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Abstract: Distributed video coding (DVC) is a novel coding paradigm that offers low computa-
tional encoding relative to conventional video-coding framework at the expense of high-decoding
computational complexity. The challenging part of this video-coding framework is achieving bet-
ter rate-distortion (RD) compared with conventional codec performance. A suitable and accurate
correlation noise model (CNM) is crucial in improving the RD performance by achieving high
coding efficiency and making decoding less computationally demanding. Since the correlation is
nonstationary and time-variant and can vary from frame to frame, offline CNM estimation is not
feasible for practical applications and real-time decoding. An online CNM may be the solution to
this problem. In DVC, neither Wyner–Ziv frame (WZF) nor estimated side information (SI) of the
corresponding WZF is available at the encoder. Therefore, online estimation of the CNM and its
parameters can be quite challenging. The contribution of this research work is a novel online CNM
which is computed by taking the mean of each transformed coefficient band and deployed for two
different codecs. Our proposed codec, DIVCOM, which stands for “Distributed Video Coding with
Online Band Mean Correlation Noise Model”, outperforms the existing baseline codec, DISCOVER
(DIS), in both coding efficiency and peak signal-to-noise ratio (PSNR). The DIVCOM codec achieves
coding efficiency of up to 8.05 kbps, and PSNR ranges from 0.0245 dB to 0.18 dB. An extended version
of DIVCOM incorporating phase-based side information called PDIVCOM achieves coding efficiency
up to 10.9 kbps, and PSNR ranges from 0.019 to 0.17 dB compared to DIS.

Keywords: distributed video coding; online correlation noise model; online correlation noise modeling
for DVC applications; CNM for coding efficient

1. Introduction

Many upstream applications of wireless video sensor networks (WVSN), such as mul-
timedia sensor networks, real-time wireless video surveillance, environment monitoring,
medical monitoring, and internet of things (IoT), have emerged over recent time [1–4]. The
battery size and life and other limitations of the transmitting device are of paramount im-
portance in such applications [5]. For such low-resource upstream applications, low compu-
tational complexity at the encoder is desirable [6]. One of the video coding paradigms that
support these requirements is distributed video coding (DVC) [7]. This coding paradigm
redistributes the coding complexity and shifts most of the computation to the decoder by
exploiting the source statistics at the decoder [8] and making the encoder computationally
light [9]. However, this new coding design is not fully developed and is getting more atten-
tion from the research community to improve its performance compared with conventional
codecs for real-time and resource-constrained applications [10,11].

Appl. Sci. 2022, 12, 6505. https://doi.org/10.3390/app12136505 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136505
https://doi.org/10.3390/app12136505
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3561-8471
https://orcid.org/0000-0002-5666-3984
https://orcid.org/0000-0002-6617-8149
https://doi.org/10.3390/app12136505
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136505?type=check_update&version=1


Appl. Sci. 2022, 12, 6505 2 of 21

DVC is based on the Slepian–Wolf (SW) [12] and Wyner–Ziv (WZ) [13] theorems of
Information Theory. According to the SW theorem, if two correlated sources are encoded
separately and decoded jointly, then the minimum coding rate we can achieve is the same
as that of joint encoding and decoding. Wyner and Ziv obtained similar bounds for lossy
coding with the presence of decoder side information (SI). The two major categories of DVC
are block-based and frame-based DVC frameworks. Most of the available DVC codecs
in literature are based on the frame-based Stanford architecture [14], which can then be
divided into two types—pixel domain WZ (PDWZ) coding and transform domain WZ
(TDWZ) coding. TDWZ coding is widely used in the literature due to its coding efficiency,
and the DISCOVER codec (DIS) [10] is considered the state-of-the-art codec based on this
architecture [14].

In TDWZ DVC schemes, the video is split into frames, and these frames are organized
into Group of Pictures (GOP) of sizes 2, 4, or 8. For every GOP, the first frame is the
key-frame (KF) and encoded with intra-predictive coding (H.264 intra-encoder). The rest
of the GOP frames, called Wyner–Ziv frames (WZFs), are encoded with WZ coding. The
WZF is first split into 4 × 4 blocks, and discrete cosine transform (DCT) is applied on
each block of the frame. The corresponding coefficients from each block are organized
into 16 coefficient bands. Each coefficient band is quantized to the desired quality. For
each band, the bit-planes are extracted after quantization and channel encoded (turbo or
LDPC) for parity bit generation. These parity bits are stored in a buffer and transmitted
on the decoder’s request through a feedback channel. At the decoder, the first KF is
decoded. Then the SI, which is an approximated replica of the current WZF, is estimated
with motion-compensated interpolation or extrapolation of the previous and subsequent
decoded frames. One challenge in DVC is to find a channel noise model (CNM) that
accurately models the statistical dependency in the form of virtual channel correlation
noise, between the current WZF and its corresponding SI. A more accurate model will lead
to improved performance in coding efficiency and rate distortion (RD).

In our previous research work [15], efforts were made to develop a phase-based
frame interpolation algorithm that can effectively generate the SI faster and with lower
computational complexity compared to the baseline codec, DIS. In this paper, however,
our main objective is to design an online CNM framework that can be used to develop a
full DVC codec that has less decoding computational complexity and can compete with
DIS in coding efficiency and RD performance. In most DVC codecs, the computation of
error distribution between the original WZF and corresponding SI is challenging due to
the unavailability of SI at the encoder and the original WZF at the decoder. Therefore, in
this paper, we attempt to design a framework for the online estimation of CNM for the
Laplacian distribution parameter while considering the mean of the coefficient band. The
main contributions of our research work are the following:

1. Designed a framework for an online correlation noise model (CNM) which was
implemented in the DIS codec. This implementation is called DIVCOM, which stands
for Distributed Video Coding with Online Band Mean Correlation Noise Model.

2. Implemented the online CNM in the codec developed in a previous work of the
authors and presented in [15]. This implementation is called PDIVCOM, which
stands for Phase-based Distributed Video Coding with Online Band Mean Correlation
Noise Model.

3. Evaluated and compared the performance of the codecs with the proposed on-
line CNM.

The rest of the paper is organized as follows: related work is covered in Section 2,
followed by a comprehensive explanation of the DVC framework with the proposed online
correlation noise model (CNM) estimation, and its mathematical formulation in Section 3.
The results are presented and elaborated in Section 4, followed by a conclusion and future
research work in Section 5.
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2. Related Work

The estimation of an accurate CNM between the correlated sources either at encoder
or decoder with fully unknown or partially known data [16,17] is a key problem in DVC.
Therefore, a lot of literature is devoted to the estimation of the CNM, but most of them
follow the unrealistic offline assumption [11]. In DVC, the overall coding efficiency and RD
performance of codec improved with an accurate estimation of parameters of the CNM.

