive predictions. Moreover, large predicted positive rate contra-
dicts with the assumption of large negative (small positive) space
behind random sampling. If the model is trained on the negative
data sampled by random sampling (small positive space) and the
model yields a large percentage of positives (large positive space),
we can see an obvious paradox between the assumption of random
sampling and its outcome. After checking the outcomes of the ran-
dom forest method18, we find that the 25 Salmonella proteins are
predicted to interact with 22,651 human proteins (nearly all known
human proteins), indicating a certain degree of overprediction. We
can see that it is necessary to analyse the proteome-wide predictions
and impose rational constraints on model selection. For large-scale
intra-species PPI prediction, the computation of model selection will
be daunting, but the computation is acceptable for pathogen-host
PPI prediction.
Feature construction is a third important concern of computa-

tional modeling for PPI prediction. As compared to intra-species

PPI networks reconstruction (e.g. yeast PPI network9, Arabidopsis
thaliana PPI network10, human PPI network11, etc.), inter-species
pathogen-host PPI networks reconstruction is more challenging in
that the pathogen-host PPI data available is generally much smaller.
To improve the model performance, most of the existing methods
generally leverage a catalog of biological feature information, e.g.
binding motif, gene expression profile, gene co-expression ,gene
ontology, sequence k-mer, post-translational modification, protein
structural information and PPI network topology12–14,29,30, etc.
Among these types of feature information, the sequence information
of protein achieves relatively moderate discriminative ability22,23,
though less expensive to obtain. Tastan et al.12 has claimed that gene
ontology (GO) is one of the strongest indicators for host-pathogen
PPI prediction when combined with other feature information.
Moreover, gene ontology alone has been reported to achieve sat-
isfactory performance for pathogen-host PPI prediction25 and
intra-species PPI prediction29. In spite of strong discriminative abil-
ity, non-sequence information (e.g. gene ontology, spatial structural
information, gene co-expression, etc.) has the drawback that the
feature information is generally not complete. To overcome the
drawback, proper substitution of incomplete feature information
has been deliberately proposed18,25.
In this work, we address the two concerns of negative data sam-

pling and rational constraints on model selection to reliably recon-
struct the proteome-wide protein interaction networks between
HTLV retrovirus and Homo sapiens. We use one-class SVM to sam-
ple reliable and representative negative examples, and use two-class
SVM proteome-wide predictive feedback as constraints on one-class
SVM model selection. Reliability demands that the negative exam-
ples are distributed far away from the positive examples with low risk
of false negatives, and representativeness demands that the negative
examples supporting two-class decision boundary should be near to
the positive examples so as to reduce the risk of false positives. The
two seemingly opposite requirements suggest that a proper negative
data sampling method should achieve good trade-off between reli-
ability and representativeness. Here we propose two-class SVM pro-
teome-wide predictive feedback to guide the search of one-class SVM
hyperparameter space, such that the constrained model selection
reduces the risk of false positive predictions. As for feature construc-
tion, we use gene ontology (GO) here to represent proteins in view of
its strong discriminative ability of PPI prediction. To enrich GO
feature information and make up for totally unannotated proteins,
we conduct homolog knowledge transfer via independent homolog
instances as reported in31. Lastly, we conduct gene ontology based
clustering analysis of the predicted HTLV-human PPI networks to
provide valuable cues for understanding the pathogenesis of HTLV
retrovirus.

Methods
Data. Human T-cell lymphotropic viruses (HTLV) belong to the family of
retroviruses. The type 1 HTLV virus (HTLV-1) can induce Adult T-cell Leukemia/
Lymphoma and the type 2 HTLV virus (HTLV-2) does not show known
pathogenesis, though closely related to HTLV-131. Simonis et al.32 used high-
throughput yeast-two-hybrid (HT-Y2H)33,34 to identify 166 interactions between
HTLV and human proteins. There are only three interactions related to HTLV-1 Tax
(Nup62, MAD1L1, Cdc23) that overlap with the 145 interactions from VirusMINT35

and VirHostNet36, accounting for 2.1% recognition rate.
For the convenience of reference, we call S1pos the data from

32 and S2pos the data
from35,36. Additionally, we call S3pos the data from

37. We check the three datasets
against UniprotKB database (http://www.uniprot.org/uniprot/), and remove those
putative HTLV proteins and those HTLV proteins that have no corresponding
accessions in Swissprot database (manually annotated and reviewed part of
UniprotKB). After filtration, S1pos is reduced to 155 interactions, S2pos is reduced to
144 interactions and S3pos contains the HTLV protein p30 only with 42 interactions.
We call Spos (Spos5 S1pos< S2pos< S3pos) the union of the three dataset, and thus Spos
contains 341 interactions. We sample the equal number of negative data for each
HTLV protein in Spos and thus obtain the corresponding negative data SnegThe union
of Spos and Sneg, called S (S5 Spos< Sneg) is used to train two-class SVM for proteome-
wide HTLV-human PPI networks reconstruction. To stringently demonstrate the
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model performance, we also use S1pos and S2pos as mutual independent test data and
use S3pos as literature validation.

GO feature construction. Gene ontology (GO) is used as indicator of HTLV-human
PPI prediction and GO feature construction is conducted as31. The homolog GO
knowledge is treated as independent instance (called homolog instance) to augment
the target instance (the GO information of the proteins themselves). The homologs
are extracted from SwissProt 57.3 database38 using PSI-Blast with default E-value 5
1039 against all species, and the GO terms are extracted from GOA database40. For

each protein i, there are two sets of GO terms, one set denoted as homolog set Si
H

contains the GO terms from the homologs, and the other set denoted as target set Si
T

contains the GO terms from the protein itself. Based on the denotations, we can
formally define two feature vectors for each protein pair (i1, i2) as follows:

B
(i1 ,i2 )
T ½g�~

0,g =[Si1T ^ g =[Si2T

2,g[Si1T ^ g[Si2T

1,otherwise

8

>

>

<

>

>

:
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B
(i1 ,i2 )
H ½g�~

0,g =[Si1H ^ g =[Si2H

2,g[Si1H ^ g[Si2H

1,otherwise

8

>

>

<

>

>

:

ð1Þ

where B
(i1 ,i2 )
T ½g� denotes component g of the target instance B

(i1 ,i2 )
T and B

(i1 ,i2 )
H ½g�

denotes component g of the homolog instance B
(i1 ,i2)
H . Formula (1) means that if the

protein pair (i1, i2) shares the same GO term g, then the corresponding component in

the feature vector B
(i1 ,i2 )
T or B

(i1 ,i2)
H is set 2; if neither protein in the protein pair

possesses the GO term g, then the component is set 0; otherwise the component is set
1. The above definition is symmetrical, so that protein pair (i1, i2) and protein pair (i2,
i1) have identical feature representation. If either set ofGO terms is empty, the feature
vector is defined as null and should be removed:

