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SUMMARY

In this communication we propose a new exponential-based integration algorithm for associative
von-Mises plasticity with linear isotropic and kinematic hardening, which follows the ones presented
by the authors in previous papers. In the first part of the work we develop a theoretical analysis on the
numerical properties of the developed exponential-based schemes and, in particular, we address the
yield consistency, exactness under proportional loading, accuracy and stability of the methods. In
the second part of the contribution, we show a detailed numerical comparison between the new
exponential-based method and two classical radial return map methods, based on backward Euler and
midpoint integration rules, respectively. The developed tests include pointwise stress–strain loading
histories, iso-error maps and global boundary value problems. The theoretical and numerical results
reveal the optimal properties of the proposed scheme. Copyright � 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The present paper constitutes the latest contribution by the authors to a series of previous
communications regarding the development of a new class of exponential-based integration
algorithms for von-Mises plasticity with linear isotropic and kinematic hardening.
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There are several aims to this work. First, we introduce a modified time-continuous refor-
mulation for the model under consideration based on a different choice for a generalized stress
vector and for an integration factor. Then we present the corresponding integration scheme
(ESC2 scheme) for the reformulated differential-algebraic problem which makes use of expo-
nential maps. The new scheme represents an improved evolution of other exponential-based
integration procedures [1, 2]. We propose a thorough discussion on the consistency, accuracy
and stability of the new numerical method from the analytical point of view.

Finally, we test the new scheme on a wide set of numerical examples. As a comparison, we
adopt two classical radial return map-type methods based on two different integration rules.
The first one is based on a backward Euler integration rule and it will be referred as RM
method [3–5], while the second is based on a midpoint integration scheme and will be labelled
as MPT [6]. To this end, also the previously developed exponential-based algorithms ENN, ENC
and ESC (see References [1, 2] for details) are taken into account to show the improvements
gained by the new scheme.

The present paper is organized as follows.
In Section 2 we introduce the basic equations governing the plasticity model under consid-

eration, while in Section 3 we briefly recall a reformulation of the problem already presented
in Reference [2]. The new formulation results in a quasi-linear form which is suitable for an
effective step-by-step numerical integration using exponential maps. In Section 4 we present
two numerical algorithms which stem from the preceding formulation. The first method is the
ESC scheme already proposed in Reference [2], while the second one is the new ‘optimal’
ESC2 algorithm.

In Section 5 we develop a theoretical analysis of the exponential methods presented by
the authors here and in previous communications. First we address properties which are
directly related to the plasticity problem, namely yield consistency, exactness in the absence of
isotropic hardening and exactness under proportional loading. Afterwards, we address general
properties in the analysis of numerical schemes for differential equations, namely accuracy
and stability. In Section 6, we undertake a wide testing of the ESC and ESC2 methods
considering piecewise stress–strain load histories, iso-error maps and boundary value prob-
lems. The numerical investigations are expressed in terms of solution accuracy and New-
ton convergence speed, comparing both exponential-based schemes also with the classical
radial return map integration schemes based either on backward Euler or midpoint integration
rules.

Differently from the ESC scheme, the results of Section 6 show that the ESC2 method
is quadratically accurate and exact under proportional load histories. Moreover, the improved
performance of the ESC2 scheme using large time steps is clearly appreciable when a direct
comparison is made with the other tested methods by means of iso-error maps. In this sense,
the new ESC2 procedure is ‘optimal’, since it grants specific features that makes it the most
competitive within the exponential-based set family.

Finally, in Appendix A, we present two technical lemmas and a complete detailed derivation
of the algorithmically consistent tangent operators both for the ESC and ESC2 algorithms.

Remark 1.1
Throughout the whole paper we adopt a compact matrix notation. Accordingly, all second rank
and fourth rank symmetric tensors are indicated by 6 × 1 column vectors and 6 × 6 symmetric
matrices. The definition of trace and Euclidean norm are consequently modified.
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2. TIME CONTINUOUS MODEL

We consider an associative von-Mises plasticity model with linear kinematic and isotropic
hardening in the realm of small deformations (refer for example to References [7, 8] or [9]).
Splitting the strain and stress vectors, � and �, in deviatoric and volumetric parts we have

� = s + pi with p = 1
3 tr(�) (1)

� = e + 1
3�i with � = tr(�) (2)

where tr indicates the trace operator (sum of the first three components), while i, s, p, e, �
are, respectively, the vector corresponding to the second rank identity tensor, the deviatoric and
volumetric stresses, the deviatoric and volumetric strains.

The equations for the model are

p = K� (3)

s = 2G[e − ep] (4)

� = s − � (5)

F = ‖�‖ − �y (6)

ėp = �̇n (7)

�y = �y,0 + Hiso� (8)

�̇ = Hkinėp (9)

�̇ � 0, F � 0, �̇F = 0 (10)

where K is the material bulk elastic modulus, G is the material shear modulus, ep is the
traceless plastic strain, � is the relative stress in terms of the backstress �, the latter introduced
to describe a kinematic hardening mechanism. Moreover, F is the von-Mises yield function,
n is the normal to the yield surface, �y is the yield surface radius, �y,0 the initial yield stress,
Hkin and Hiso are the kinematic and isotropic hardening moduli. Finally, Equations (10) are the
Kuhn–Tucker conditions; in particular, the second equation limits the relative stress within the
boundary defined by the yield surface F = 0, while the other two are necessary to determine
the plastic behaviour. With a slight over-simplification of the model complexity, we may say
that when �̇ = 0 the system is in an elastic phase, while when �̇>0 we say that the system is
in a plastic phase.

Remark 2.1
Due to the linear behaviour of the volumetric part constitutive equations, we treat only the
deviatoric part of the model.

3. A NEW MODEL FORMULATION

In this section we present a new time-continuous model formulation for the differential
algebraic problem under consideration. This innovative statement of the problem represents
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a generalization of the formulation presented in References [2, 10] and thus constitutes an
extension of the ones proposed in References [1, 11, 12]. Such a formulation allows to rewrite
the system in the form

Ẋ = AX (11)

which is the starting point for the numerical scheme developed in Section 4.
Combining Equations (4) and (5), we obtain

� + � + 2Gep = 2Ge (12)

which, taking the derivative in time, applying Equation (9) and rearranging terms gives

�̇ = 2Gė − (2G + Hkin)ėp (13)

Now, recalling the yield surface radius

�y = �y,0 + Hiso� (14)

and that in the plastic phase

n = �

‖�‖ = �

�y,0 + Hiso�
= �

�y
(15)

we may apply (7) obtaining

�̇ + (2G + Hkin)
�

�y
�̇ = 2Gė (16)

which is a differential equation for � that is valid also during elastic phases (�̇ = 0). Introducing
the scaled relative stress

�̄ = �

�y
(17)

we observe that, whenever the relative stress � lays on the yield surface, then �̄ = n, while
this is not true when � lays inside the yield surface. The time derivative of (17) and the use
of relation (14) gives

˙̄� = �̇

�y
− Hiso

�y
�̇�̄ (18)

Dividing Equation (16) by �y and using relationship (18), one obtains

˙̄� + 2G + Hkin + Hiso

�y
�̇�̄ = 2G

�y
ė (19)

The next goal is to introduce an integration factor for the above evolutionary equation.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:449–498



VON-MISES PLASTICITY WITH LINEAR HARDENING 453

Accordingly, we set

X0(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 + �Hiso

�y,0

)2G+Hkin+Hiso/Hiso

if Hiso �= 0

exp

(
2G + Hkin + Hiso

�y,0
�

)
if Hiso = 0

(20)

noting that such a function is continuous for fixed � and Hiso → 0 and that

Ẋ0 = 2G + Hkin + Hiso

�y
�̇X0 (21)

Multiplying Equation (19) by X0 and using Equation (21) the following relationship holds:

d

dt
[X0�̄] = X0

˙̄� + Ẋ0�̄ = 2G

�y
X0ė (22)

At this stage, defining a new 7-dimensional generalized stress vector X as

X =
(

X0�̄

X0

)
=
(

Xs

X0

)
(23)

Equation (22) can be rewritten as

Ẋs = 2G

�y
X0ė (24)

The evolution law for X0 in terms of X in elastic phases follows immediately from (21)

Ẋ0 = 0 (elastic phases) (25)

On the other hand, for �̇ �= 0, taking the scalar product of (22) with �̄, we have

X0
1

2

d

dt
‖�̄‖2 + Ẋ0‖�̄‖2 = 2G

�y
X0ė · �̄ (26)

which, noting that in plastic phases

‖�̄‖ = ‖�‖
�y

= 1 (27)

and using (23), (26) gives

Ẋ0 = 2G

�y
ė · Xs (plastic phases) (28)

Equations (24), (25) and (28) provide a system for the generalized stress vector X, in the
form

Ẋ = AX (29)
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with the matrix A depending on the actual phase as follows:

A = 2G

�y

(
06×6 ė

01×6 0

)
(elastic phase) (30)

A = 2G

�y

(
06×6 ė

ėT 0

)
(plastic phase) (31)

and with A symmetric during plastic phases. Therefore the original problem, expressed by
Equations (4)–(9), has been substituted by a new one, expressed by Equations (29)–(31).