In the DVC codec, neither WZF nor the estimated SI of corresponding WZF is available
at the decoder and encoder, respectively. Therefore, offline approaches are adopted to
calculate the CNM parameter through the distribution model by assuming either SI is
available at the encoder or the actual WZF is available at the decoder. In this approach, the
parameter is calculated offline for the whole video sequence and later used in the decoder.
This is one of the biggest hurdles in the practical implementation of DVC because offline
estimation of the CNM does not perform well for all types of motion videos. Furthermore,
the correlation noise is not stationary, and its statistics vary from frame to frame. Therefore,
the estimation of CNM parameters for different sequences through the offline CNM is not
feasible to achieve coding efficiency and high RD performance. This is because when it is
implemented at the decoder, it does not exploit the variability of CNM from frame to frame
for actual motion. Furthermore, this is a complex task since the original information is not
available in the decoder, and the SI quality varies throughout the sequence. However, if the
model accurately describes the WZF and SI relationships, the coding performance is high
and vice-versa. A Laplacian distribution model is applied in most architectures because of
its excellent trade-off between model accuracy and complexity.

Hence, the focus has been put on online CNM parameter estimation without having
access to the original WZF. The authors of [18] proposed several online correlation noise
schemes for pixel-based coding at different granularity levels (frame, block, and pixel)
by exploiting the temporal correlation between the decoded KF and estimated SI. In an
extended work [19], the online CNM is adopted for the transform domain at the band
level and coefficient level. Enhancements were made in [20] to the codec in [19] with
the introduction of cross-band correlation by calculating residuals between bands, and
a band classification map, which is updated after the successful decoding of each band.
With cross-band correlation, the classification map of the current band is used to estimate
the classification map of the next band. With this estimated cross-band classification of
each band, the CNM parameter is calculated. In [21], the correlation noise parameter
estimation is done at the DCT band level, where SI is refined after the decoding of each bit
plane. Therefore, the authors attempted to refine the CNM as well. The authors in [22] put
efforts into controlling the rate without a feedback channel. Based on the motion intensity,
the algorithm adjusted the rates by switching the Laplacian distribution parameters in
CNM between frame and block levels. The authors in [23] proposed an adaptive low
computational DVC, which estimated correlation by using the expectation propagation
during the channel decoding process. The correlation estimation is carried out jointly with
decoding of the factor graph during the channel decoding process.

In [24], the authors proposed a CNM that is independently executed at both the
encoder and decoder at no cost of extra computation at the encoder. At the encoder, the
CNM calculates the number of least significant bits that are required to be sent to the
decoder, assuming that the remainder is determined at the decoder. In [25], the authors
proposed a hash-based DVC where the correlation noise is statistically dependent on the SI.
The proposed algorithm performs online estimation of the SI-dependent correlation noise
parameter at the transform coefficient bands level. Additionally, the algorithm successively
refines the correlation parameter after decoding every bit-plane.

The authors in [26] attempted to reduce the deviation between the Laplacian sta-
tistical distribution model and the small and large residual coefficients by proposing a
hybrid distribution correlation noise model. This hybrid model is based on the K-Mediods
and Cauchy distributions clustering, which clusters all residual coefficients into small
and large coefficients clusters. The small coefficients cluster is K-Mediods modeled to
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improve Laplacian distribution, while the large residual coefficients are modeled with
Cauchy distribution.

On the other hand, the codec in [27] used the parallel LDPC decoding to estimate the
correlation noise parameters and decode on the factor graph. This algorithm estimated
one parameter for each band. The codec in [11] extended the work of [27] and proposed a
recursive variational Bayes factor graph. Furthermore, it deployed a new message-passing
algorithm to decode bit-planes corresponding to each band and simultaneously estimates
and refines the correlation noise parameter.

The correlation noise parameter estimation plays an important role in achieving coding
efficiency. In most codecs, the highly computational motion-compensated interpolation
(MCTI) [10] is performed for the SI generation, and the resultant motion vectors are utilized
for the correlation noise parameter estimation. However, in the codec presented in [15],
an empirical study of a phase-based fast frame interpolation algorithm was conducted to
effectively generate a low computational and fast SI in DVC when motion vectors are not
available. For such codecs, there is a need to design an online CNM framework so it leads to
the coding efficient codec framework along with low computational SI-generation feature.
In this paper, our main focus is to design an online CNM framework for such codecs
that will lead to the development of a full DVC codec with less decoding computational
complexity and can compete with DIS in terms of coding efficiency and RD performance.
Therefore, in this study, an attempt has been made to design a framework for online
estimation of CNM for the Laplacian distribution parameter while considering the mean of
the coefficients band.

3. Proposed DVC Framework for Online Correlation Noise Model

This section addresses the basic concept and implementation of the proposed codec
and presents the proposed online correlation noise model methodology. We will first
present the general concept of the proposed online correlation noise model based on
the mean of band coefficients before moving on to the mathematical modeling of the
proposed model.

3.1. General Concept of Proposed Online Correlation Noise Model

Figure 1 depicts the proposed DVC framework for calculating the online correlation
noise model CNM for the DVC frameworks [10,15]. In [15], the motion estimation is not
exploited at the decoder, and the actual frame is also not available at the decoder. Therefore,
online CNM computation is quite a challenging task in such a DVC framework. Keeping
that in mind, we proposed a novel online CNM based on the mean of band coefficients. In
this framework, the Band Mean Calculator (BMC) is deployed at the encoder and decoder
to perform the necessary calculations which are used in the CNM.
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At the encoder, the BMC calculates the mean of the coefficients of each band of the
WZF and sends them to the decoder. The BMC deployed at the decoder calculates the
mean of each coefficient band of side information (SI) in a similar way as it does on the
encoder. The Laplacian distribution is used to model the residual between the means of
the original WZ and the corresponding SI frame for each band. The CNM calculation
details and mathematical representation are given in Section 3.2. The SI generation process
from [15] and conventional interpolation in [10] were used in this study. A brief overview
of the phase-based SI generation algorithm from [15] is presented in Algorithm 1. We
deployed and verified the performance of this novel online CNM concept for the DIS codec
and named it Distributed Video Coding with Online Band Mean Correlation Noise Model
(DIVCOM). Next, the same online CNM concept is deployed for the DVC codec with the
phase-based SI [15], and we called the implementation Phase-based Distributed Video
Coding with Online Band Mean Correlation Noise Model (PDIVCOM).

3.2. Mathematical Representation of Phase Interpolation for Side Information Generation

The standard interpolation approaches, e.g., optical flow, require accurate pixel cor-
respondences between images to interpolate the in-between frames. In DVC, motion-
compensated temporal interpolation (MCTI) is usually used for SI generation. However,
in this paper, we implemented the phase-based interpolation for SI at the decoder. This
technique represents motion as phase shifts in individual pixels and the computational cost
is a fraction of that of any of the traditional SI interpolation techniques. In particular, the
phase-based technique decomposes the frames into local phase and amplitude parameters
using the complex-valued steerable pyramid. This complex steerable pyramid decomposes
the one-dimensional (1D) or two-dimensional (2D) signal into spatial scale, orientation,
and position [28]. In videos, the phase-based interpolation method manipulates motion by
analyzing the signal of the local phase over time in different spatial scales and orientations.
It mitigates the need for highly complex global computation. The computation efficiency
is offered by phase-based representation, as it only performs per-pixel modifications to
represent the pixel motion by shifting its phase [29]. Further efficiency is achieved due to
the phase-shift correction method that combines the phase information across different
levels of a multi-scale pyramid. The successfulness of image transition is achieved due to
the deployment of a correction algorithm which adapts both amplitude and phase shift
of the image. Before starting the part of actual image interpolation, we first explain its
working concept for a basic one-dimensional (1D) signal.