B
(i1 ,i2)
T ~null,Si1T~w _ Si2T~w

B
(i1 ,i2)
H ~null,Si1H~w _ Si2H~w

(

ð2Þ

One-class SVM based negative data sampling. One-class SVM was originally
proposed for estimating the support of a high-dimensional distribution41 and
detecting novelty/outlier42. Unlike two-class classification, one-class SVMattempts to
derive from the positive data alone one decision boundary, one side of which is
positive and the other side is outlier. The decision boundary can be assumed as a
hyperplane41,42 or a hypersphere43. The assumption of hyperplane is to map the data
into a kernel space so as to construct a hyperplane that is maximally distant from the
origin. Given the training vectors xig Rn, i 5 1, 2, …, l that possess positive labels
only, the primal problem of one-class SVM is formally defined as the following
quadratic program42:

min
v,j,r

1

2
jjvjj2z

1

nl

X

l

i~1

ji{r

subject to (v,w(xi))§r{ji,ji§0

ð3Þ

where ng (0,1) controls the upper bound on the fraction of outliers and the lower
bound on the fraction of support vectors. ji is slack variable, r denotes offset, w(xi) is
mapping function and v is instance weight. The prime problem (2) corresponds to
the following dual problem42:

min
a

1

2

X

i,j

aiajk(xi,xj)

subject to 0ƒaiƒ
1

nl
,
X

i

ai~1

ð4Þ

After the coefficients of the support vectors (ai . 0) are obtained, the decision
function is then defined as follows:

f (x)~sgn(
X

l

i~1

aik(xi,x){r) ð5Þ

where the kernel function k(x, y) is defined as the inner product of two mapping

functions, i.e. k(x, y)5 (w(x)?w(y)), for instance, Gaussian kernel assumes the form:

k(x,y)~ exp ({cjjx{yjj2) ð6Þ

where jjDjj denotes 2-norm of vector D and the hyperparameter c controls the
flexibility of kernel.

One-class SVM is originally developed to learn the patterns inherent in the positive
data and then use the patterns to discriminative outliers from the positive data42.
Recently, one-class SVM has been used as two-class classification26,27 to avoid nega-

tive data sampling, the idea behind which is that the negative class is actually treated
equally as the positive outliers. Unfortunately, the negative data generally do not share
similar patterns with the positive outliers and one-class SVM can not properly define
the two-class decision boundary without learning the negative patterns. Here we use
one-class SVM instead to roughly confine the positive (1) region that contains the
positive data and then sample negative data outside the region. The question is how
much the space of the positive (1) region should be. For the convenience of
description, we denote as positive (1) region the opposite side of the hyperplane from
the origin, and accordingly negative (-) region the other side of the hyperplane. The
more distant the hyperplane is from the origin, the larger the positive (1) region will
be. In this case, the space of the negative (-) region is reduced and the sampling in this
space is supposed to be more reliable, but the positive (1) region is supposed to
containmore errors (outliers and false positives). On the contrary, if the hyperplane is
nearer to the origin, the positive (1) region is reduced and the the negative (-) region
is supposed to contain more false negatives. In a word, the dilemma is that we should
choose the hyperplane far away from the origin or near to the origin, or to say, choose
reliable negative data with high false positive rate or choose reliable positive data with
high false negative rate. The dilemma, though theoretically unresolved42, can be
effectively solved by empirically tuning the parameter ng (0,1). One simple method
is to define a series of parameter ng (0,1) values to control the space of the positive
(1) region. For each parameter ng (0,1) value, together with the kernel parameter c,
we train a one-class SVM model to predict proteome-wide HTLV-human protein
pairs and then choose a portion of reliable and representative negative data from the
negative outcomes (predicted non-interactions). To achieve a proper trade off
between reliability and representativeness, we choose the predicted negatives that are
centered around the negative outcomes, too far or too near negatives are discarded.
Assuming there are n predicted negative data with outcomes Ri , 0, i5 1, …, n, the
mean and standard variance of the outcomes are defined as follows:

m~
1

n

X

n

i~1

Ri

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n{1

X

n

i~1

(Ri{m)2

s ð7Þ

Then the negative data are chosen within the following data indices:

I~ ijRi[(m{s,mzs)f g ð8Þ

To reduce the risk ofmodel bias, the size of the chosen negative data is equal to the size
of positive data (assuming N). We further choose the negative data within the indices
defined by formula (7) with large outcome values.

Ineg~

I1,I2,:::IN jjRI1 jwjRI2 j

w:::wjRIN jw:::wjRIjIj j,

I1,I2,:::IjIj[I

8

>

<

>

:

9

>

=

>

;

ð9Þ

where jIj denotes the cardinality of set I. Using the above described negative sampling
method, we obtain the corresponding negative data for S1pos, S2pos and S3pos, denoted
as S1neg, S2neg and S3neg, respectively. Then the three datasets for two-class SVM
training are defined as S15 S1pos< S1neg, S25 S2pos< S2neg and S35 S3pos< S3neg.
The final training data for proteome-wide HTLV-human PPI prediction is defined as
follows:

Spos~S1pos|S2pos|S3pos

Sneg~S1neg|S2neg|S3neg

S~Spos|Sneg

ð10Þ

Two-class SVM prediction. For each parameter pair (n, c), one-class SVM yields one
negative dataset Sneg, based on which we train a two-class SVM for novel HTLV-
human PPI prediction. Unlike one-class SVM, two-class SVM attempts to maximize
the margin between two-class hyperplanes. The prime problem of two-class SVM is
defined as follows44:

min
v,j,r

1

2
jjvjj2{nrz

1

l

X

l

i~1

ji

subject to yi(v,w(xi)zb)§r{ji,

r§0,ji§0

ð11Þ

where yi denotes the class label of data point xi, the parameter n achieves trade-off
between the upper bound on the fraction of training errors and the lower bound of the
fraction of support vectors. The parameter n of one-class SVM affects the quality of
sampled negative data while the parameter n of two-class SVM affects the
generalization ability of two-class predictive model. Comparing formula (3) with
formula (11), we can see that two-class SVM needs the information of data label but
one-class SVM does not. The prime problem of formula (11) is converted to the
following the dual problem:
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min
a