We also observe that in the case of no isotropic hardening (Hiso = 0) the yield radius �y is
fixed and therefore A depends only on ė. This means that, if ė is constant in a given time
interval, A holds the same property: under such an hypothesis the solution of system (29) is
known and the problem can be solved exactly.

However, in a general case (Hiso �= 0) the matrix A depends on X and in this sense we
say that the problem is ‘quasi linear’. Anyway, the ‘quasi linearity’ arising in the problem is
indeed of great value, allowing us to develop the numerical method of Section 4.

3.1. Time-continuous on--off switch

To properly convert the original problem in a new but equivalent differential algebraic format,
we also need to introduce an elasto-plastic phase determination criterium expressed in the new
generalized stress environment.

For a given state to be plastic, the following two conditions must be fulfilled:

(1) The relative stress � must be on the yield surface, in other words

‖�‖ = �y (32)

Using (17) and (23) this can be easily rewritten as

‖Xs‖2 = ‖�̄‖2X2
0 = ‖�‖2

�2
y

X2
0 = X2

0 (33)

(2) The direction of the strain rate ė must be outward with respect to the yield surface, i.e.

� · ė > 0 (34)

Again, recalling (17) and (23) it is immediate to check that (34) is equivalent to

Xs · ė > 0 (35)

If the two conditions (33) and (35) are not satisfied, the step is elastic.

4. NUMERICAL SCHEME

We now want to develop a numerical scheme for the evolution of X, governed by the dynamical
law (29) with matrix A given by (30) or (31), respectively.
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4.1. Time integration procedure

As usual, we assume that the time history interval [0, T ] is divided into N sub-intervals
defined by the nodes 0 = t0 < t1 < · · · < tn < tn+1 < · · · < tN = T and indicate the general
sub-interval amplitude as �t = tn+1 − tn. Given the values (sn, en, �n, �n) at time tn and the
deviatoric strain en+1 at time tn+1, we search for the remaining variables at time tn+1, assuming
the strain history to be piecewise linear. For simplicity, we consider the initial values (at t = t0)
of �, ep and � to be zero, so that the initial generalized stress vector is

X0 =
(

�0/�y,0

1

)
(36)

Due to the piecewise linearity of the strain path, ė is constant in each single time interval.
Unluckily, due to the presence of �y in (31), during plastic phases, the matrix A is not constant
in the same time interval; in fact the yield surface radius �y is a function of X0, as shown by
relation (21) and hence of X. Therefore, we discretize the dynamical law (29), approximating
�y as stepwise. Along each time interval [tn, tn+1], we choose �y = R, where R is now a
constant value in each single time step. It is evident that for purely elastic steps the R value
coincides with �y,n. The discrete form of the evolution law (29) becomes

Ẋ = ĀX (37)

where the matrix Ā is now constant along a single time interval

Ā = 2G

�y,n

(
06×6 ė

01×6 0

)
(elastic phase) (38)

Ā = 2G

R

(
06×6 ė

ėT 0

)
(plastic phase) (39)

Different choices for R are clearly possible, for example

R = �y,n (ESC scheme)

R = c�y,n

ln(1 + c)
(ESC2 scheme)

(40)

where

c =
2Gq(1 − �)

(
Xs

n

X0,n

· ė
)

�y,n

�t (41)

with

q = Hiso

2G + Hkin + Hiso
(42)

The � scalar parameter represents the part of the step along which the stress vector remains
within the limit surface (see Figure 1(a)). Its calculation will be explained and discussed in
detail in Section 4.2 for compactness reasons.
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(a) (b)

Figure 1. Exponential-based schemes update procedure in the generalized relative stress
space during a mixed elasto-plastic step.

The first choice for R in (40) corresponds to the ESC scheme already proposed in Refer-
ence [2], the second one leads to the new ESC2 scheme which is the object of the present paper.
While the reasonings for the first choice for R are evident (‘forward integration’ scheme), the
second choice for R comes from considerations regarding the improved numerical properties
of the new exponential-based algorithm, discussed from the analytical standpoint in Section 5.

Due to the fact that R is computed using only quantities evaluated at the beginning of the
step, the matrix Ā is now constant in both elastic and plastic phases and so Equation (37) can
be solved exactly, giving the following evolution for X:

Xn+1 = exp [Ā�t]Xn = ḠXn (43)

Defining the vector �e = en+1 −en, we observe that the matrix Ā�t is equal to the matrix (38)
or (39) after substituting ė with �e.

Therefore, the matrix Ḡ is

Ḡ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ḡe =
⎛
⎜⎝ I

2G

�y,n

�e

0 1

⎞
⎟⎠ (elastic phase)

Ḡp =

⎛
⎜⎜⎜⎝

I +
[
(a − 1)

‖�e‖2

]
�e�eT b

�e
‖�e‖

b
�eT

‖�e‖ a

⎞
⎟⎟⎟⎠ (plastic phase)

(44)

where the scalars a and b are

a = cosh

(
2G

R
‖�e‖

)
(45)

b = sinh

(
2G

R
‖�e‖

)
(46)

and where I is the 6 × 6 identity matrix.
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4.2. Solution algorithm

At every time step the exponential-based algorithm proceeds as follows:

(1) Suppose the step to be elastic and compute trial values following an elastic law:

XTR
n+1 = ḠeXn (47)

where the matrix Ḡe is given by (44). If the trial solution is admissible, i.e.

‖Xs,TR
n+1 ‖ � (XTR

0,n+1)
2 (48)

then the variable values at the time step tn+1 are taken as the trial ones just calculated.
(2) If the trial solution is non-admissible, i.e. Equation (48) is violated, then the step is

plastic or elasto-plastic. Being ė constant in each time sub interval, the step can be
divided into two parts: an elastic deformation taking place during [tn, tn+�], followed
by a plastic one along [tn+�, tn+1]. Hence, we represent with a scalar � ∈ [0, 1) the
elastic time proportion of the step. The key consideration in order to calculate � is that
the evolution during the partial elastic sub-step is linear in stress space. Accordingly,
recalling (44), we search for an intermediate generalized stress vector

Xs,e
n+1 = Xs

n + 2GX0,n

�y,n

[��e] (49)

such that Xs,e
n+1 represents a stress vector lying on the yield surface at time tn+�. In

other words, we must request

Xs,e
n+1 · Xs,e

n+1 − X2
0,n = 0 (50)

Note that the left-hand side of the above equation is a second-order polynomial in �.
In stress space, the roots of such polynomial correspond to the intersections between
a segment and the boundary of a sphere, where an extreme of the segment (sn) lays
inside the sphere closure and the other extreme (sn + 2G�e) outside the sphere. As a
consequence there is always one maximum (non-negative) root. Calculating therefore �
from expression (50) we get

� =
√

C2 − DM − C

D
(51)

where

C = 2GX0,n

�y,n

(Xs
n · �e)

D =
(

2GX0,n‖�e‖
�y,n

)2

M = ‖Xs
n‖2 − (XTR

0,n+1)
2

(52)
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Computed �, Xn+1 is updated in two steps:

— Calculate a new Xe
n+1 vector following an elastic law along an ��t interval:

Xe
n+1 = Ḡe[��e]Xn (53)

— Calculate Xn+1 evolving from the new initial data Xe
n+1 following a plastic law

along the remaining part of the interval of amplitude (1 − �)�t

Xn+1 = Ḡp[(1 − �)�e]Xe
n+1 (54)

Observe that in such a framework purely plastic steps are simply those where the
time proportion of the elastic phase � is zero.

(3) Update the yield surface radius

�y,n+1 = �y(X0,n+1) = �y,0(X0,n+1)
q (55)

which is easily obtained combining (14) and (20).

The solution algorithm steps (1)–(3) are graphically represented in Figure 1(b).