The Fourier shift theorem motivates the assumption that motion can be encoded using
the phase differences. Let us consider the 1D case, in which any function f (x) can be
represented in the Fourier domain as a sum of complex sinusoids over all frequenciesω by
Equation (1),

f (x) =
ω=+∞

∑
ω=−∞

Aωeiωx =
ω=+∞

∑
ω=−∞

AωeiØω (1)

where the Øω and Aω represent the phase and amplitude of the complex sinusoid, respec-
tively. Then the shifted version of function f (x) shifted by spatial displacement δ(t) of is
given by Equation (2).

f (x + δ(t) ) =
ω=+∞

∑
ω=−∞

Aωeiω(x+δ(t)) (2)

The phase difference, Øω
di f f , between the original and shifted functions can be repre-

sented by Equation (3).

Øω
di f f = ωx−ω(x− δ(t)) = ωδ(t) (3)
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The phase shift Øshi f t, which corresponds to the actual spatial displacement between
translated functions is defined in terms of the phase difference Øω

di f f between two phase
curves scaled by angular frequency ω and is given in Equation (4).

Øshi f t =
Øω

di f f

ω
(4)

In the Fourier transform domain, the shifted function is defined as the sum of complex
sinusoids over all frequencies ω, and is given by Equation (5),

f (x + δ(t) ) =
ω=+∞

∑
ω=−∞

Rω(x, t) (5)

where each sinusoid represents one band, i.e., Rω(x, t) = Aωeiω(x+δ(t)). Now for the
intermediate sinusoids representing the translational functions, the phase difference is
modified according to the intermediate positions between functions that are defined by
weight β ∈ (0, 1). Therefore, the modified bands Řω(x, t) with corresponding modified
phase Øω = ω(x + βδ(t)) w.r.t β is given by Equation (6).

Řω(x, t) = Aωeiω(x+βδ(t)) (6)

The in-between functions are then taken by integrating the modified bands following
Equation (5).

3.2.1. Two Dimensional Functions—General Mathematical Representation

In two-dimensional (2D) functions, the sinusoids are separated into bands according
to frequency ω, as well as the spatial phase orientations i.e., the even and odd phase
orientations, by using the complex-valued steerable pyramid filter [30–32]. This filter
decomposes the input images into several oriented frequency bands Rω,ϑ, and thus allows
for meaningful phase measurement from coefficients of a pyramid. The real part of each
coefficient is represented in cosine form and known as even-symmetric filtered, whereas
the imaginary part is in sine filter representation, known as an odd-symmetric filtered. The
steerable pyramids that are non-oriented and not captured during the pyramid levels are
summarized as real-valued high and low-pass residual signal components.

3.2.1.1. Phase Computation Steps

During the phase computation, the complex-valued response Rω,ϑ obtained by apply-
ing steerable filters ψω,ϑ [30] on image I, and are represented in Equations (7)–(9),

Rω,ϑ(x, y) = (I ∗ ψω,ϑ)(x, y) (7)

= Aω,ϑ(x, y)eiØω,ϑ(x,y) (8)

= Cω,ϑ(x, y) + i Sω,ϑ(x, y) , (9)

where Cω,ϑ and Sω,ϑ define the cosine and sine parts, respectively. As stated before,
the cosine part, Cω,ϑ and the sine part, Sω,ϑ represent even- and odd-symmetric filter
responses, respectively. Therefore, the amplitude and phase components can be computed
by Equations (10) and (11), respectively.

Aω,ϑ(x, y) =
√

Cω,ϑ(x, y)2 + Sω,ϑ(x, y)2 (10)

Øω,ϑ(x, y) = arctan
(

Sω,ϑ(x, y)
Cω,ϑ(x, y)

)
(11)
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3.2.1.2. Phase Difference Calculation Steps

As stated earlier, in phase interpolation, the motion is represented by a phase shift;
therefore, interpolating the phase shift requires the phase difference Ødi f f between the
phases of two input images, Ø1 and Ø2 and is computed by Equation (12),

Ødi f f = atan2(sin( Ø1 −Ø2), cos( Ø1 −Ø2)), (12)

where atan2(·) represents the four-quadrant inverse tangent and leads to angular values
between [−π, π], which corresponds to the angular difference between two input image
phases. Additionally, it determines the limit of motion, which is bounded by Equation (13),

∣∣∣Øshi f t

∣∣∣ =
∣∣∣Ødi f f

∣∣∣
ω

≤ π

ω
(13)

where ω = 2πυ, and υ denotes the spatial frequency of the pyramid level. In a multi-scale
pyramid, each level represents a particular band of spatial frequencies υ ∈ [υmin, υmax].
Let υmax correspond to the highest frequency of any level then a phase difference of π
represents a shift of one pixel. This appears to be a reasonable shift in coarser pyramid
levels for low-frequency content; however, for high-frequency content, it is too limiting to
achieve realistic interpolation.

3.2.1.3. Phase Shifting and Correction

To avoid the phase ambiguity which happens due to large displacement corresponding
to a phase difference of more than π, and since the phase is periodic, the phase difference
is normalized to between [−π, π].

Interpolation works accurately as long as the shift computed on a particular level
mainly captures the frequency content corresponding to the correct motion. Therefore, shift
correction based on confidence estimation is deployed to correctly estimate the motion
even for high-frequency content. This approach robustly interpolates the accurate motion
for high frequency by taking all available shift information into account. This approach
assumes that phase difference between two resolution levels does not differ arbitrarily,
i.e., phase differences between levels can be used as a confidence measure that quantifies
whether the estimated phase shift is admissible.

The phase shift correction is performed on the level l if the computed shift at level l
differs from the coarser level l + 1 by more than a threshold. The phase shift correction
is performed by first adding multiples of ±2π to Ødi f f . This leads to absolute differences
between the phase values of consecutive levels that can never be greater than a given
tolerance. The π is used as tolerance distance which modifies the phase values in such
a way that the phase difference of a pixel between two levels can never be larger than
π. This step allows a meaningful range extension because the original phase difference
are truncated to the range [−π, π]. The actual shift correction depends on the difference
between two levels, which is taken under consideration for confidence estimation and is
calculated using Equation (14),

ϕ = atan2
(

sin
(

Øl
di f f −Øl+1

di f f

)
, cos

(
Øl

di f f −Øl+1
di f f

))
, (14)

where the coarser level phase value is scaled according to the arbitrary pyramid scale factor
λ > 1. When |ϕ| > π

2 , the shift correction is performed to obtain the corrected phase
difference using (15) and considerably leads to a better interpolation result.