1

2

X

i,j

yiyjaiajk(xi,xj)

subject to
X

i

yiai~0,
X

i

ai~1,0ƒaiƒ1=nl

ð12Þ

Solving the optimization problem, we can obtain the coefficients of the support
vectors (ai . 0) and further define the decision function as follows:

f (x)~sgn(
X

l

i~1

yiaik(xi,x)zb) ð13Þ

Like one-class SVM, two-class SVM also has one parameter pair (n, c) to be empirically
tuned on the training data (c denotes Gaussian kernel parameter). Here leave-one-out
cross validation (LOOCV) is used to tune the parameter pair (n, c). After parameter
tuning, the trained two-class SVM is used to predict proteome-wide HTLV-human
protein pairs. As described in formula (1) and formula (2), each test protein pair (i1, i2)

is represented by the target instance B
(i1 ,i2 )
T and the homolog instance B

(i1 ,i2 )
H , thus two-

class SVM decision function f yields two outputs for the two instances

f (B
(i1 ,i2)
T ),f (B

(i1 ,i2)
H ). The final decision value for protein pair (i1, i2) is defined as follows:

Decision value(i1,i2)

~

f (B
(i1 ,i2)
T ),B

(i1 ,i2 )
T =null ^ B

(i1 ,i2 )
H ~null

f (B
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H ),B

(i1 ,i2 )
T ~null ^ B
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f (B
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where j?j denotes the absolute value, and then the final label for protein pair (i1, i2) is

defined as follows:

L(i1,i2)~
1,if Decision value(i1,i2)w0

0,otherwise

�

ð15Þ

Proteome-wide predictive feedback constrained model selection. A series of one-
class SVM parameter pair (n, c) values yield a series of candidate negative data Sneg.
The question is how to determine the quality of the negative data. The common
practice is to conduct model evaluation by k-fold cross validation or leave-one-out
cross validation (LOOCV) on the training data S5 Spos < Sneg, and then choose the
negative data Sneg that achieves the best model performance. However, cross
validation model evaluation on the training data is not enough to demonstrate the
true generalization ability. Amodel that behaves well on the training data is still likely
to yield overpredictions like the random forest method for pathogen-host PPI
prediction18. The rationality of the predictions should be very necessarily verified.
Jansen et al.2 has proposed a doctrine that the expected number of negatives (non-
interacting protein pairs) is several orders of magnitude higher than the number of
positives (interacting protein pairs). The doctrine can be used for us to check the
rationality of proteome-wide predictions. Assuming there are p protein pairs to be
predicted, p1 pairs are predicted as positive (interactions) and p2 pairs are predicted as
negative (non-interactions) (p 5 p1 1 p2), the model can be accepted only if the
following rule is observed:

p2

p
~K

p1

p
,Kw1 ð16Þ

Otherwise, there is a high risk of false positive predictions. Here we use formula (16)
as constraint on the model selection of one-class SVM. The parameter pair (n, c) of
with larger K and good two-class SVM LOOCV performance is preferred.

Two-class SVM LOOCV performance is estimated with multiple performance
metrics, such as ROC-AUC (Receiver Operating Characteristic - Area Under Curve),
PR-AUC (Precision recall curve AUC), SP (Specificity), SE (Sensitivity) and MCC
(Matthews correlation coefficient). SP, SE andMCC can be derived confusion matrix
M. Formula (17) defines several intermediate variables, from which we can calculate
SPl, SEl and MCCl for each label as formula (18), and calculate overall MCC as
formula (19).

pl~Ml,l ,ql~
X

L

i~1,i=l

X

L

j~1,j=l

Mi,j,rl~
X

L

i~1,i=l

Mi,l ,sl~
X

L

j~1,j=l

Ml,j

p~
X

L

l~1

pl ,q~
X

L

l~1

ql ,r~
X

L

l~1

rl ,s~
X

L

l~1

sl

ð17Þ

SPl~pl=plzrl ,l~1,2:::,L

SEl~pl=plzsl ,l~1,2:::,L

MCCl~(plql{rlsl)
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(plzrl)(plzsl)(qlzrl)(qlzsl)
p

,l~1,2:::,L

ð18Þ

Acc~
XL

l~1
Ml,l

.

XL

i~1

XL

j~1
Mi,j

MCC~(pq{rs)
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(pzr)(pzs)(qzr)(qzs)
p

ð19Þ

where the confusion matrixMi,j records the counts that class i are classified to class j,
and L denotes the number of labels. AUC is calculated based on the decision values of
two-class SVM.

Results
Proteome-wide negative data sampling. One-class SVM parameter
pair (n, c) tuning. The search space of one-class SVM parameter pair
(n, c) is daunting. To reduce the computational complexity, we
narrow down the space of n and c to the set {2m j 2 11 # m # 21,
m g Z}. For simplicity of annotations, the set is sorted in a
descending order, and we use n and c to denote the index of the set
elements. n 5 i denotes that n assumes the value 22i, c 5 j denotes
that c assumes the value 22j. The two parameters are empirically
tuned by leave-one-out cross validation on the positive data Spos
(Spos 5 S1pos < S2pos < S3pos). Each parameter pair (n, c) value
trains one one-class SVM model (denoted as OCSVM(n, c)) and
OCSVM(n, c) yields corresponding LOOCV performance, e.g.
recognition rate of the known PPIs. We split all the achieved
LOOCV performances into eight ranges (0.1, 0.2), (0.2, 0.3), (0.3,
0.4), (0.4, 0.5), (0.5, 0.6), (0.6, 0.7), (0.7, 0.8) and (0.9, 1). The range
(0.8, 0.9) is omitted because no LOOCV performance falls into the
range. In general, more than one OCSVM(n, c) achieves equivalent
LOOCV performance, i.e their LOOCV performances fall in the
same range. For instance, OCSVM(n 5 1, c 5 3) achieves 11.99%
recognition rate, OCSVM(n 5 10, c 5 3) achieves 14.62% recognition
rate and OCSVM(n 5 8, c 5 3) achieves 11.70% recognition rate, all of
which fall in the same range (0.1, 0.2). For each range, we randomly
select only oneOCSVM(n, c) as representative, e.g.OCSVM(n5 1, c5 3)

for the range (0.1, 0.2), and treat the corresponding (n, c) as
representative parameter pair (n, c). Thus we choose total eight
representative parameter pairs (n, c) as illustrated in Figure 1. The
eight representative parameter pairs (n, c) are arranged in the order
of ascending recognition rate (see dark blue bars in Figure 1). The
OCSVM(n, c) that achieves higher recognition rate is supposed to yield
smaller negative (-) region, implying that sampling negative data in
this region will be more reliable but less representative. After
obtaining the eight trained OCSVM(n, c) models, we then use
OCSVM(n, c) to conduct proteome-wide negative data sampling.