Remark 4.1
The relative stress and backstress can be calculated whenever needed as

� = Xs

X0
�y (56)

� = Hkin
2Ge − �

2G + Hkin
(57)

The first one is immediately obtained from the definition of X, while the second one follows
from (4) and (5), observing that � = Hkinep.

Remark 4.2
The variable X0 is a local auxiliary variable and not an history variable. In other words,
introducing an appropriate scaling of the vector X the variable X0 does not need to be updated
at every time step. See Remark 3 in Reference [2] for a deeper explanation of these algorithmical
issues.

Remark 4.3
Whenever Hiso = 0, i.e. there is no isotropic hardening, the solution obtained with this scheme
is exact. Other exact integrators can be found in the literature for the case Hiso = 0, see for
example References [13–15]. A discussion of exponential-based exact integration schemes and
other exact integrators can be found in Reference [2].
4.3. Tangent matrix

The algorithmically consistent tangent matrix can be obtained properly linearizing the time-
discrete procedure. In the present paragraph all the dynamical discrete quantities are evaluated
at the end of the actual time step tn+1; therefore all subscripts will be omitted for the sake of
compactness.
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For the total stress, Equation (5) provides

�s
�e

= ��

�e
+ ��

�e
(58)

and, recalling also Equation (57), it becomes

�s
�e

= 2G

2G + Hkin

��

�e
+ 2GHkin

2G + Hkin
I (59)

We also have

�s
��

= �s
�e

�e
��

= �s
�e

Idev (60)

where

Idev = I − 1
3 (iiT) (61)

Taking into account the volumetric part of the stress, from Equations (1)–(3) we obtain the
tangent matrix

Ddisc = ��

��
= �s

��
+ K(iiT) (62)

Joining statements (59), (60) and (62) we obtain

Ddisc = ��

��
= 2G

2G + Hkin

��

�e
Idev + 2GHkin

2G + Hkin
Idev + K(iiT) (63)

From the definition of the generalized stress vector X we get

�Xs

�e
= X0

�y

��

�e
+ �

�y

�X0

�e
+ X0�

�
�e

(
1

�y

)
(64)

Recalling (55), a direct derivation gives

�
�e

(
1

�y

)
= 1

�y,0

�
�e

X
−q

0 = − q
1

X0�y

�X0

�e
(65)

From (64) and (65), using also definition (23) it is easy to derive

��

�e
= �y

X0

(
�Xs

�e
− 1 − q

X0
Xs �X0

�e

)
(66)

For the elastic phase we immediately have

�Xs

�e
= 2GX0I (67)

�X0

�e
= 0 (68)

while in the plastic phase the result is far more complicated and it can be found in Appendix A.
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5. THEORETICAL ANALYSIS OF ALGORITHMICAL PROPERTIES

In this section we address from a theoretical point of view the following algorithmical prop-
erties for the ESC and ESC2 methods: yield consistency, exactness under proportional loading,
accuracy and convergence. In particular we will prove that the ESC scheme is yield consistent
and converging with linear rate to the exact solution. The ESC2 scheme is yield consistent,
exact in the case of proportional loading and quadratically accurate. Moreover, limiting the proof
to purely plastic load histories, we show that the ESC2 scheme is quadratically convergent.
Although purely plastic loadings are not uncommon in practical cases, a more complete approach
should deal with generic loading histories; hence, this point is worth further investigation.

Finally, both schemes are exact in the case of materials with no isotropic hardening. Note
that the word ‘exact’ means that the algorithm introduces no error for strain driven load
histories under the classical hypothesis ė piecewise constant. In practical applications this does
not translate directly into exactness of the constitutive solver. This point will be cleared by the
numerical tests and it will be briefly discussed in Section 6.4.

For basic results and definitions regarding the numerical integration of ordinary differential
equations we refer for example to References [16, 17].
5.1. Yield consistency

In the framework of the new formulation, recalling (17) and (23), the yield consistency condition

‖�n+1‖ = �y,n+1 at end of each plastic step (69)

becomes

‖Xs
n+1‖2 − X2

0,n+1 = 0 at end of each plastic step (70)

Both the ESC and ESC2 schemes are yield consistent, in other words satisfy condition (70).
The proof for the ESC2 is identical to the one for the ESC method, which is shown in
Reference [2].
5.2. Exactness whenever Hiso = 0

Both the ESC and ESC2 schemes are exact whenever there is no isotropic hardening. The proof
of this property is immediate, considering that in such cases the matrices (30)–(31) are constant
in each time step. For other methods with this property see mainly References [13, 14].
5.3. Exactness under proportional loading

Assume as usual a piecewise linear strain history. We then say that a particular algorithmical
time step develops under proportional loading if during the whole step

�(t) = r(t)�0 (71)

where �0 is the initial stress and r(t) is a scalar depending on time. It is easy to check that
the definition above implies

ė = ‖ė‖ �0

‖�0‖ = ‖ė‖ �

‖�‖ (72)
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during the time step. As noted in Reference [2], the radial return map algorithm is exact in
the case of proportional loading, while this same property in not shared by the ESC scheme.
This means that, if a given time step develops under proportional loading, then the solution
obtained with the return map will be identical to the continuous solution with the same initial
step conditions. As shown in the following proposition, differently form the ESC scheme, the
ESC2 method has the advantage of being exact in the case of proportional loading.

We have the following.

Proposition 5.1
The ESC2 algorithm is exact in the case of proportional loading.

Proof
It is trivial to show that the scheme is exact during the elastic part of each time step; therefore
what has to be proved is that the algorithm is exact also in the plastic part of each step. In
the case of purely plastic steps (� = 0) this follows from Lemma 5.1 below, while the general
case (�>0) follows applying a trivial modification of the same lemma. �

In the sequel, we will call the direction of a vector v ∈ Rn the normalized unit vector v/‖v‖.

Lemma 5.1
Consider a purely plastic step under proportional loading. Then the solution obtained with the
ESC2 is identical to the continuous solution with the same initial step conditions.

Proof
As usual we mark with the subindex n the values at the start of the step, which are assumed
assigned. Note that, being the step purely plastic, the initial relative stress �n lays on the yield
surface. As already noted, the proportional loading assumption implies that during the step

ė = ‖ė‖ �n

‖�n‖ (73)

or equivalently

�e = ‖�e‖ �n

‖�n‖ (74)

In the case of proportional loading the continuous solution can be checked to be equal to

�ex
n+1 = �n

‖�n‖�ex
y,n+1 (75)

�ex
y,n+1 = �y,n + 2Gq‖�e‖ (76)

where here and in the sequel the index e is used to indicate the exact solution.
The value of the backstress � at any instant can be immediately derived from the value of

� and relation (57); this is true both for the continuous and the numerical solution. Similarly,
the remaining variables can then be obtained from the usual relations (3)–(10). Therefore all
that has to be checked in order to state the Lemma is that the value �n+1 obtained with the
ESC2 algorithm is equal to �ex

n+1.
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This will be done in two steps. The first is to prove that the direction of �n+1 is the same
as the one of �ex

n+1, in other words that the direction of �n+1 is equal to �n/‖�n‖. The second
step is to show that the norm of �n+1 is the same as the one of �ex

n+1, in other words that
the norm of �n+1 is equal to �ex

y,n+1.
Step 1: By definition of Xs

n and recalling that ‖�n‖ = �y,n we have

Xs
n = X0,n

�n

‖�n‖ (77)

Applying the algorithm (see (44) and (54)), we get

Xs
n+1 = Xs

n +
([

(a − 1)

‖�e‖2

]
�e · Xs

n + bX0,n

‖�e‖
)

�e (78)

where

a = cosh

(
2G

R
‖�e‖

)
(79)

b = sinh

(
2G

R
‖�e‖

)
(80)

with R defined in (40). Joining (78) with (74) and (77) immediately gives that Xs
n+1 is of the

form

Xs
n+1 = �

�n

‖�n‖ � ∈ R (81)

which immediately implies

Xs
n+1

‖Xs
n+1‖

= �n

‖�n‖ (82)

First from definitions (17) and (23), then from (82) and finally using (75), we obtain

�n+1

‖�n+1‖ = Xs
n+1

‖Xs
n+1‖

= �n

‖�n‖ = �ex
n+1

‖�ex
n+1‖

(83)

This completes the first part of the proof.
Step 2: Being the step plastic and due to the consistency of the scheme, we have