Ø̃
l
di f f = λØl+1

di f f (15)

Although the phase shift correction can model large motion, it still has the limitation
of presenting blur artifacts in some motions. Therefore, an additional enhancement step is
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performed to limit even admissible phase shifts into well representable motions. Therefore,
the phase difference is limited by a constant, Ølimit, defined by Equation (16)

Ølimit = τπλL−l (16)

where τ defines the percentage of limitation and τ ∈ (0, 1), L is the total number of levels,
λ is the scale factor and l is the current level. At the coarser level, if the magnitude of phase
difference exceeds Ølimit then the corrected phase difference is set to zero.

The next step is a smooth-phase interpolation between phases of input image 1, Ø1,
and input image 2, Ø2. For convenience, from here onwards we will drop the superscript
l to represent the pyramid level. As a result of shift correction, there is no surety that
Ø1 + Ø̃di f f matches Ø2 or any of the equivalent multiples of Ø2 + γ2π where γ ∈ N0.
For smooth interpolation, the original phases Ø1 and Ø2 are preserved along with shift-
corrected phase difference Ø̃di f f . Therefore, phase adjustment is done using

Ø̌di f f = Ødi f f + γ2π (17)

to give us the adjusted phase difference, Ø̌di f f , where the γ is calculated using

γ = argmin
γ

{(
Ø̃di f f −

(
Ødi f f + γ2π

))2
}

. (18)

After the phase adjustment, the phase for the interpolated image, Øβ, is computed
using Equation (19) by taking adjusted phase difference Ø̌di f f and the phase of one of the
images, e.g., Ø1.

Øβ = Ø1 + βØ̌di f f (19)

The next step is a reconstruction of the interpolated image which requires the interpo-
lated phase and the interpolated amplitude are required for smooth interpolation [33].

Algorithm 1 summarizes the execution steps involved in the interpolation of SI using
the phase interpolation method. The inputs given to start the execution process are the
previous and next keyframes (KFs) and the interpolation parameter, β. The previous and
next KFs are represented by I1 and I2 respectively. The interpolated SI is denoted by ISI .
The phase interpolation process is initialized with steerable pyramid decompositions of
both keyframes (I1 and I2) and calculation of their respective amplitudes (A1 and A2). Later,
the corresponding phases, Ø1 and Ø2, and phase differences are calculated. For smooth
interpolation of ISI , the level-by-level shift correction and phase adjustment of the phase
difference is performed. The phase of the interpolated image, ∅β and its amplitude, Aβ,
are interpolated in steps 7 and 8, respectively, then recombined to generate the respective
pyramids. Finally, all interpolated pyramids are utilized to reconstruct the interpolated
image, ISI .

3.2.2. Mathematical Representation of Proposed Online Correlation Noise
Model Estimation

In conventional video coding, the distribution of the motion-compensated residual
coefficients is modeled using the Laplacian distribution [34]. Different distribution models
such as Gaussian distribution are found in the literature; however, the Laplacian distribu-
tion is often chosen to obtain a good trade-off between model complexity and accuracy [35].
Due to this trade-off feature, the Laplacian distribution is widely adopted in DVC for
modeling the CNM.
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Algorithm 1 Side Information Generation with Phase Interpolation Process

INPUTS. Two input images are: I1 and I2 represent the previous and next keyframes
(KFs), respectively.
Interpolation parameter: β

INITIALIZATION. Steerable pyramid decompositions: P1 and P2
Amplitudes Calculation: A1 and A2
OUTPUT. Output (interpolated Side Information): ISI
Step 1. (P1, P2)← Decompose (I1, I2) Equations (7)–(9), Refer [30]
Step 2. (A1, A2)← Amplitude (I1, I2) Equation (10)
Step 3. (Ø1,Ø2)← Phase (P1, P2) Equation (11)
Step 4. Ødi f f ← Phase Difference (Ø1,Ø2) Equation (12)
Step 5. for all l = L− 1 : 1 do

Ø̃
l
di f f ← Shift Correction (Ø̃

l+1
di f f ) Section 3.2.1.3

end for
Step 6. Ø̌di f f ← Adjust Phase (Ødi f f , Ø̃di f f ) Equation (17)
Step 7. Øβ ← Interpolate (Ø1, Ø̌di f f , β) Equation (19)
Step 8. Aβ ← Blend (A1, A2, β) Section 3.2.1.3, Refer [33]
Step 9. Pβ ← Recombine (Øβ, Aβ) Refer [30]
Step 10. ISI ← Reconstruct (Pβ)

Ideally, the calculation of the noise correlation parameter can either be done with the
SI at the encoder or the actual WZF at the decoder. However, this is practically not possible,
so for the online correlation noise parameter estimation, the different codecs exploited the
temporal correlation at the decoder [18] at the cost of extra computation. In this work, we
propose a novel frame-level online CNM parameter calculation method using transformed
coefficient bands. For offline CNM, the Laplacian distribution of the residual of WZF
and SI transformed coefficient at (x, y), with Laplacian distribution parameter, α, is found
using (20).

p[WZ(x, y)− SI(x, y)] =
α

2
exp[−α |WZ(x, y)− SI(x, y)|] (20)

where α =
√

2
σ2 is used to determines the error distribution between WZ(x,y) and SI(x,y),

where σ2 defines the variance [19].
To compute the online CNM using the mean of transformed coefficients of a band

at the decoder, it is necessary to estimate the Laplacian distribution parameter which is
necessary to determine the error distribution between the original frame and SI. Therefore,
for the proposed frame-level Laplacian distribution model, the estimation of the Laplacian
distribution parameter is a crucial step. Since, for our proposed method, the Laplacian
distribution model is computed at the frame level, the Laplacian distribution parameter is
denoted as α f . The steps involved in estimating α f are elaborated next.

Let µR be the set of means of residuals of the coefficient bands, µR
b. Therefore, for a

total of 16 coefficient bands in a frame,{
µR

b

∣∣∣µR
b ∈ µR, b = 1, 2, .., 16

}
(21)

and
µR

b = µWZ
b − µSI

b , b = 1, 2, . . . , 16, (22)

where µWZ
b and µSI

b are the means of the WZF and SI transformed coefficient bands,
respectively. The µWZ

b , is calculated at the encoder using

µWZ
b =

1
M

M

∑
j=1

XDCT,b(j). (23)
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In (23), XDCT,b(j) is the transformed coefficient of the WZF for the j-th coefficient in
band b. On the other hand, the value, µSI

b , is the mean of transformed coefficients of SI
band and is calculated at the decoder by using

µSI
b =

1
M

M

∑
j=1

YDCT,b(j). (24)

In (24), YDCT,b(j) is the transformed coefficient of the SI for the j-th coefficient in band
b. In both (23) and (24), j = 1, 2, . . . , M where M defines the total number of coefficients in
a band.

Next, the variance, σ2
f , for the proposed residual means, µR, is calculated using

the equation

σ2
f = E

[(
µR
)2
]
−
(

E
[
µR
])2

, (25)

where E
[
µR] and E

[(
µR)2

]
are computed using Equations (26) and (27), respectively.