Negative data sampling from OCSVM(n, c) predicted negatives. Now
we use the trained OCSVM(n, c) models to predict all unseen HTLV-
human protein pairs, and then obtain eight negative datasets from
the predicted negatives according to formula (7–9). There are 10
HTLV proteins in the training data Spos and the human proteins
are taken from Swissprot database38. After excluding those known
HTLV-targeted human proteins in Spos and those protein pairs (i1, i2)

that satisfy B
(i1,i2)
T ~null ^ B

(i1,i2)
H ~null, we obtain the whole search

space for each HTLV protein as shown in Table 1. The predicted
positive rates yielded by the eight trained OCSVM(n, c) models are
illustrated with brown bars in Figure 1. FromFigure 1, we can see that
the better LOOCV performance (recognition rate of positive data,
bars in brown) OCSVM(n, c) achieves, the more protein pairs are
predicted to be positive (bars in dark blue). Moreover, with the
increase of LOOCV performance, the ratio of predicted negative rate
to predicted positive rate decreases to be less than 1 (see the latter
four representative parameter pairs (n, c)), which does not observe
the rule (K. 1) defined in formula (16). For instance, OCSVM(n 5 3,

c5 7) achieves 88.35% predicted positive rate (bar in brown), which is
far beyond rational scope. If we choose OCSVM(n 5 3, c 5 7) only
because of its 90.94% LOOCV performance (bar in dark blue), we
will take the risk of high false positive predictions. Thus it should be
cautious to accept a trained one-class SVM only based on its cross
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validation performance on the training data without examining the
rationality of proteome-wide predictions.
In this work, we use one-class SVM to confine negative data

sampling. For each representative parameter pairs (n, c), we obtain

the negative data S1(n,c)
neg

, S2(n,c)
neg

, S3(n,c)
neg

and S(n,c)
neg

from OCSVM(n, c)

predicted negatives according to formula (7–9). Based on the
sampled negative data, we construct three training datasets

S1(n,c)~S1pos|S1(n,c)
neg

, S2(n,c)~S2pos|S2(n,c)
neg

, S3(n,c)~S3pos|S3(n,c)
neg

and S(n, c) 5 S1(n, c) < S2(n, c) < S3(n, c) to train and validate two-class
SVM TCSVM(n, c).

Proteome-wide predictive feedback constrained model selection.
Two-class SVM performance evaluation. For each representative
parameter pairs (n, c), OCSVM(n, c) yields one training data S(n, c),
based on which we train one two-class SVM denoted as TCSVM(n, c).
Like one-class SVM, two-class SVM also has two parameters (n, c) to
be empirically tuned, denoted as (n9, c9) to be distinguished from
one-class SVM parameters (n, c). Here (n9, c9) is tuned by leave-one-
out cross validation within the parameter space {2m j2 5#m#21,
mgZ}. Since (n9, c9) is trivial to us, (n9, c9) will not bementioned any
more. The LOOCV ROC curves of the eight TCSVM(n, c) models are
illustrated in Figure 2. From the points of view of AUC scores, the
eight TCSVM(n, c) models all achieve sound LOOCV performance
with the AUC score $ 0.8807. Other LOOCV performance metrics
(Accuracy,MCC) are shown in Figure 3. The upper sub-part plots the

bar chart of Accuracy and MCC for S(n, c) and the lower three sub-
parts for S1(n, c), S2(n, c) and S3(n, c). Except the second TCSVM(n5 10, c5

4), all the other TCSVM(n, c) models achieve .80% Accuracy and
.0.68 MCC.
Comparing Figure 1, Figure 2 and Figure 3, we can see that the

higher LOOCV performance OCSVM(n, c) achieves, the higher
LOOCV performance TCSVM(n, c) also will achieve on the negative
data yielded by OCSVM(n, c). The results are not surprising. Higher
OCSVM(n, c) LOOCV performance suggests that OCSVM(n, c)

achieves larger positive (1) region and smaller negative (-) region
of the hyperplane. Thus the negative data predicted by OCSVM(n, c)

are more reliable and more easily discriminated from the positive
data by TCSVM(n, c). However, the negative sampled in smaller nega-
tive (-) region of the hyperplane are supposed to be less represent-
ative, so that many so-called unreliable negative data will be
misclassified to positive class, i.e. false positive predictions or over-
predictions. For the reason, the quality of the negative data yielded by
OCSVM(n, c) should be subjected to further verification by proteome-
wide TCSVM(n, c) predictive feedback.

TCSVM(n, c) outcomes constrained model selection. Similar to
OCSVM(n, c), the proteome-wide prediction space for each HTLV
protein is collected by excluding those human proteins in S(n, c) that
theHTLV protein interacts with and does not interact with. Formost
HTLV proteins, the number of human proteins to be predicted is
over 20,000, thus there are more than 200,000 protein pairs to be

Figure 1 | One-class SVMOCSVM(n, c) parameters tuning. Eight representative parameter pairs (n, c) are chosen from the parameter space according to

OCSVM(n, c) LOOCV performance. The blue bars illustrate the recognition rate of the training positive data and the brown bars illustrate the predicted

positive rate of proteome-wide predictions by OCSVM(n, c).

Table 1 | Statistics of human proteins to be predicted and percentage of predicted interactions for each HTLV protein. The upper part shows
the number of protein pairs to be predicted byOCSVM(n, c), whose predicted negatives will be sampled as negative data. The lower part
shows the predicted positive rate achieved by TCSVM(n 5 1, c 5 3), which is used as constraint on OCSVM(n, c) model selection

Statistics of human proteins to be predicted by one-class SVM

HTLV1 rex HTLV2 pol HTLV2 tax2 HTLV1 env HTLV1 p30 HTLV2 env HTLV1 tax HTLV1 hbz HTLV2 rex HTLV2 gag Total

20,229 20,271 20,151 20,265 20,211 20,280 19,767 20,244 20,274 20,277 201,969
Percentage of predicted interactions by two-class SVM (nu 5 1, gamma5 3)

39.47% 29.67% 44.92% 28.79% 31.17% 26.70% 44.73% 29.01% 27.77% 33.10% 33.70%
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predicted. The predicted positive rates for the eight TCSVM(n, c) mod-
els are shown in Figure 4. Except the former three TCSVM(n, c)models,
the latter five TCSVM(n, c) from [n 5 1, c 5 5] to [n 5 3, c 5 7] all
achieve. 50% predicted positive rate with constant K less than 1 (K is
defined in formula (16)), thus out of our options. The firstTCSVM(n5 1,

c 5 3) achieves 33.70% predicted positive rate (K 5 1.97), the second
TCSVM(n 5 10, c 5 4) achieves 38.65% predicted positive rate (K5 1.59)
and the third TCSVM(n 5 4, c 5 1) achieves 45.69% predicted positive
rate (K5 1.19). The three two-class SVMmodels, i.e. TCSVM(n 5 1, c 5

3), TCSVM(n 5 10, c 5 4) and TCSVM(n 5 1, c 5 3) should be subjected to
further survey for the final model selection.