‖�n+1‖ = �y,n+1 (84)

which, recalling relation (55) and with simple algebra, gives

‖�n+1‖ = �y,n+1 = �y,0(X0,n+1)
q = �y,0(X0,n)

q

(
X0,n+1

X0,n

)q

= �y,n

(
X0,n+1

X0,n

)q

(85)
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Again applying the algorithm (see (44) and (54)), we get

X0,n+1 = b
�e · Xs

n

‖�e‖ + aX0,n (86)

Substituting (74) and (77) in (86) and dividing by X0,n gives immediately

X0,n+1

X0,n

= b‖�e‖
�n

‖�n‖ · �n

‖�n‖
‖�e‖ + a = b + a (87)

which by definition of a and b gives

X0,n+1

X0,n

= exp

(
2G

R
‖�e‖

)
(88)

Substituting (88) into (85) we obtain

‖�n+1‖ = �y,n exp

(
2Gq

R
‖�e‖

)
(89)

Due to (75), (76) and (89), in order to show that

‖�n+1‖ = ‖�ex
n+1‖ (90)

and conclude the proof of the lemma, it suffices to show that

�y,n exp

(
2Gq

R
‖�e‖

)
= �y,n + 2Gq‖�e‖ (91)

Identity (91) follows from a direct calculation and the definition of R in (40), observing that
from (74) and (77)

c = 2Gq‖�e‖
�y,n

�

(92)

5.4. Accuracy

In this section we analyse the accuracy of the methods ESC and ESC2.
It is easy to check that the function R(�t), defined in (40), is continuous even in �t = 0.

Moreover, it holds the following result which will be useful in the sequel.

Lemma 5.2
Let � = 0 (purely plastic step). Then the (right) derivative in �t = 0 of the function R(�t)

defined in (40) is well defined and equal to

Ṙ(0) = �̇y(tn)

2
(93)

Moreover, it exists the second (right) derivative in zero of R(�t).
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Applying the definition of derivative and (40) we obtain

Ṙ(0) = lim
�t→0

R(�t) − R(0)

�t
= �y,n lim

�t→0

c − ln (1 + c)

ln (1 + c)�t

= �y,n lim
�t→0

c2/2

c�t
= 2Gq

2

Xs
n

X0,n

· ė (94)

where we also used the condition � = 0. Due to definition (23), identity (94) gives

Ṙ(0) = 2Gq

2

�n

‖�n‖ · ė (95)

Recalling that we are in plastic phase, a direct derivation gives

�̇y = d

dt
‖�‖ = �

‖�‖ · �̇ (96)

Starting from the von-Mises constitutive equations, in Section 4 of Reference [1] it is shown
that in plastic phases

�̇ + (2G + Hkin)
�

�y,0 + Hiso�
�̇ = 2Gė (97)

(�y,0 + Hiso�)(2G + Hkin + Hiso)�̇ = 2Gė · � (98)

Extracting the expression for �̇ in (98) and using it in (97), we immediately obtain an equation
for �̇; then, taking the scalar product with �/‖�‖ we get

�̇ · �

‖�‖ = 2Gė · �

‖�‖ − (2G + Hkin)� · �

‖�‖(�y,0 + Hiso�)

2Gė · �

(�y,0 + Hiso�)(2G + Hkin + Hiso)
(99)

Recalling that �y,0 + �Hiso = ‖�‖, Equation (99) immediately simplifies to

�̇ · �

‖�‖ = 2Gq ė · �

‖�‖ (100)

Equations (96) and (100) give at time tn

�̇y(tn) = 2Gq ė · �n

‖�n‖ (101)

which joined with (95) proves (93).
Finally, the last statement of the lemma can be derived from the definition of second-order

derivative

R̈(0) = lim
�t→0+

Ṙ(�t) − Ṙ(0)

�t
(102)
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calculating the value of Ṙ(�t) directly from (40), using (95) for the value of Ṙ(0) and then
calculating the limit in (102). �

We are now ready to present the following accuracy result.

Proposition 5.2
The ESC2 scheme holds quadratic accuracy, in other words the truncation error is of order
(�t)2 with �t size of the time step. The ESC scheme holds instead linear accuracy.

Proof
We will show the proof only in the case of the ESC2 method; the proof for the ESC scheme
is simpler and follows similar steps. As usual, it is sufficient to show that the truncation error
for the relative stress � is quadratic; the result for the back stress � follows from relation (57).
Therefore, assuming all the variables at time tn as given, we want to show that

Tn = ‖�ex
n+1 − �n+1‖

�t
= O(�t2) (103)

where �ex
n+1 is the exact solution for the given initial data at time tn+1 and �n+1 the solution

obtained with the ESC2 scheme for the same initial data at time tn+1.
We will start showing that

‖Xex
n+1 − Xn+1‖ = O(�t3) (104)

where again Xex
n+1 represents the exact generalized stress for the given initial data at time tn+1

and Xn+1 the solution obtained with the ESC2 algorithm for the same initial data.
Recalling that the scheme is exact during elastic phases, it is sufficient to prove the proposi-

tion for purely plastic steps. The result for mixed elasto-plastic steps will then follow trivially
considering the plastic part of the step as a purely plastic step with smaller �t . We assume
therefore a purely plastic step (i.e. � = 0) with given initial data at time tn.

Then, from (11), the exact value of the generalized stress

Xex
n+1 = Xex(tn+1) = Xex(tn + �t) (105)

is the solution at time tn + �t of the dynamical system

Xex(tn) = Xn

Ẋex(t) = 2G

�y
B Xex(t) t ∈ [tn, tn + �t] (106)

where the matrix

B =
(

06×6 ė

ėT 0

)
(107)

and where we recall that �y may vary in time. Following instead the scheme ESC2, the value
of the generalized stresses

Xn+1 = X(tn+1) = X(tn + �t) (108)
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is

X(tn + �t) = exp

(
2G

R
B �t

)
Xn (109)

where R = R(�t) depends on �t as shown in (40).
It can be checked after some calculation that both Xex(tn+�t) and X(tn+�t) are C3 regular

as functions of �t , even in �t = 0. Therefore, a truncated Taylor expansion immediately leads to

Xex(tn + �t) = Xex(tn) + dXex

d�t
(tn)�t + d2Xex

d�t2
(tn)

�t2

2
+ O(�t3) (110)

X(tn + �t) = X(tn) + dX
d�t

(tn)�t + d2X
d�t2

(tn)
�t2

2
+ O(�t3) (111)

As a consequence, in order to prove (104), we must show that

Xex(tn) = X(tn) (112)

dXex

d�t
(tn) = dX

d�t
(tn) (113)

d2Xex

d�t2
(tn) = d2X

d�t2
(tn) (114)

Using (106) and with direct derivations we easily obtain for the exact solution

Xex(tn) = Xn (115)

dXex

d�t
(tn) = Ẋex(tn) = 2G

�y,n

B Xex(tn) = 2G

�y,n

B Xn (116)

d2Xex

d�t2
(tn) = Ẍex(tn) = 2G

�y,n

B Ẋex(tn) − 2G

�2
y,n

B Xex(tn)�̇y(tn)

=
(

2G

�y,n

B

)2

Xn − 2G

�2
y,n

B Xn�̇y(tn) (117)

For the discrete solution, from (109) we immediately have

X(tn) = Xn (118)

which joined with (115) gives (112).
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First again from (109) and then a direct derivation lead to

dX
d�t

(tn) =
[

d

d�t
exp

(
2G

R(�t)
B �t

)]
�t=0

Xn

=
[

2G

R(�t)
B − 2G

R(�t)2
B �tṘ(�t)

]
�t=0

[
exp

(
2G

R(�t)
B �t

)]
�t=0

Xn

= 2G

R(0)
B Xn = 2G

�y,n

B Xn (119)

where we implicitly used that Ṙ(0) is well defined due to Lemma 5.2.
Identity (119) joined with (116) gives (113). Deriving (119) we obtain

d2X
d�t2

(tn) =
{

d

d�t

[
2G

R(�t)
B − 2G

R(�t)2
B �tṘ(�t)

] [
exp

(
2G

R(�t)
B �t

)]}
�t=0

Xn

=
{[

2G

R(�t)
B − 2G

R(�t)2
B �tṘ(�t)

]2

− 2
2G

R(�t)2
BṘ(�t) + 2

2G

R(�t)3
B �tṘ(�t)2

− 2G

R(�t)2
B�tR̈(�t)

}
�t=0

[
exp

(
2G

R(�t)
B �t

)]
�t=0

Xn

=
[(

2G

�y,n

B

)2

− 2
2G

�2
y,n

B Ṙ(0)