E
[
µR
]
=

16

∑
b=1

µR
b Pb (26)

E
[(

µR
)2
]
=

16

∑
b=1

(
µR

b

)2
Pb (27)

In (26) and (27), Pb denotes the probability of occurrence of µR
b in µR.

Finally, the Laplacian distribution parameter α f is calculated using

α f =



1
2×102×

(
σ2

f

) , 0 < σ2
f ≤ 1

1
10×µRsum , 1 < σ2

f < 100 & µRsum ≤ 50
1

20
√

µRsum , 1 < σ2
f < 100 & µRsum

>50
1

µRsum , σ2
f ≥ 100

(28)

where µRsum is the sum of absolute values of all residuals in µR and given as

µRsum
=

16

∑
b=1

∣∣∣∣∣µR
b

∣∣∣∣∣. (29)

In (29),
∣∣∣µR

b

∣∣∣ represents the absolute mean value of the residual between the WZF
and its corresponding SI for coefficient band b, where b = 1, 2, . . . , 16. Therefore, for the
frame-level Laplacian distribution, Equation (20) becomes

p
[∣∣∣µR

b

∣∣∣] = α f

2
exp

[
−α f

∣∣∣µR
b

∣∣∣]. (30)

Algorithm 2 is used to perform the step-by-step calculation of the Laplacian distribu-
tion parameter α f under the proposed CNM methodology. The process starts by computing
the values of µWZ

b , µSI
b and subsequently, µR

b for all b. All the values of µR
b are then used in

the computation of the variance, σ2
f , in step 4. Next, the Laplacian distribution parameter

α f is calculated in step 5. Finally, the procedure is repeated for subsequent frames.
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Algorithm 2 Determine the Steps for Calculation of Laplacian Distribution Parameter α f under
Proposed Online Correlation Noise Model Methodology

INPUTS. Transformed Coefficients of Band- XDCT(j), YDCT(j)
INITIALIZATION. Mean of coefficient bands of WZF
OUTPUTS. α f
Step 1. for all b = 1 : 16 do

Calculate µWZ
b Equation (23)

end for
Step 2. for all b = 1 : 16 do

Calculate µSI
b Equation (24)

end for
Step 3. Calculate Residual of corresponding µWZ

b and µSI

for all b = 1 : 16 do
µR

b ← µWZ
b − µSI

b Equation (22)
end for

Step 4. Calculate σ2
f

σ2
f ← E

[(
µR)2

]
−
(
E
[
µR])2 Equations (25)–(27)

Step 5. Calculate α f Equation (28)

µRsum ← ∑16
b=1

∣∣∣µR
b

∣∣∣ ∀ b Equation (29)

if 0 < σ2
f ≤ 1 then

α f ← 1
2×102×

(
σ2

f

)
else if 1 < σ2

f < 100 and µRsum ≤ 50 then
α f ← 1

10×µRsum

else if 1 < σ2
f < 100 and µRsum

> 50 then
α f ← 1

20
√

µRsum

else σ2
f > 100 and µRsum∀ R then

α f ← 1
µRsum

end if
Step 6. REPEAT STEPS 1–5 FOR THE UPCOMING FRAME

4. Results and Discussion
4.1. Experimental Setup

The experiments are carried out on a system with Core (TM) i7-7820HQ, 64-bit OS,
CPU 2.90 GHz, and RAM 32 GB specifications. The results are compiled for the different
test video sequences. The performance is analyzed by running the experiments on full
video sequences with a frame rate (fps) of 15 Hz and a group of pictures (GOP) of size 2.
The experiments were performed using six different values of the quantization metric, Qm,
for quantizing the WZF to achieve different output qualities. The definitions and values
of Qm used in the proposed codecs are the same as the ones used by DIS in [10]. A list of
abbreviations for the different codecs evaluated is given in Table 1. Different parameters
are involved in phase-based interpolation for SI generation. Parameter setting is required
to obtain the best SI quality. Therefore, the following parameter settings are adopted for SI
generation; the number of pyramid levels is 17, the phase shift is 0.4 radians, the number of
orientations is 12, and the pyramid scale is (0.4)

1
4 .

Table 1. Abbreviations of different video codecs.

Abbreviation Description

DIS DISCOVER Codec

DIVCOM Distributed Video Coding with Online Band Mean Correlation Noise Model

PDIVCOM Phase-based Distributed Video Coding with Online Band Mean Correlation
Noise Model
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4.2. Performance Evaluation

Four video sequences, i.e., “Coastguard”, “Akiyo”, “Foreman” and “Hall”, were used
to compare the performance of the proposed codecs, against the DIS and Intra H.264 codecs.
For each video sequence, the average PSNRs and coding rates are determined for different
values of the quantization metric, Qm. The average PSNR and coding rate of Intra H.264,
DIS, DIVCOM, and PDIVCOM were computed for a frame rate of 15 Hz. Next, the
performance of the Wyner–Ziv coder is analyzed by evaluating the average channel-
decoding rate required to correct the errors of SI for successfully decoding the WZF. Finally,
the rate distortion (RD) performance is compared between Intra H.264, DIS, DIVCOM,
and PDIVCOM.

4.2.1. “Coastguard” Video Sequence

From Table 2, we can observe that in most cases, DIVCOM gives a better average PSNR
than DIS, while PDIVCOM gives a better average PSNR than DIS in all cases. PDIVCOM
outperforms DIVCOM for lower values of Qm, while DIVCOM outperforms PDIVCOM at
higher values of Qm. In terms of coding efficiency, the coding rate of DIVCOM is better
than DIS by between 0.687 kbps to 8.05 kbps, while the coding rate of PDIVCOM is better
than DIS by between 1.49 kbps to 8.955 kbps. However, closer analysis at the frame-to-
frame level reveals that the RD performance of the proposed codecs is reduced in some
frames of this video test sequence. Even so, the decrease in PSNR is small when taking into
consideration the improvement in the coding rate.

Table 2. Visual quality and rate performance evaluation of different codecs for “Coastguard” video
sequence at frame rate of 15 Hz.