Proteome-wide predicted positive rate is an effective metric to
validate the rationality of predictions. To choose a proper model
from TCSVM(n 5 1, c 5 3), TCSVM(n 5 10, c 5 4) and TCSVM(n 5 1,

c 5 3), we further propose the metric percentage of HTLV-targeted
human proteins for the final model selection (see Figure 5). As shown
in Figure 5, the latter six TCSVM(n, c) models all predict . 60%
human proteins to be targeted by HTLV proteins, the first
TCSVM(n 5 1, c 5 3) predicts 51.25% interacting human partners
and the second TCSVM(n 5 10, c 5 4) predicts 55.81% interacting
human partners. The percentage of predicted human partners seems
to be relatively high, partly because the known PPI dataset is small

Figure 2 | Two-class SVM TCSVM(n, c) LOOCV ROC curves. For each representative parameter pair (n, c), one negative dataset is sampled from the

predicted outcomes of the correpondingOCSVM(n, c). The sampled negative data are merged with the positive data to train two-class SVM TCSVM(n, c).

The ROC curves and corresponding AUC scores are used to estimate the quality of the negative data sampled by OCSVM(n, c).

Figure 3 | Two-class SVMTCSVM(n, c) LOOCV performance on dataset S, S1, S2 and S3. For each representative parameter pair (n, c), negative datasets

are sampled from the predicted outcomes of the correpondingOCSVM(n, c) to be the negative data of dataset S, S1, S2 and S3, and then train four two-class

SVM TCSVM(n, c). The blue bars denote TCSVM(n, c) LOOCV Accuracy and the brown bars denote TCSVM(n, c) LOOCV MCC.
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and the sampled negative data are still less representative. However,
as compared with the random forest method18, which predicted
22,651 human proteins out of 22,654 human proteins to be targeted
by Salmonella proteins, 51.25% predicted human partners suggest
much lower risk of overprediction.
To further choose the final model from TCSVM(n 5 1, c 5 3) and

TCSVM(n 5 10, c 5 4), we provide in Figure 6 the details of percentage
of human partners predicted to be targeted by each HTLV protein.
As shown in Figure 6, TCSVM(n 5 1, c 5 3) generally shows lower risk
of false positive predictions. Five HTLV proteins (HTLV2 pol,
HTLV1 env, HTLV1 hbz, HTLV2 rex) are predicted to be targeted
by less than 30% human partners, two HTLV proteins (HTLV1 rex,
HTLV2 gag) are predicted to be targeted by over 30% but less than

40%human partners, and twoHTLV proteins (HTLV2 tax2, HTLV1
tax) are predicted to be targeted by over 40% but less than 50%
human partners. Comparatively, TCSVM(n 5 10, c 5 4) shows a little
higher risk of false positive predictions (see Figure 4, Figure 6) and
a little decrease of LOOCV performance (see Figure 2 and Figure 3).
For the reason, we are inclined to choose TCSVM(n 5 3, c 5 1) as the
final predictive model. The details of percentage of human partners
predicted by TCSVM(n 5 3, c 5 1) are given in Table 1.

Further validation of TCSVM(n 5 1, c 5 3). We have conducted
LOOCV model estimation on TCSVM(n 5 1, c 5 3) and analysed
the rationality of proteome-wide predictions by TCSVM(n 5 1, c 5 3).
To gain knowledge about the generalization ability ofTCSVM(n5 3, c5 1),

Figure 4 | Two-class SVM TCSVM(n, c) proteome-wide predicted positive rates. From the predicted posisitve rates, K values derived are derived to be

used as constraint on OCSVM(n, c) model selection. Lower bar signifies higher K value.

Figure 5 | Percentage of HTLV targeted human proteins predicted by two-class SVM TCSVM(n, c). Lower bars are supposed to signify lower risk of false
positive predictions. The metric together with K value is used as constraint on model selection of one-class SVM OCSVM(n, c).
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we need to further conduct independent test using experimental
evidences from recent literature. Because of the scarcity of experi-
mental data, we make full use of three PPI: (1) train a model on S1

(denoted as TCSVMS1
pos (n~1,c~3)

) and validate TCSVMS1
pos(n~1,c~3)

using

S2pos; (2) train a model on S2 (denoted as TCSVMS2
pos(n~1,c~3)

) and

validate TCSVMS2
pos(n~1,c~3)

using S1pos; (3) train a model on S1 < S2

(denoted as TCSVMS1|S2
pos (n~1,c~3)

) and validate TCSVMS1|S2
pos(n~1,c~3)

using

S3pos. Before independent tests, we conduct LOOCV estimation on

TCSVMS1
pos (n~1,c~3)

, TCSVMS2
pos(n~1,c~3)

and TCSVMS1|S2
pos (n~1,c~3)

(see Table 2).

The results of independent tests show that TCSVMS1
pos (n~1,c~3)

comple-

tely recognizes S2pos, far better than 2.1% recognition rate by HT-

Y2H [32]. TCSVMS2
pos(n~1,c~3)

also completely recognizes S1pos, but

TCSVMS1|S2
pos (n~1,c~3)

achieves only 33.33% recognition rate on S3pos.

The test data S3pos contains HTLV p30 only and the training data
S1 < S2 does not contain HTLV p30, so it is not surprising that

TCSVMS1|S2
pos (n~1,c~3)

achieves low recognition rate on S3pos. But the result

is still promising as compared to experimental siRNA screens (10%
recognition rate)13.