]
Xn (120)

where we implicitly used that R̈(0) is well defined due to Lemma 5.2.
Identity (114) then follows from (117), (120) and again Lemma 5.2. We have proven the

three identities (112)–(114), therefore the proof of (104) follows as already discussed. First
from definitions (17) and (23), then using relation (55) it follows the relation between relative
and generalized stress

� = �y
Xs

X0
= �y,0X

q−1
0 Xs (121)

Using (121) and (104) and without showing all the calculations we finally get

‖�ex
n+1 − �n+1‖ = ‖�y,0(X

ex
0,n+1)

q−1Xs,e
n+1 − �y,0(X0,n+1)

q−1Xs
n+1‖ = O(�t3) (122)

Bound (122) immediately implies (103) and proves the proposition. �

5.5. Convergence

In this section we will make a first study of the convergence properties of the ESC and
ESC2 methods. In order to keep calculations simpler we will address the case with no kine-
matic hardening (i.e. Hkin = 0), otherwise also the norm introduced below should be modified
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accordingly. Note that this is not restrictive because, differently from isotropic hardening, an
opportune translation in stress space shows that linear kinematic hardening does not generate
additional difficulties from the numerical viewpoint.

We will consider convergence in the classical ‘complementary Helmholtz free energy’ norm

|||�, �y|||2 = (2G)−1‖�‖2 + (Hiso)
−1�2

y (123)

Note that, although on a finite dimensional space all norms are equivalent, the choice of this
norm is not arbitrary. This is in fact the norm in which the original continuous problem
is contractive; see for example References [3, 18]. Note also that we are assuming Hiso>0,
otherwise both schemes are exact and there is nothing to prove.

Given a certain degree of accuracy, probably the best way to prove the convergence of a
scheme in plasticity is to show that the scheme is B-stable, in other words that the method is
contractive in the ‘complementary Helmholtz free energy’ norm above (see Reference [6]). On
the other hand, the aim of this section is not to address strong properties as the B-Stability
(see References [6, 18]) which, considering the particular formulation under consideration, would
require a deeper study. We will therefore prove convergence directly, essentially by showing
that in the energy norm the error propagates at a controlled rate. In other words

• For the ESC scheme we prove linear convergence.
• For the ESC2 scheme we show quadratic convergence, but only for purely plastic load

histories. On one hand, considering that during elastic phases there is virtually no addi-
tional error, an assumption of this kind, which is also addressed in the classical paper [6],
can be reasonably accepted. On the other hand, in the presence of complicated histories
with a large number of elastic-plastic switches, a result of this kind is not sufficient to
guarantee convergence; the matter is surely worth further investigations.

In order to fix the notation, we note that in the sequel we will refer to the general stress–
radius couples (�, �y) simply as ‘couples’. The convergence of the methods will derive from
the accuracy results of the previous chapter and from the two following propositions, which
state the stable behaviour of the error propagation in the scheme.

Proposition 5.3
Assume that two initial couples (�i , �y,i ) and (�̃i , �̃y,i ) and a strain increment �e are assigned.
Let (�f , �y,f ) and (�̃f , �̃y,f ) be the solutions obtained applying one step of the ESC algorithm
with strain increment �e, respectively, to (�i , �y,i ) and (�̃i , �̃y,i ). Then there exists a constant
K such that

|||�f − �̃f , �y,f − �̃y,f ||| � exp (K‖�e‖)|||�i − �̃i , �y,i − �̃y,i ||| (124)

Moreover, the constant K depends only on ‖�e‖ and is bounded on all sets of the type
{�e ∈ R6, ‖�e‖ � c, c ∈ R+}.
Proof
In order to shorten the notation, during the proof an added index E will in general refer to
the difference

�E = � − �̃, �E
y = �y − �̃y (125)
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The proof can be divided into three separate cases, depending on which type of step (elastic
or plastic) each of the two couples is following. It is not restrictive to assume that each
couple is undergoing either a totally plastic or a totally elastic step; it is then trivial to
check that the proof for mixed elasto-plastic increments simply follows splitting the time step
opportunely.

If both couples follow an elastic step, then both couples undergo the same identical transfor-
mation and the proposition is trivially true setting K = 0. If both couples are in plastic phase,
or if one is in plastic and the other in elastic phase, the matter is more complicated. In both
cases, Lemmas A.1 and A.2 (see Appendix A), respectively, show that the error will evolve
satisfying the bound

d

dt
|||�E(t), �E

y (t)||| � ‖ė‖[K1|||�E(t0), �
E
y (t0)||| + K2|||�E(t), �E

y (t)|||] (126)

during the whole time step. In the present case, respectively, at the beginning and at the end
of an integration interval, it holds

(�(t0), �y(t0)) = (�i , �y,i ) (�f , �y,f ) = (�(t0 + �t), �y(t0 + �t)) (127)

(�̃(t0), �̃y(t0)) = (�̃i , �̃y,i ) (�̃f , �̃y,f ) = (�̃(t0 + �t), �̃y(t0 + �t)) (128)

(�E(t0), �
E
y (t0)) = (�E

i , �E
y,i ) (�E

f , �E
y,f ) = (�E(t0 + �t), �E

y (t0 + �t)) (129)

assuming that the time-step has length �t . We now have, for all t ∈ [t0, t0 + �t]

|||�E(t), �E
y (t)||| = |||�E(t0), �

E
y (t0)||| +

∫ t0+t

t0

d

ds
|||�E(s), �E

y (s)||| ds (130)

Applying bound (126) in Equation (130) now easily gives

|||�E(t), �E
y (t)||| � [1 + K1‖ė‖(t − t0)]|||�E(t0), �

E
y (t0)|||

+ ‖ė‖K2

∫ t0+t

t0

|||�E(s), �E
y (s)||| ds ∀t ∈ [t0, t0 + �t] (131)

which in turn, recalling that t ∈ [t0, t0 + �t], grants

|||�E(t), �E
y (t)||| � [1 + K1‖ė‖�t]|||�E(t0), �

E
y (t0)|||

+ ‖ė‖K2

∫ t0+t

t0

|||�E(s), �E
y (s)||| ds ∀t ∈ [t0, t0 + �t] (132)

A scalar function which satisfies a condition of this type must, due to the Gronwall Lemma
(see for example References [16, 17]), satisfy on the same interval the bound

|||�E(t), �E
y (t)||| � [1 + K1‖ė‖�t]|||�E(t0), �

E
y (t0)||| exp [K2‖ė‖(t − t0)] (133)
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Using bound (133) for t = t0 + �t and observing that 1 + x � exp (x) for all x ∈ R, it follows

|||�E
f , �E

y,f ||| � exp [K1‖ė‖�t]|||�E
i , �E

y,i ||| exp [K2‖ė‖�t] (134)

where we also used the definitions (128) and (129). Finally, recalling that ‖�e‖ = ‖ė‖�t and
setting K = K1 + K2, bound (134) gives

|||�E
f , �E

y,f ||| � exp [K‖�e‖]|||�E
i , �E

y,i ||| (135)

The proposition is proved. �

The proof of the following result is identical to the previous one, the only difference being
to limit the argument to plastic steps, therefore using only Lemma A.1 instead of Lemma A.2
(see Appendix A).

Proposition 5.4
Assume that two initial couples (�i , �y,i ) and (�̃i , �̃y,i ) and a strain increment �e are assigned.
Let (�f , �y,f ) and (�̃f , �̃y,f ) be the solutions obtained applying one purely plastic step of the
ESC2 algorithm with strain increment �e, respectively, to (�i , �y,i ) and (�̃i , �̃y,i ). Then there
exists a constant K such that

|||�f − �̃f , �y,f − �̃y,f ||| � exp (K‖�e‖)|||�i − �̃i , �y,i − �̃y,i ||| (136)

Moreover, the constant K depends only on ‖�e‖ and is bounded on all sets of the type
{�e ∈ R6, ‖�e‖ � c, c ∈ R+}.
Remark 5.1
Note that the second part of Lemma A.2 in the Appendix, i.e. proving that the scalar A2 in
the lemma is non-positive, can be proved identically also for the ESC2 scheme. The additional
difficulty is instead given by bounding the scalar A1 with terms which depend only on the
present or past history. Note that following the same steps a conditional stability result could
be obtained for the ESC2 scheme in case of mixed elasto-plastic evolution histories (i.e. a
result as in Proposition 5.3 with the additional assumption that �e is sufficiently small).