Video
Sequence

Quantization
Matrix,

Qm

Average PSNR
(dB)

Coding Rate
(kbps)

DIS DIVCOM PDIVCOM DIS DIVCOM PDIVCOM

Coastguard

1 32.0616 32.0867 32.0978 417.431 416.744 415.934

2 32.97 32.9945 33.008 488.7012 487.3013 487.1401

3 34.455 34.4520 34.4740 614.1899 612.8306 612.5757

4 34.9146 35.009 34.974 722.3970 718 717.7109

5 35.8749 35.9899 35.9942 825.1416 818.6396 817.7002

6 36.35 36.5285 36.5175 937.7612 929.7104 928.8057

Table 3 presents the results for the Wyner–Ziv (WZ) coder part for decoding WZF. For
DIVCOM, the average PSNR gain per WZF over DIS ranges from 0.0521 dB to 0.36 dB, while
for PDIVCOM, the gain ranges from 0.039 dB to 0.3323 dB. The average channel-decoding
rate results indicate that DIVCOM achieves an average coding efficiency value between
101 bits to 1.151 kbits, whereas the average coding efficiency of PDIVCOM ranges from
219 bits to 1.28 kbits. At the individual frame level, the RD performance of the proposed
codecs is degraded in some frames. However, overall, these codecs perform well for most
of the frames in the test sequence. From Table 3, we can see that DIVCOM gave a negative
average PSNR gain for quantization point 3. The reduction in performance is due to the
CNM parameter in the reconstruction process. Even so, the average decoding rate indicates
that better coding efficiency is achieved by DIVCOM. For the higher quantization points,
the average coding rates of DIVCOM and PDIVCOM are close to that of DIS because, at
these higher points, a variant coding rate behavior is noticed for the proposed codecs. For
some frames of the sequence, a bit rate per frame that is close to or higher than DIS is
achieved; however, higher coding efficiency is attained for most of the frames.
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Table 3. Coding efficiency evaluation of proposed novel online CNM for “Coastguard” video sequence.

Video
Sequence Qm

Average Channel Decoding Rate per WZF (bits) Average PSNR Gain per WZF Compared to DIS (dB)

DIS DIVCOM PDIVCOM DIVCOM PDIVCOM

Coastguard

1 4545 4444 4326 0.0521 0.0751

2 5404 5199 5176 0.0731 0.0449

3 7722 7486 7523 −0.006 0.0396

4 18,070 17,425 17,384 0.1957 0.1231

5 22,979 22,028 21,891 0.2417 0.2507

6 33,856 32,678 32,546 0.3549 0.3323

Figure 2 depicts the experimental results in the form of RD performance carried
out with Intra H.264, DIS, DIVCOM, and PDIVCOM on the “Coastguard” video. It can
be seen that for all quantization points, the performance of DIVCOM and PDIVCOM is
comparable to DIS. For low quantization points, the DIVCOM gives a coding efficiency
of roughly between 1 and 2.5 kbps along with a significant improvement in the PSNR.
The PDIVCOM also shows almost the same performance trend in both coding efficiency
and PSNR. At higher quantization points, both DIVCOM and PDIVCOM outperform DIS.
DIVCOM achieves a coding efficiency of up to 8 kbps and an improvement in PSNR of
0.18 dB over DIS. PDIVCOM performs even better than DIVCOM and achieves a coding
efficiency of up to 9 kbps and PSNR gain of up to 0.17 dB. The small improvement in coding
efficiency at lower quantization points is due to fewer bands undergoing the decoding
process. However, the improvement becomes significant at higher quantization points
because more bands undergo the decoding process. Upon further evaluation of the frames
for each quantization point, a higher coding rate is observed for a few of the frames in the
test sequence. This is due to a miscalculation of the CNM parameter by the proposed model.
Even the PSNR quality is also compromised for those frames. The performance comparison
of DIVCOM with Intra H.264 shows that DIVCOM achieves better coding efficiency for
all quantization points with a bit rate saving of up to 41.92 kbps. For low to intermediate
quantization points, DIVCOM achieves a PSNR gain of up to 0.69 dB. However, at the
highest quantization point, the PSNR degrades by up to 0.28 dB. PDIVCOM shows better
coding efficiency for all quantization points compared to Intra H.264 with bit rate savings
ranging from 30.23 kbps to 42.83 kbps. At the same time, PDIVCOM achieves PSNR
gains up to 0.71 dB for all quantization points. However, similar to DIVCOM its PSNR
performance degrades at the highest quantization point by 0.29 dB.
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4.2.2. “Akiyo” Video Sequence

Table 4 presents the experimental results of the “Akiyo” video sequence. From the
table, it can be seen that the improvement in PSNR of DIVCOM over the DIS codec is
between 0.007 dB and 0.021 dB, while PDIVCOM gives an improvement in PSNR between
0.037 dB and 0.12 dB over the DIS codec. Even though the coding efficiency of DIVCOM
improves by between 0.38 kbps and 1.7 kbps over DIS codec. In some cases, when the
variance is less than 0.1, the coding rate of DIVCOM is worse than DIS. The coding efficiency
of PDIVCOM is better than DIS by between 1.53 kbps and 10.938 kbps. On a frame-by-frame
base analysis, PDIVCOM is better than DIVCOM because it has fewer occurrences of frames
that have worse PSNR and coding rates than DIS. Overall, the PDIVCOM outperforms
other codecs investigated for this test video sequence.

Table 4. Visual quality and rate performance evaluation of different codecs for “Akiyo” video
sequence at frame rate of 15 Hz.

Video
Sequence

Qm

Average PSNR
(dB)

Coding Rate
(kbps)

DIS DIVCOM PDIVCOM DIS DIVCOM PDIVCOM

Akiyo

1 36.5622 36.5688 36.5988 188.5562 187.2031 187.0215

2 37.9728 37.9896 38.0227 235.6357 234.3213 233.8198

3 38.8950 38.9045 38.9394 266.1543 264.8397 262.4297

4 39.7082 39.7128 39.6677 329.874 329.4976 322.6880

5 40.6535 40.6747 40.7688 387.9673 386.311 379.0576

6 40.9639 40.9827 41.0656 424.4033 439.0259 413.4653

Table 5 presents the results for the Wyner–Ziv (WZ) coder part for decoding WZF. For
DIVCOM, the average PSNR gain per WZF over DIS ranges from 0.0137 dB to 0.413 dB,
while for PDIVCOM, the gain ranges from 0.0654 dB to 0.24 dB. The average channel-
decoding rate results indicate that DIVCOM achieves an average coding efficiency value
between 55 bits and 243 kbits. However, in one case where a few frames had a variance
of less than 0.1, additional bits were requested several times to mitigate the errors. This
resulted in DIVCOM having a worse coding rate than DIS. PDIVCOM achieves an average
coding rate between 219 bits and 1.28 kbits. It can also be observed that for this video
sequence PDIVCOM outperforms both DIS and DIVCOM in terms of coding efficiency. The
gain comparison shows that there are only slight PSNR gains acquired by both proposed
codecs. This is because the estimated CNM parameter used in the decoding process is not
suitable for some of the frames with a variance of around 0.1, so this results in inaccurately
reconstructed frames.

Table 5. Coding efficiency evaluation of proposed novel online CNM for “Akiyo” video sequence.