Comparison with random sampling. Random sampling is simple and
unbiased, but is prone to be less reliable and less representative. For

comparison, a negative data Srandomneg with equal size to the positive data

Spos is obtained using random sampling. Then we train a two-class

SVM denoted as TCSVMrandom on the data Srandom~Spos|Srandomneg . The

comparative LOOCV ROC curves between TCSVM(n 5 1, c 5 3) and

TCSVMrandom are shown in Figure 7. We can see that TCSVM(n 5 1, c

5 3) performs better than TCSVMrandomwith AUC score 0.8917 versus
0.8304. TCSVM(n 5 1, c 5 3) also shows better LOOCV performance
than TCSVMrandom with (Accuracy5 0.8158, MCC5 0.6812) versus
(Accuracy 5 0.7778, MCC 5 0.6239). In addition, we also conduct
proteome-wide predictions using TCSVMrandom. The computational
results show that TCSVMrandom achieves 24.97% proteome-wide pre-
dicted positive rate , relatively lower than TCSVM(n 5 1, c 5 3)

(33.70%), suggesting a relatively lower risk of false positive predictions.
TCSVMrandom achieves 3.00 K value, higher than TCSVM(n 5 1, c 5 3)

K value (1.97). The K value defined in formula (16) is proposed to
roughly estimate the rationality of predictions. In general, low K value
(#1) suggests a high risk of false positive predictions, which can be
used as constraint on model selection. It is hard to accurately define
the upper bound and the lower bound of K value, high K value does
not always imply goodmodel. Too high K value may suggest high false
negative rate and insufficiency of model predictive ability. We should
obtain a proper trade-off between proteome-wide prediction based K
value, training data based cross validation performance and literature
evidence based independent test performance. Here we might as well
choose TCSVM(n 5 1, c 5 3) for the reasons: (1) TCSVM(n 5 1, c 5 3)

achieves better LOOCV performance; (2) TCSVM(n 5 1, c 5 3) confines
the space of negative data sampling, thus the obtained negative data
are more reliable and representative; (3) TCSVM(n 5 1, c 5 3) and
OCSVM(n 5 1, c 5 3)attempts to achieve a proper trade-off between
false positives and false negatives.

Proteome-wide HTLV-human PPI networks reconstruction. PPI
networks reconstruction.As described above, TCSVM(n5 1, c5 3) that

Figure 6 | Details of percentage of HTLV targeted human proteins predicted by TCSVM(n, c). From the metric, K value can be derived for each HTLV

protein to conduct fine-grained model selection of one-class SVM OCSVM(n, c). The parameter pair (n, c) with more lower bars are preferred.

Table 2 | LOOCV performance achieved by TCSVM(n 5 1, c 5 3) on training datasets. The performance metrics are used as a profile to
demonstrate the reliability of proteome-wide predictions

S(n 5 1, c 5 3) S1(n 5 1, c 5 3) S2(n 5 1, c 5 3) S3(n 5 1, c 5 3)

SP SE MCC SP SE MCC SP SE MCC SP SE MCC

Positive 0.8775 0.7749 0.6895 0.8986 0.8000 0.6975 0.8538 0.7655 0.6805 0.8824 0.7143 0.6724
Negative 0.7571 0.8664 0.6827 0.7156 0.8478 0.6654 0.7848 0.8671 0.6882 0.7600 0.9048 0.6889
[Acc; MCC] [0.8158; 0.6812] [0.8178; 0.6843] [0.8160, 0.6815] [0.8095; 0.6716]
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is trained on the constructed data S(n 5 1, c 5 3) is chosen as the
final model. The proteome-wide predictions are given in the Supple-
mentary Section 1 (predicted interactions) and Supplementary
Section 2 (predicted non-interactions). Among the total 201,969
protein pairs, TCSVM(n 5 1, c 5 3) predicts 68,054 interactions and
133,915 non-interactions with predicted positive rate accounting for
33.70%. If we define Decision_value(i1, i2). d, d. 0 as positive class
and Decision_value(i1, i2) , 2d, d . 0 as negative class, e.g. d 5 0.1
(Decision_value(i1, i2) see formula (14)), the predicted interactions
and the predicted non-interactions will be more reliable with lower
risk of false predictions. The rapidly reconstructed HTLV-human PPI
networks provide valuable cues for further biomedical research. Gene
ontology based clustering analysis of the predicted networks will be
discussed in the next section.

Literature validation of PPI predictions. K value is useful to check the
rationality of proteome-wide predictions and literature validation is
further needed to check the reliability of proteome-wide predictions.
However, the fact that the existing experimental evidences are spar-
sely scattered over hundreds of biomedical literature makes it hard
for us to collect enough data to validate the predictions. Nevertheless,
we still manage to find 20 novel experimental PPIs that are correctly
recognized by our proposed TCSVM(n 5 1, c 5 3) (see Table 3). The
PPIs given in Table 3 have not been collected into the training data S(n

5 1, c 5 3), though some PPIs were found much earlier than32. For
instances, HTLV1 p30 is found to interact with Cyclin E and
CDK2 to affect their complex formation and thus to delay S phase
entry45. Nakano et al.46 proposed that HTLV1 p30 may interact with

nucleoporin NUP62 and tumor suppressor LZTS2. HTLV1 tax has
been found to interact with NEMO, OPTN, RELB and IKKE47 and
the interaction between HTLV1 tax and Mdm2 results in the degra-
dation of FoxO4, a transcription factor and tumor suppressor of Akt
signaling pathway48. In49, HTLV1 hbz is reported to directly inhibit
the acetyl transferase activity of p300/CBP. In50, HTLV1 hbz is
reported to interact with SMAD2/3/4. In51, HTLV2 tax2 is reported
to interact the key component of autophagy pathways BECN1 to
connect the IKK complex to autophagy pathways. In52, it is reported
that the direct interaction between CIITA with Tax2 inhibits the
oncogenic retrovirus replication in infected cells. It is hard to manu-
ally extract all the related experimental PPIs from so many scattered
literature, so we give only dozens of examples as shown in Table 2.
The 20 experimental evidences help to validate the reliability of
TCSVM(n 5 1, c 5 3) proteome-wide predictions.

The number of experimental direct PPIs is very limited, so we also
find some indirect evidences to further validate the reliability of
TCSVM(n 5 1, c 5 3) predictions. Taylor et al.

53 assessed the effect of
p30 on cellular RNA transcript expression and their nuclear export,
and reported the related down-regulated genes and the up-regulated
genes regulated by HTLV1 protein p30. The alteration of the host
cellular transcript expression may indicate that there is a direct or
functional (indirect) interaction between p30 and the up- or down-
regulated genes. Hence we conduct overlap analysis between TCSVM

(n 5 1, c 5 3) predictions with the results53, and the predictions sup-
ported by gene expression are given in Supplementary Section 3 ,
Section 6.

Figure 7 | Comparative ROC curves between the finalmodelTCSVM(n5 1, c5 3) and random samplingmodelTCSVMrandom. From the points of view of

AUC scores, TCSVM(n 5 1, c 5 3) outperforms TCSVMrandom.