We can now state the convergence result for the ESC2 method, which holds for purely plastic
load histories. This is undoubtedly a non-negligible limitation, as noted in the comments at the
start of this section. The matter is therefore worth further investigation.

Proposition 5.5
Let a piecewise linear strain history e(t), t ∈ [0, T ] and two starting couples (�ex(0), �ex

y (0))

and (�(0), �y(0)) be assigned. Assume for simplicity that ‖ė‖ is constant during the whole
history; due to the rate invariance of the problem, this is not restrictive. Let the time interval
be divided into N uniform sub-intervals of length �t = T/N . Let (�ex(T ), �ex

y (T )) indicate the
exact solution at time T following the strain history above with starting point (�ex(0), �ex

y (0));

let also (�(T ), �y(T )) indicate the solution at time T obtained with the ESC2 scheme based
on the above strain history and time stepping, with starting point (�(0), �y(0)). Finally, as-
sume that the strain history is such that the continuous and the discrete solutions undergo
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a purely plastic loading. Then

|||(�ex(T ), �ex
y (T )) − (�(T ), �y(T ))|||

�C1‖ė‖2(�t)2 + C2|||(�ex(0), �ex
y (0)) − (�(0), �y(0))||| (137)

where C1, C2 are independent of N .

Proof
In the sequel a subindex n will indicate a variable calculated at time tn = n�t , n = {0, 1,

2, . . . , N}. Given any stress–radius couple (�̃, �̃y), let in the sequel �n[�̃, �̃y] indicate the
couple obtained applying one step of the ESC2 scheme to (�̃, �̃y) with �e = en+1 − en =
e(tn+1) − e(tn). We have in particular for the discrete solution

(�, �y)n+1 = �n[�n, �y,n] (138)

Using the definition of the operator � and a triangle inequality, for the error at time tn+1 it
holds

En+1 := |||(�ex, �ex
y )n+1 − (�, �y)n+1|||

� |||(�ex, �ex
y )n+1 − �n[�ex

n , �ex
y,n]||| + |||�n[�ex

n , �ex
y,n] − �n[�n, �y,n]||| (139)

The first member in the right-hand side of (139) represents the local error generated at each
time step, which can be controlled using the accuracy results of the previous section. The
second member represents instead the propagation of the accumulated error, which must be
dealt with essentially using the stability results of this section.

From Proposition 5.2 and bound (104), recalling that �y = �y,0X
q

0 both for the exact and the
numerical solution, it follows

|||(�ex, �ex
y )n+1 − �n[�ex

n , �ex
y,n]||| � C̃(�t)3 (140)

where here and in the sequel C̃ will indicate a general constant independent of N . We want
to rewrite bound (140) in rate invariant form. The error in Proposition 5.2 follows from the
difference between the third-order derivative of the numerical scheme and the exact solution.
Therefore, it is easy to check that, bringing out the dependence of C̃ on ‖ė‖, bound (141)
becomes

|||(�ex, �ex
y )n+1 − �n[�ex

n , �ex
y,n]||| � C̃‖ė‖3(�t)3 = C̃‖�e‖3 (141)

where the new constant C̃ is now rate invariant. For the second member in the right-hand side
of (139), Proposition 5.4 gives

|||�n[�ex
n , �ex

y,n] − �n[�n, �y,n]||| � exp (K‖�e‖)|||(�ex
n , �ex

y,n) − (�n, �y,n)|||
= exp (K‖�e‖)En (142)
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with K fixed scalar independent of N . Therefore, applying the bounds (141) and (142) into
the inequality (139), we get

En+1 � C̃‖�e‖3 + exp (K‖�e‖)En (143)

Iteration of (143) easily leads to

EN � C̃‖�e‖3

[
N−1∑
n=0

exp (Kn‖�e‖)
]

+ exp (KN‖�e‖)E0 (144)

From (144), using that �e = ė�t and T = N�t we get

EN � C̃‖�e‖3N exp (KN‖�e‖) + exp (KN‖�e‖)E0

� C̃(‖ė‖2(�t)2‖ė‖T + E0) exp (K‖ė‖T ) � C̃′(‖ė‖2(�t)2 + E0) (145)

where the scalar C̃′ is rate invariant and independent of N . Note that also the quantities
‖ė‖2(�t)2 and ‖ė‖T appearing in (145) are correctly rate invariant. Recalling the definition of
En, n ∈ {0, 1, 2, . . . , N}, the proposition is proved. �

Remark 5.2
The convergence result for the ESC method is not restricted to purely plastic load histories. The
result is identical to that of Proposition 5.5 but holding for any type of loading history. The
proof is essentially the same as for Proposition 5.5 but using the more general Proposition 5.3
instead of Proposition 5.4.

6. NUMERICAL TESTS

In this section we present a set of numerical examples which enable a detailed comparison of
all the previously considered methods. For the sake of compactness we systematically adopt
the following acronyms:

• RM: Backward Euler return map method [3–5];
• MPT: Midpoint return map method [6];
• ENN: Exponential Non-symmetric Non-consistent method [1];
• ENC: Exponential Non-symmetric Consistent method [2, 10];
• ESC: Exponential Symmetric Consistent method (Section 3, [2, 10]);
• ESC2: Exponential Symmetric Consistent 2nd-order accurate method (Section 3).

The numerical tests are divided in three parts. To investigate the algorithm accuracy and
precision, we consider piecewise stress–strain load histories with different time discretizations
and plot the respective error graphs (Section 6.1). To explore the algorithm precision in particular
when using large time steps we present iso-error maps for the RM, MPT and ESC2 algorithms
(Section 6.2). To test the algorithm performance in terms of Newton iteration convergence,
we consider two boundary value problems regarding the elongation of rectangular perforated
strips in a plane strain regime (Section 6.3). The piecewise numerical tests and the iso-error
maps are performed with the aid of the CE-Driver [19], while the boundary value problems
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are solved using the finite element code FEAP [20]. In the analysis we adopt three distinct
sets of material constants:

• Material 1 (see Reference [21])
E = 100 MPa, � = 0.3

�y,0 = 15 MPa, Hkin = 10 MPa, Hiso = 10 MPa

�̄y,0 = �y,0/E = 0.15, H̄kin = Hkin/E = 0.1, H̄iso = Hiso/E = 0.1

• Material 2 (see Reference [3])
E = 30 000 MPa, � = 0.3

�y,0 = 3 MPa, Hkin = 0 MPa, Hiso = 0 MPa

�̄y,0 = �y,0/E = 0.0001, H̄kin = Hkin/E = 0, H̄iso = Hiso/E = 0

• Material 3 (see Reference [5])
E = 7000 MPa, � = 0.3,

�y,0 = 24.3 MPa, Hkin = 0 MPa, Hiso = 225 MPa

�̄y,0 = �y,0/E = 0.0034, H̄kin = Hkin/E = 0, H̄iso = Hiso/E = 0.032

Finally, we recall that the Young’s modulus E and the Poisson ratio � uniquely determine
the constants K and G as follows:

K = E

3(1 − 2�)
, G = E

2(1 + �)

Remark 6.1
Clearly, at the computational level, the limit equation (48) on the trial solution is checked
numerically. We assume the trial state to be on the yield surface whenever the absolute value
of the difference between the r.h.s. and the l.h.s. is lower than a tolerance fixed on 10−12

throughout the numerical tests presented in this section.

6.1. Pointwise stress--strain tests

We consider three biaxial non-proportional stress–strain histories obtained assuming to control
two strain components and four stress components, respectively, i.e.

Problem 1: �11 �22 �33 �12 �13 �23

Problem 2: �11 �22 �33 �12 �13 �23

Problem 3: �11 �22 �33 �12 �13 �23
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Figure 2. Pointwise stress–strain tests. Mixed stress–strain load histories for Problems 1–3.

For each history we require that all the controlled stress components are identically equal to
zero, while the strains are varied proportionally to

�y,mono =
√

3

2

�y,0

E
(146)

which represents the first yielding strain value in a uniaxial loading history. A graphical
representation of the varying quantities is given in Figure 2.