Video
Sequence

Qm
Average Channel Decoding Rate per WZF (bits)

Average PSNR Gain
per WZF Compared to DIS

(dB)

DIS DIVCOM PDIVCOM DIVCOM PDIVCOM

Akiyo

1 2733 2535 2509 0.0137 0.0654

2 3436 3244 3170 0.035 0.1034

3 4309 4116 3765 0.0197 0.0921

4 8674 8619 7623 0.0094 −0.084

5 10,417 10,174 9113 0.044 0.2389

6 13,732 15,871 12,132 0.0413 0.2097
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The graph in Figure 3 illustrates the RD performance of the codecs on the “Akiyo”
test video sequence at all quantization points. Both DIVCOM and PDIVCOM perform
better than DIS by having a better coding efficiency and PSNR at all quantization points.
From the RD graph, it is noticed that for lower quantization points, the DIVCOM achieves
a coding efficiency of up to 1.31 kbps and PSNR gain of up to 0.017 dB. However, the
DIVCOM coding efficiency slightly reduces at higher quantization points but still manages
to achieve a PSNR gain of 0.021 dB for these points. PDIVCOM achieves a higher coding
efficiency than both DIS and DIVCOM. At low quantization points, the coding efficiency
of PDIVCOM can go up to 3.71 kbps, and up to 11 kbps at higher quantization points.
The PSNR gain achieved by PDIVCOM is up to 0.05 dB at the lower quantization points
up to 0.12 dB at higher points. Compared to Intra H.264, the DIVCOM achieves a higher
coding efficiency ranging between 1 kbps and 40 kbps and PSNR gain ranging from 0.06 dB
to 0.29 dB for low and intermediate quantization points. However, at high quantization
points, the coding efficiency of DIVCOM degrades by 2.8 kbps to 14.4 kbps. The PSNR of
DIVCOM is also worse than Intra H.264 by 0.10 dB. The comparison between PDIVCOM
and Intra H.264 shows that PDIVCOM achieves a better coding efficiency ranging from
4 kbps to 48 kbps for all quantization points and a PSNR gain ranging from 0.02 dB to
0.32 dB.
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frame rate of 15 Hz and GOP 2.

4.2.3. “Foreman” Video Sequence

Table 6 presents the experimental results of the “Foreman” video sequence. It can be
seen that DIVCOM can achieve a PSNR improvement of between 0.0043 dB and 0.03 dB
over DIS, however, in some cases, DIVCOM gives a worse PSNR than DIS. Additionally,
DIVCOM also shows improvement in coding efficiency of between 1.19 kbps to 6.4 kbps
over DIS. On the other hand, even though PDIVCOM can achieve a PSNR gain of up to
0.021 dB over DIS, in most cases it performs worse than DIS due to the reconstruction
procedure. The coding efficiency of PDIVCOM is better than DIS by between 0.34 kbps to
4.1 kbps but PDIVCOM does not perform as well as DIVCOM.

Table 7 presents the results for the Wyner–Ziv (WZ) coder part for decoding the WZF
of the “Foreman” video sequence. For DIVCOM, the average PSNR gain per WZF over DIS
ranges from 0.0089 dB to 0.0627 dB while for PDIVCOM, the gain can reach up to 0.0434 dB.
The results also indicate that DIVCOM achieves an average channel coding efficiency of
between 174 bits to 934 bits, while for PDIVCOM, the coding efficiency ranges from 45 bits
to 594 bits. However, the visual quality of both DIVCOM and PDIVCOM is worse than DIS
due to the degradation of a few frames during the reconstruction process.
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Table 6. Visual quality and rate performance evaluation of different codecs for “Foreman” video
sequence at frame rate of 15 Hz.

Video
Sequence

Qm

Average PSNR
(dB)

Coding Rate
(kbps)

DIS DIVCOM PDIVCOM DIS DIVCOM PDIVCOM

Foreman

1 29.467 29.4149 29.4215 182.0371 180.8467 181.7236

2 31.111 31.1412 31.0124 243.3101 241.8110 242.8442

3 31.8513 31.7571 31.8224 299.8809 297.5244 298.6641

4 33.5509 33.5095 33.4341 466.7505 460.9893 464.5913

5 34.2864 34.1826 34.1587 539.6836 533.3032 535.6260

6 36.1753 36.1796 36.1962 739.2827 733.3574 739.5210

Table 7. Coding efficiency analysis of proposed novel online CNM for “Foreman” video sequence.

Video
Sequence

Qm
Average Channel Decoding Rate per WZF (bits)

Average PSNR Gain
per WZF Compared to DIS

(dB)

DIS DIVCOM PDIVCOM DIVCOM PDIVCOM

Foreman

1 7452 7278 7407 −0.1003 −0.0922

2 8229 8010 8161 0.0627 −0.2043

3 12,448 12,103 12,270 −0.1939 −0.06

4 23,925 23,083 23,610 −0.0857 −0.2419

5 28,260 27,326 27,666 −0.2149 −0.02645

6 38,148 37,281 38,183 0.0089 0.0434

Figure 4 shows the RD performance for the “Foreman” test sequence. The graph indi-
cates that both DIVCOM and PDIVCOM achieve better coding efficiency at all quantization
points. However, in terms of visual quality, both codecs generally performed worse than
DIS, as can be seen from the PSNR values. The PSNR performance degradation of DIVCOM
is up to 0.1 dB, while for PDIVCOM, the maximum loss of 0.21 dB. By evaluating the plot for
DIVCOM, it is noticed that for lower to middle quantization points, the coding performance
of the codec is better than DIS by between 1.19 kbps and 2.36 kbps. This coding efficiency
can improve up to 6.38 kbps at higher quantization points. Similarly, PDIVCOM achieves a
coding efficiency of between 0.314 kbps and 1.2168 kbps at lower and middle quantization
points, and up to 4.0576 kbps at higher quantization points. Therefore, both DIVCOM and
PDIVCOM outperformed DIS in terms of coding efficiency but performed worse in terms
of visual quality. At low and intermediate quantization points, the bit rate saving achieved
by DIVCOM ranges from 3.6 kbps to 8.7 kbps compared to Intra H.264. However, at higher
quantization points, DIVCOM shows a higher bit rate ranging from 3.6 kbps to 24.5 kbps.
DIVCOM achieves a PSNR of around 0.45 dB to 0.63 dB for all quantization points. The
comparative evaluation of PDIVCOM and Intra H.264 shows that the PDIVCOM achieves
a bit rate saving ranging from 7.9 kbps to 10.4 kbps for low to intermediate quantization
points. However, at high quantization points the coding rate of PDIVCOM is higher than
Intra H.264 by up to 30 kbps is noticed. The PSNR gain of PDIVCOM over Intra H.264
ranges from 0.46 dB to 0.69 dB for all quantization points.
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4.2.4. “Hall” Video Sequence

Table 8 presents the experimental results of the “Hall” video sequence. It can be seen
that both DIVCOM and PDIVCOM achieved a higher average PSNR compared to DIS.
When we analyze on a frame-by-frame basis, it is found that for most of the frames a slight
PSNR gain is achieved by PDIVCOM, but for some frames the PSNR is reduced. Overall, the
average PSNR gain of PDIVCOM over DIS is between 0.005 dB to 0.026 dB. PDIVCOM also
achieved an improvement in average coding efficiency by between 0.32 kbps to 4.129 kbps
over DIS. Similarly, DIVCOM also shows a variance in the PSNR gain over DIS on a frame-
to-frame basis, but the overall average PSNR gain is 0.026 dB. The improvement in coding
efficiency of DIVCOM over DIS is in the range of 1.17 kbps to 6.354 kbps. Both DIVCOM
and PDIVCOM surpass DIS in terms of coding efficiency, with DIVCOM performing
relatively better than PDIVCOM.