Table 3 | Predictions validated by recent literature. The square bracketed number that follows the targeted human gene name denotes the
literature reference number

HTLV proteins Targeted human proteins

HTLV1 p30 CDK2[45];LZTS2[46];NUP62[46]
HTLV1 tax NEMO[47]; OPTN[47]; RELB[47]; IKKE[47]; MDM2[48]; HDAC3[48]
HTLV1 hbz RELA[48]; CCND1[49]; CBP[50]; SMAD4[50] ; SMAD3[50] ; SMAD2[50] ;
HTLV1 rex SRSF1[46]
HTLV2 tax2 BECN1[51]; UVRAG[51]; CIITA[52]
HTLV2 gag WWP1[48]
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Discussion
Biological experiments generally focus on positive phenomena such
as interaction, binding, modification, activation, expression, res-
ponse, etc., whereas the corresponding negative phenomena arouse
less attentions. Actually the negative phenomena also benefit our
understanding of the positive patterns and especially facilitate com-
putational modeling. Because experimental negative data are seldom
available, proper negative data sampling method is highly desired to
sample reliable and representative negative data. In this work, we use
one-class SVM to confine the space of negative data sampling for the
sake of reliability and sample the centred negatives (m2 s, m1 s) for
the sake of representativeness. To validate the quality of sampled
negative data or to select proper one-class SVM parameter pair (n,
c), we calculate the K value and the predicted positive rate of two-
class SVM proteome-wide predictions, based on which to exert con-
straints on one-class SVM model selection. The computational
results show that the finalOCSVM(n5 1, c5 3) yields a quality negative
data to train the predictive model TCSVM(n5 1, c5 3). TCSVM(n5 1, c

5 3) has been empirically demonstrated to show good LOOCV per-
formance, good independent test performance and rational pro-
teome-wide predictions. Here we further conduct gene ontology
based clustering analysis of predicted HTLV-human PPI networks
to gain the insight of general patterns that HTLV viruses attack
human proteins.
To further validate the sampled negative data, we conduct leave-

one-out cross validation (LOOCV) and literature validation. The
performance metrics ROC-AUC, SP, SE, Accuracy and MCC dem-
onstrate that the two-class SVM TCSVM(n 5 1, c 5 3) trained on the
obtained negative data achieve good LOOCV performance and
rational predicted positive rate, yielding low risk of false positive
predictions.
Lastly, gene ontology based clustering analysis of the predictions

reveals some HTLV-targeted significant signaling pathways and
human proteins that fulfil critical molecular functions, which pro-
vides much insight into the pathogenesis of HTLV retroviruses. To
gain knowledge about how theHTLV proteins interfere with the host
signaling pathways, what host cellular functions the HTLV proteins
are prone to do harm with, and where the interactions occur, we
cluster all the predicted interactions into thee major classes accord-
ing to GO terms, i.e. biological processes (P), molecular functions (F)
and cellular compartments (C). Here we use gene ontology term (GO
term) as distance metric, i.e. the human partners that possess the

same GO term are assigned to the same cluster. Thus each cluster of
human proteins defines a biological module that reveals the general
behaviour patterns of HTLV viruses. To distinguish the patterns that
all the 10HTLV proteins observe and the patterns that several HTLV
proteins observe, we further split each cluster into two sub-clusters,
one sub-cluster embraces all the 10 HTLV viruses (denoted as P1, F1
and C1), and the other sub-cluster embraces only a part of viruses
(denoted as P2, F2 and C2). P1, F1 and C1 are given in
Supplementary Section 7, Section 8 and Section 9, respectively. P2,
F2 and C2 are given in the Supplementary Section 10, Section 11 and
Section 12, respectively. For the sake of large number of biological
modules (clusters), we only demonstrate several biological modules
as examples, interested readers are referred to Supplementary
Section 7 , Supplementary Section 12 for other biological cues.

PPI Sub-network GO:0007219 - Notch signaling pathway. Notch
signaling pathway plays an important role in cell proliferation,
differentiation and apoptosis. Recent research has suggested that
constitutive activation of Notch signaling pathway is essential to
the pathogenesis of HTLV-1 associated adult T-cell leukemia
(ATL), and the inhibition of Notch signaling by C-secretase
inhibitors reduces tumor cell proliferation and tumor formation in
ATL-engrafted mice54. In this work, TCSVM(n 5 1, c 5 3) predicts 545
interactions between the 10 HTLV proteins and 65 human proteins
that are involved in Notch signaling pathway. We use the biological
processes GO term GO:0007219 to denote the predicted PPI sub-
network. The PPI sub-network GO:0007219 is extracted from
Supplementary Section 7 and is illustrated by Aq in Figure 8. The
HTLV proteins are denoted with diamond and the human protein
are denoted with eclipse. From Figure 8, we can see that the 10HTLV
proteins are densely connected with 50 , 60 Notch signaling
proteins. Interestingly, it is predicted many times that the 10
HTLV proteins simultaneously target the same human protein, i.e.
the degree of the human protein is 10 in the PPI Sub-network
GO:0007219. In the predicted PPI sub-network, there are 40
human proteins with degree 10 and 10 human proteins with
degree 9. In the experimental network Spos, we also find the
phenomena that more than one HTLV proteins target the same
human protein. In Spos, there are 43 human proteins that interact
with more than one HTLV protein, e.g. the human protein EWS is
targeted by 5 HTLV proteins {HTLV1 rex; HTLV1 tax; HTLV2 gag;
HTLV2 rex; HTLV2 tax2}. A human protein that is targeted by

Figure 8 | Gene ontology based clustering of predicted PPI subnetworks - biological processes.Three human signaling pathways predicted to be targeted

by HTLV proteins are illustrated as examples: Aq GO:0007219 - Notch signaling pathway. Bq GO:0050852 - T cell receptor signaling pathway. Cq

GO:0046426 - negative regulation of JAK-STAT cascade. The diamond denotes HTLV proteins and the ecllipse circle denotes human proteins.
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multipleHTLV proteinsmay play a critical role in a protein complex,
functional model or signaling pathway. Such the human proteins
provide some insight into the pathogenesis and druggable target.
For instance, EWSR1 (Q01844), a EWS oncogene, may play a role
in the tumorigenic process, causing Ewing sarcoma, a highly
malignant, metastatic, primitive small round cell tumor of bone
and soft tissue that affects children and adolescents (http://www.
uniprot.org/uniprot/Q01844). SKP1 (P63208) is predicted to be
targeted by all the 10 HTLV proteins. According to Uniprot
annotation (http://www.uniprot.org/uniprot/P63208), SKP1 is an
essential component of the SCF (SKP1-CUL1-F-box protein)
ubiquitin ligase complex, which mediates the ubiquitination of
proteins (e.g. cyclin E, NOTCH1 released notch intracellular
domain (NICD)) involved in cell cycle progression (e.g. G1/S, G2/
M), signal transduction and transcription. HTLV-1 Tax has been
experimentally demonstrated to bind key cell cycle regulators to
influence T lymphocyte G1-S progression32,55,56.