Lacking the analytical solutions of the problems under investigation, we compute the
‘exact’ solutions using the midpoint scheme with a very fine time discretization, corresponding
to 100 000 steps per second (�t = 0.00001 s). Such ‘exact’ solutions are compared with the
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‘numerical’ ones, corresponding, respectively, to 10, 20 and 40 steps per second (�t = 0.1, 0.05,

0.025 s) and computed with the quadratic algorithms MPT, ENC and ESC2, respectively.
The error is evaluated separately for the stress and the strain introducing the following

relative norms:

E�
n = ‖�n − �ex

n ‖
�y,n

, E�
n = 2G

‖�n − �ex
n ‖

�y,n

(147)

where ‖•‖ indicates the usual Euclidean vector norm and �y,n is the yield surface radius at time
tn. In Equations (147), �n and �n as well as �ex

n and �ex
n are, respectively, the stress–strain ‘nu-

merical’ and ‘exact’ solution at time tn. The error measure (147) is chosen due to the high vari-
ation of the problem solution, which makes inappropriate the use of the classical relative error:

Ê�
n = ‖�n − �ex

n ‖
‖�ex

n ‖ , Ê�
n = 2G

‖�n − �ex
n ‖

‖�ex
n ‖ (148)

Figure 3 reports stress and strain relative errors (147) using Material 1 for the first load history
and for the three different time discretizations indicated above; Figure 4 repeats the process
for Material 3. It is evident from the error plots that

• The performance of the MPT and the ENC methods are comparable. The MPT algorithm
provides exact solutions for the case of proportional loading. Finally, as the step size is
reduced, both methods converge quadratically, i.e. the error is divided by 4 every time
the number of steps is doubled (the error goes as �t2).

• The new symmetric method ESC2 grants relatively lower error levels than the MPT
and ESC algorithms for all the considered stress–strain histories. Also in this case, the
numerical solution is exact for proportional loading conditions and the error decreases
quadratically with respect to the time step size.

We omit, for brevity’s sake, to provide the error plots regarding the remaining load histories
since they would lead to conclusions similar to those given in the above points.

In order to further investigate the rate of convergence of the method, we also introduce the
total error as the �1 norm in time of the absolute error

E�
T =

N∑
n=1

�tE�
n , E�

T =
N∑

n=1
�tE�

n (149)

Then, in Figure 5 we plot the total error versus the number of time steps in logarithmic scale
for the six methods RM, MPT, ENN, ENC, ESC and ESC2 for Problem 1 with Material 1. The
quadratic convergence of the MPT, ENC, ENN and ESC2 methods with respect to the linear
convergence of the other algorithms can be clearly appreciated. It is remarkable that even this
error measurement qualifies the new optimal ESC2 scheme as the most precise within the set
of the tested algorithms.

6.2. Iso-error maps

Iso-error maps are commonly adopted in the literature (see for example References [3, 6, 13, 22])
as a systematic tool to test the accuracy of plasticity integration algorithms. Error maps are
plotted as a result of particular piecewise mixed stress–strain loading histories.

Each loading history is set up by controlling the �11 and �22 strain components and keeping
the remaining stresses equal to zero. The evolution in time of the controlled quantities is
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Figure 3. Pointwise stress–strain tests: Problem 1 with Material 1. Stress and strain
error for �t = 0.1, 0.05 and 0.025 s.

piecewise linear and can be divided in two distinct phases defined as follows (see Table I).
Phase 1 consists of a purely elastic path and proceeds from the zero stress and strain state
(State 0) to a specific state on the yield surface (State 1) given in terms of the yield strain
components �11,y and �22,y . Phase 2 is a purely plastic path which starts from State 1 and
leads to a final state (State 2) given in terms of the strain increments ��11 and ��22.

In this analysis, we consider three different choices of State 1, corresponding to plane states
of stress on the yield surface [3], labelled A, B and C, respectively, represented in Figure 6 and
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Figure 4. Pointwise stress–strain tests: Problem 1 with Material 3. Stress and strain
error for �t = 0.1, 0.05 and 0.025 s.

corresponding to uniaxial, biaxial and pure shear states. Each State 1 is expressed in Table II
in terms of the quantity �y,mono (uniaxial yield strain) already defined in (146).

We solve a total of 60 × 60 mixed stress–strain histories for each State 1, corresponding to
the following sets of normalized strain increments (see Figures 7–9):

��11

�11,y

= 0, 0.1, 0.2, . . . , 6

��22

�22,y

= 0, 0.1, 0.2, . . . , 6
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Figure 5. Pointwise stress–strain tests. Problem 1 with Material 1. Stress and strain total
error versus number of steps per second.

Table I. Benchmark mixed stress–strain history for iso-error maps computation.

Time (s) �11 �22 �33 �12 �13 �23

State 0 t = 0 0 0 0 0 0 0
State 1 t = 1 �11,y �22,y 0 0 0 0

State 2 t = 2 �y,11 + ��11 �y,22 + ��22 0 0 0 0
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Figure 6. Plane stress von-Mises yield surface representation in principal stresses plane.
State 1 choices for iso-error maps plots.

Table II. Iso-error maps. Choices for the State 1 point on the yield surface.

State 1 �11,y �22,y �33 �12 �13 �23

A �y,mono −��y,mono 0 0 0 0

B (1 − �)�y,mono �y,mono 0 0 0 0

C
(1 + �)

3
�y,mono − (1 + �)

3
�y,mono 0 0 0 0

This subdivision leads to a total of 3600 computed mixed stress–strain histories and to an equal
number of calculated error percentage values, according to the following expression:

E�
iso = ‖� − �ex‖

‖�ex‖ (150)

where � is the final stress tensor, computed adopting a single time step discretization whereas
�ex corresponds to an ‘exact’ solution obtained with a very fine time step. All the calculations
refer to Material 2 [3].

The total error range is subdivided in ten equally spaced levels according to which the
iso-curves are drawn in Figures 7–9. Each iso-curve is indicated by a proper error label while
the thick continuous line represents the zero-level error stress–strain histories (i.e. proportional
loading histories). For the sake of completeness, aside from each map we also report the
maximum error value computed on the grid adopted for the computation of the iso-error map.

Observing Figures 7–9, we recognize that the ESC2 scheme produces more precise solutions
in terms of stresses if compared to the RM and MPT algorithms. Even for ‘large’ strain
increments the new exponential-based procedure reveals low levels of error compared with the
other two methods. Such a result seems to be rather interesting since it suggests robustness of
the integration scheme for practical application of the integration procedure in a finite element
analysis of boundary value problems. It is also worth noting that the RM scheme, which has
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Figure 7. Comparison between return map (RM), midpoint (MPT) and the new
exponential-based scheme (ESC2). Iso-error maps for yield surface State 1—A and

indication of the maximum stress error level.

linear accuracy, is more precise than the quadratic MPT algorithm for large strain increments.
In this sense the ESC2 method turns out to be the most reliable within the three methods,
since it is quadratic and maintains good behaviour also for large time steps.

A further observation is that, although Hiso = 0, the exponential-based algorithm presents a
non-zero error. This apparently erroneous behaviour is due to the fact that we have assumed
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Figure 8. Comparison between return map (RM), midpoint (MPT) and the new
exponential-based scheme (ESC2). Iso-error maps for yield surface State 1—B and

indication of the maximum stress error level.

a mixed stress–strain history and not a completely strain driven one. This interesting aspect is
postponed to the discussion presented in Section 6.4.

Remark 6.2
It is noted that even with a non-zero value of isotropic hardening the ESC2 scheme still produces
more precise results for large time discretizations than both the RM and MPT scheme. The
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Figure 9. Comparison between return map (RM), midpoint (MPT) and the new
exponential-based scheme (ESC2). Iso-error maps for yield surface State 1—C and

indication of the maximum stress error level.

reader is referred to Reference [23] where a wide set of iso-error maps regarding this particular
case confirm the better performance of the exponential-based method.

6.3. Two initial boundary value problems

We consider two 3-dimensional thin rectangular perforated strips, subject to uniaxial extension
in a plane strain state [3]. The first strip has a circular hole in the centre, while the second one
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Figure 10. Boundary value problems. Strips with circular and elliptical holes: geometry and imposed
displacements for a single quarter of the strips.

an elliptical hole. Both strips have three planes of symmetry and in Figure 10 we show one
quarter of the domain for each of the two strips. The geometric lengths referred to Figure 10 are

B = 100 mm, H = 180 mm, R0 = 50 mm, H0 = 10 mm, B0 = 50 mm

while the thickness is 10 mm.
In the analysis we consider both Material 1 and Material 3, so that a total of four cases

(two material sets for each strip) are investigated. The problem loading histories is composed
of a first phase (1 s), in which, controlling the displacements, the strip is stretched assigning a
top vertical displacement �max and a second phase (1 s) in which the imposed displacement is
set back to 0 mm. In the case of Material 1 we set �max = 40 mm, while for Material 3 we set
�max = 5 mm. We solve the boundary value problems using the finite element code FEAP [20],
in which we implemented the integration methods.