Table 8. Visual quality and rate performance evaluation of different codecs for “Hall” video sequence
for frame rate 15 Hz.

Video
Sequence

Qm

Average PSNR
(dB)

Coding Rate
(kbps)

DIS DIVCOM PDIVCOM DIS DIVCOM PDIVCOM

Hall

1 30.1501 30.1438 30.1489 170.1616 168.9883 169.845

2 32.87 32.8393 32.8254 243.5151 242.0322 242.8735

3 34.5575 34.5309 34.5463 320.8701 318.9966 319.6396

4 35.3398 35.3654 35.3581 389.0669 386.2036 387.0825

5 36.1409 36.1250 36.1458 445.9565 441.4385 442.5024

6 36.9788 36.9446 37.0051 533.2949 526.9409 529.1656

Table 9 presents the results for the Wyner–Ziv (WZ) coder part for decoding WZF. For
the “Hall” video sequence, DIVCOM achieved an average PSNR gain of up to 0.053 dB
over DIS for the reconstructed WZF, while PDIVCOM achieved an average PSNR gain in
the range of 0.0102 dB to 0.0545 dB. The average channel decoding rate results indicate that
DIVCOM achieved an average channel coding efficiency of between 46 bits and 929 bits
while the coding efficiency of PDIVCOM ranges from 171 bits to 604 bits. Although both
DIVCOM and PDIVCOM resulted in poorer visual quality for some of the quantization
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points due to degradation in some of the frames during reconstruction, they achieved
higher coding efficiency than DIS.

Table 9. Coding efficiency evaluation of proposed novel online CNM for “Hall” video sequence.

Video
Sequence

Qm
Average Channel Decoding Rate per WZF (bits)

Average PSNR Gain
per WZF Compared to DIS

(dB)

DIS DIVCOM PDIVCOM DIVCOM PDIVCOM

Hall

1 4467 4421 4296 −0.0131 −0.0023

2 5123 5029 4906 −0.0109 0.0179

3 6252 5978 6072 −0.0549 −0.023

4 11,448 11,029 11,158 0.0531 0.0381

5 13,081 12,420 12,576 −0.0331 0.0102

6 17,003 16,074 16,399 −0.0708 0.0545

Figure 4 shows the RD performance for the “Hall” test sequence. This visual repre-
sentation shows that both DIVCOM and PDIVCOM outperform DIS in coding efficiency.
Further analysis shows that DIVCOM outperforms DIS in coding efficiency by a range
of 1.17 kbps to 1.87 kbps for lower quantization points and up to 6.354 kbps at higher
quantization points. The graph also indicates that PDIVCOM achieves better coding effi-
ciency compared to DIS. For lower and middle quantization points, the coding efficiency of
0.317 kbps to 1.231 kbps is recorded for this test sequence, while for higher quantization
points, the coding efficiency increases to 4.13 kbps. In terms of PSNR gain, the performance
of DIVCOM and PDIVCOM were mixed. DIVCOM outperforms DIS by up to 0.026 dB but
can also suffer a PSNR loss of up to 0.03 dB. Similarly, PDIVCOM outperforms DIS by up to
0.0139 dB but can also suffer a PSNR loss of up to 0.06 dB. The WZF reconstruction process
plays a key role in PSNR performance gain. The loss in the performance of the DIVCOM
and PDIVCOM for the “Hall” and “Foreman” video sequences is mainly due to the degra-
dation during the reconstruction process. Figure 5 shows that DIVCOM and PDIVCOM
outperform the Intra H.264 codec in coding efficiency and PSNR gain for all quantization
points. DIVCOM achieves a better coding efficiency ranging from 62 kbps to 94.4 kbps,
while its PSNR performance also improves and with a gain of around 0.06 dB. The graph
analysis indicates that PDIVCOM achieved a bit rate saving ranging from 61.16 kbps to
91.73 kbps over Intra H.264 for all quantization points. In terms of PSNR gain, PDIVCOM
outperforms Intra H.264, by 0.04 dB to 0.12 dB.
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4.2.5. Bjøntegaard Delta Performance Evaluation

Table 10 presents the Bjontegaard metric performance results of DIVCOM, PDIVCOM,
and DISCOVER. The codecs’ performance results are presented in terms of BD-Rate and
BD-PSNR. As reported in Table 10, DIVCOM and PDIVCOM give an improvement in bit
rate ranging from 2.46% to 6.13% and 3.47% to 11.37%, respectively, compared to DIS for
different video sequences. However, for the Foreman video sequence, the performance
of PDIVCOM in terms of bit rate saving is degraded up to 1.33%. The BD-PSNR analysis
shows that DIVCOM and PDICOM gain 0.05 dB to 0.18 dB and 0.14 to 0.35 dB, respectively,
for different video sequences compared to DIS. However, PDIVCOM performance for
Foreman is degraded by 0.026 dB compared to DIS.

Table 10. Comparison of BD-Rate and BD-PSNR between DIVCOM and PDIVCOM with DIS.

Video
BD-Rate BD-PSNR

DIVCOM vs. DIS PDIVCOM vs. DIS DIVCOM vs. DIS PDIVCOM vs. DIS

Coastguard −6.13 −6.27 0.14 0.14

Akiyo −3.46 −11.37 0.113 0.35

Foreman −1.49 1.33 0.05 −0.026

Hall −2.46 −3.47 0.18 0.17

5. Conclusions and Future Research Work

In DVC, a suitable and accurate correlation noise model plays a crucial role in im-
proving the RD performance and coding efficiency. As in DVC, neither WZF is available
at the decoder, nor is the estimated SI of the corresponding WZF available at the encoder.
Therefore, online estimation of the CNM and its parameters is quite tricky, especially when
the motion vector is not estimated at the decoder such as in [15]. The proposed novel online
CNM approach is suitable for such a scenario and accurately calculates the error distribu-
tion and makes the coding of the codec highly efficient. Higher coding efficiency and PSNR
gain lead to better RD performance. The DIVCOM codec achieves coding efficiency up to
8.05 kbps, and PSNR ranges from 0.0245 dB to 0.18 dB compared to the DIS codec. The
PDIVCOM achieves a coding efficiency of up to 10.9 kbps, and PSNR ranges from 0.019 to
0.17 dB compared to DIS.

Even so, there is still room for improvement. During the frame-by-frame analysis, a
higher coding rate is observed at some frames of every video sequence. A closer analysis
determined that for some frames, the variance was around 0.1, and the channel-coding rate
achieved under such conditions was too high. Along with the high channel-coding rate,
all errors in bands of such frames were not completely corrected. By further investigating
those frames at band level, a higher bit rate is also noticed for most bands of those frames.
The CNM parameter (α f ) estimation process can further be enhanced by improving the
mathematical formulation by considering the variance. This could potentially improve the
coding efficiency. Therefore, rectifying the CNM parameter at the band level enhances the
coding rate and the overall RD performance. For band-level CNM, we may send more than
one sample of coefficient values of a band instead of the mean of coefficients of a band.
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