PPI Sub-network GO:0050852 - T cell receptor signaling pathway.
Researches in the last decade have demonstrated that there is close
connection between HTLV infection and the activation of T cell
receptor signaling pathway57,58. In57, it is reported that immune
stimuli on T cell receptor signaling pathway may activate HTLV-1
gene expression and cellular gene expression. In58, it is stated that
HTLV-1 dysregulates common T-cell activation pathways for the
virus to establish persistent infection. In this work, TCSVM(n 5 1,

c 5 3) predicts 250 interactions between the 10 HTLV proteins and
33 human proteins that are involved in T cell receptor signaling
pathway. PPI Sub-network GO:0050852 is extracted from
Supplementary Section 7 and is illustrated by Bq in Figure 8. The
predicted PPI sub-network is less densely connected than PPI Sub-
network GO:0007219. There are 10 human proteins with degree 10
and 14 human proteins with degree 9. The human proteins targeted by
multiple HTLV proteins may also fulfil critical molecular functions.
For example, the human protein THMS1 (Q8N1K5) is predicted to be
targeted by all the 10 HTLV proteins. According to Uniprot
annotations, THMS1 plays a central role in late thymocyte
development and regulates T-cell development through T-cell
antigen receptor (TCR) signaling (http://www.uniprot.org/uniprot/
Q8N1K5).

PPI Sub-network GO:0046426 - negative regulation of JAK-STAT
cascade. JAK-STAT signalling pathway plays a critical role in the
transduction of extracellular signals from cytokines and growth

factors that are involved in hematopoiesis, immune regulation,
fertility, lactation, growth and embryogenesis. Negative regulators
of JAK–STAT pathways include tyrosine phosphatases, protein
inhibitors of activated STATs, suppressors of cytokine signalling
proteins, and cytokine-inducible SH2-containing protein49. It has
been reported that HTLV-1 Tax protein suppresses apoptosis
through constitutive activation of the NFkB pathway, which in
turn activates JAK3-STAT5 pathway to cause lymphocyte
proliferation and adult T-cell lymphoma/leukemia59. In this work,
TCSVM(n 5 1, c 5 3) predicts 16 interactions between 8 HTLV
proteins and 3 human proteins that are involved in negative
regulation of JAK-STAT cascade. It may be inferred that the 8
HTLV proteins repress the 3 negative regulators of JAK-STAT
cascade to keep constitutive activation of the JAK-STAT signaling
pathway. PPI Sub-network GO:0046426 is extracted from
Supplementary Section 10 and is illustrated by Cq in Figure 8. The
predicted sub-network is rather sparsely connected. There is one
human protein with degree 8 and two human proteins with degree
4. Two HTLV proteins {HTLV1 tax, HTLV2 tax2} are predicted not
to interact with the pathway related human proteins.We only extract
only three signaling pathways as illustrated in Figure 8, interested
readers are referred to Supplementary Section 7 and Supplementary
Section 10 for other signaling pathways or biological processes.

PPI Sub-network GO:0017124 - SH3 domain binding. It has been
stated that HTLV pathogenesis is closely related to the interaction
between HTLV protein and SH3 domain containing proteins60. In
this work, TCSVM(n 5 1, c 5 3) predicts 343 interactions between the
10 HTLV proteins and 53 SH3 domain binding proteins. It may be
inferred that HTLV proteins interrupt the normal functions of
the SH3 domain containing proteins by interacting with the
corresponding SH3 domain binding proteins. PPI Sub-network
GO:0017124 is extracted from Supplementary Section 11 and is
illustrated by Aq in Figure 9. In the predicted PPI sub-network,
there are 15 human proteins with degree 10, 4 human proteins
with degree 9 and 8 human proteins with degree 8. The human
protein PTTG1 (O95997) predicted to be targeted by the 10 HTLV
proteins acts as regulatory protein and plays a central role in
chromosome stability, in the p53/TP53 pathway, and in DNA
repair. During the mitosis, PTTG1 blocks Separase/ESPL1
function, preventing the proteolysis of the cohesin complex and
the subsequent segregation of the chromosomes (http://www.
uniprot.org/uniprot/O95997).

Figure 9 | Gene ontology based clustering of predicted PPI subnetworks - molecular functions. Three human Molecular functional modules predicted

to be targeted by HTLV proteins are illustrated as examples: Aq GO:0017124 - SH3 domain binding. Bq GO:0002039 - p53 binding. Cq GO:0004553 -

hydrolase activity. The diamond denotes HTLV proteins and the ecllipse circle denotes human proteins.
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PPI Sub-network GO:0002039 - p53 binding. In61, the experimental
results suggest that p53 function is inactivated by HTLV Tax protein
to induce statistically significant prevalence of tumorigenesis. In62, the
authors stated that HTLV Tax does not co-immunoprecipitate with
p53 and there may be an indirect mechanism to reduce the activity of
p53. The assumption is validated in63, where it is stated that HTLV-I
Tax induces a novel interaction between p65/RelA and p53 to inhibit
p53 transcriptional activity. In this work, TCSVM(n 5 1, c 5 3) predicts
238 interactions between the 10 HTLV proteins and 30 p53 binding
proteins. The results suggest that interaction with p53 binding
proteins is another indirect mechanism to inactivate p53 function.
PPI Sub-network GO:0002039 is extracted from Supplementary
Section 11 and is illustrated by Bq in Figure 9. In the predicted sub-
network, there are 17 human proteins with degree 10 and 3 human
proteins with degree 8. p53 binding proteins may be indispensible for
p53 to be co-complexed for proper transcription activity. For
instance, the human protein BRD7 (Q9NPI1) predicted to interact
with HTLV proteins is actually a coactivator for TP53-mediated
activation of transcription of a set of target genes, and BRD7 is
required for TP53-mediated cell-cycle arrest in response to
oncogene activation (http://www.uniprot.org/uniprot/Q9NPI1). If
HTLV proteins interfere with Q9NPI1 function, there would be
much adverse affect on p53 transcription activity.

PPI Sub-network GO:0004553 - O-glycosyl hydrolase activity.
TCSVM(n 5 1, c 5 3) predicts that some HTLV proteins interact
with some human proteins fulfilling the function of O-glycosyl
hydrolase activity. PPI Sub-network GO:0004553 is extracted from
Supplementary Section 10 and is illustrated by Cq in Figure 9. In the
PPI sub-network, there are 37 interactions between 8HTLV proteins
and 12 human proteins. There are 4 human proteins that are targeted
by 5 HTLV proteins. For instance, GLB1 (P16278) cleaves beta-
linked terminal galactosyl residues from gangliosides,
glycoproteins and glycosaminoglycans (http://www.uniprot.org/
uniprot/P16278).
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