Due to geometry and loading symmetry, we solve the problem only on a quarter of the
original domain (Figure 10), using 192 displacement-based SOLID2D [20] brick elements, as
can be seen in Figure 11. As output, we count the number of residual evaluations per time
step (i.e. number of Newton iterations per time step). The results are resumed in Tables III
(Material 1) and IV (Material 3) in terms of the average number of iterations per step.

Since the algorithmically consistent tangent operator in the MPT scheme is not symmetric [6]
we decided not to report its performance in the aforementioned tables, because the simulation
would have actually involved a different solver for non-symmetric stiffness matrices.

As it can be seen the Newton convergence speeds of the exponential-based methods are
similar and, by comparison, the return map needs around 15% fewer iterations to converge.

Finally, for both strips we monitor the displacement uA of point A along the x direction
(Figure 10), assuming that this is a good indicator on how the problem is actually approximated
by the numerical methods. The comparison is carried out on the two linear converging methods,
i.e. the RM and the ESC and the three quadratically accurate algorithms ENC, MPT, ESC2. We
compute the total modified relative error for the horizontal displacement at point A, between
a discrete solution with variable number of steps and an ‘exact’ solution obtained with the
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Figure 11. Boundary value problems. Strips with circular and elliptical holes: plane
projection of the adopted meshes.

Table III. Boundary value problems for strips made of Material 1. Average number of
iterations per time step as a function of time step size �t .

BVP 1 BVP 2

�t (s) �t (s)

Method 10−1 10−2 10−3 10−1 10−2 10−3

RM 3.25 2.83 2.73 3.65 3.18 2.95
ENN 4.30 3.17 2.91 4.85 3.70 3.33
ENC 4.30 3.17 2.90 4.70 3.66 3.27
ESC 4.30 3.17 2.90 4.70 3.66 3.27
ESC2 4.55 3.24 2.91 4.75 3.66 3.27

Table IV. Boundary value problems for strips made of Material 3. Average number of
iterations per time step as a function of time step size �t .

BVP 1 BVP 2

�t (s) �t (s)

Method 10−2 10−3 10−4 10−2 10−3 10−4

RM 4.90 4.28 3.68 5.00 4.33 3.75
ENN 7.18 4.96 4.28 7.71 5.17 4.45
ENC 7.21 4.97 4.30 7.72 5.16 4.42
ESC 7.21 4.97 4.30 7.72 5.16 4.42
ESC2 7.22 4.87 4.30 7.65 5.16 4.41
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Table V. Boundary value problems. Point A displacement total
error versus number of steps per second.

Total error Total error Total error Total error Total error
RM ESC ENC MPT ESC2

Steps/s (× 10−2) (× 10−2) (× 10−2) (× 10−2) (× 10−2)

10 6.21 × 10−2 1.20 × 10−1 1.28 × 10−1 3.19 × 10−2 3.34 × 10−2

BVP 1—Mat. 1 20 4.37 × 10−2 5.22 × 10−2 2.92 × 10−2 8.77 × 10−3 8.03 × 10−3

40 2.46 × 10−2 2.51 × 10−2 7.86 × 10−3 2.86 × 10−3 2.65 × 10−3

10 4.18 × 10−1 8.81 × 10−2 2.28 × 10−1 2.58 × 10−2 5.58 × 10−2

BVP 2—Mat. 1 20 2.08 × 10−1 3.53 × 10−2 5.68 × 10−2 8.87 × 10−3 1.53 × 10−2

40 1.04 × 10−1 1.45 × 10−2 1.36 × 10−2 1.77 × 10−3 3.41 × 10−3

MPT with 1000 steps per second, i.e.

ẼA
n =

N∑
n=1

|uA
n − u

A,ex
n |�t

maxj ∈ {0,1,...,n} |uA
j | (151)

where uA
n is the monitored displacement at time tn calculated with the discrete method, while

u
A,ex
n is the one obtained with the ‘exact’ solution.

For brevity’s sake, the error measures reported in Table V refer only to strips made of
Material 1. No significantly different results can in fact be deduced by the remaining problems.

As expected, Table V shows that the RM and ESC methods have linear convergence also
in the global problem, while the ENC, MPT and ESC2 keep their quadratic order of accuracy
and result more accurate than the linear ones. Moreover, both the MPT and ESC2 schemes
produce smaller errors than the ENC method, the first two being almost comparable.

6.4. Piecewise linearity of the strain history and exactness of constitutive schemes in plasticity

Recalling that for plastic materials the stress response depends on the strain path, it is clear
that, in the time-discrete framework, in order to be able to compute the stress some kind of
assumption must be made on the evolution of the strain along each time interval. At the time-
discrete level, the knowledge of the strain at the start and at the end of the step is not sufficient
by itself to derive the stress response along each time interval. The most natural hypothesis
is therefore to assume that the strain evolution is piecewise linear. A constitutive solver for
plasticity can then be built starting from the strain driven asset and it can be implemented as
part of a finite element method based for instance on a Newton–Raphson convergence strategy.
The stress is then computed pointwise for each Gauss point of the mesh and at every integration
instant tn, n = 0, 1, . . . , N .

On the other hand, the piecewise linear strain assumption is obviously false in general. As a
consequence, the integration method carries an implicit ‘strain path approximation error’, which
is in addition to any other error due to the constitutive law solution. In this sense, even methods
which are ‘exact’, i.e. make no error for piecewise linear strain histories, will introduce some
error in general plasticity problems. In particular this explains why the ESC2 method, which is
exact in the absence of isotropic hardening, is not completely error free in the iso-error maps
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Table VI. Mixed stress–strain history.

Time (s) �11 �22 �33 �12 �13 �23

t = 0 0 0 0 0 0 0
t = 1 �11,y �22,y 0 0 0 0
t = 2 7�11,y 4�22,y 0 0 0 0

Figure 12. Mixed stress–strain history—evolution of �11, �22 and �33 in time.

shown in Figures 7–9. This fact can also be appreciated considering the following pointwise
mixed stress–strain problem adopting Material 2. The controlled quantities are

�11 �22 �33 �12 �13 �23

while the output is given by

�11 �22 �33 �12 �13 �23

The loading data is piecewise linear in time and described by the values shown in Table VI
in terms of the following quantities:

�11,y = (1 + �)

3
�y,mono, �22,y = − (1 + �)

3
�y,mono (152)

Note that at the end of the first time interval (i.e. t = 1) the stress solution lays exactly on the
yield surface and the plastic flow is zero. In other words, during the first half of this test the
evolution is purely elastic as the stress simply moves from the origin to a particular point on
the yield surface, representing a pure shear stress state. During the second half of the loading
history, the material instead undergoes a plastic transformation.

The output components of stress and strain have been computed using the ESC2 algorithm
with a total of 200 uniform time steps. The result for the strain component �33, which is not a
loading data but a problem output, are shown in Figure 12. It is clear that the �33 component
is not linear in time in objection to the assumption made above on the strain.
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7. CONCLUSIONS

We presented a new exponential-based algorithm (ESC2) for the time-integration of a properly
reformulated version of the von-Mises elasto-plastic constitutive model.

We have dedicated the first part of this note to the derivation of the new time continuous
model and to the presentation of the integration algorithm. Then a detailed discussion on
the numerical properties of the new procedure has been carried out. Differently from all
the previous methods of the exponential-based family, the new one is both consistent and
quadratically accurate. Regarding the convergence/stability results, some points are still to be
addressed rigorously and this is demanded to the sequel of our work.

Finally, extensive numerical tests have been developed. In order to compare the new procedure
with existing well established schemes, we have made use of two radial return map-type
algorithms, respectively, the backward Euler integration scheme and the midpoint rule method.
Also previously introduced exponential integration algorithms have been taken into account.

The pointwise tests show in general fairly higher precision in favour of the exponential
methods, although on global finite element problems the Newton iteration convergence speed
of the return-map-type methods seems slightly better. Another important feature arising from
the tests is suggested by iso-error map plots: the ESC2 method is the best-performing one for
large strain increments in all the investigated cases.

When considering the von-Mises plasticity model, the exponential schemes seem therefore
competitive with the classical return map algorithms. In particular such new methods couple
the advantage of the Krieg and Krieg methods [13, 14], i.e. perform decisively better in the
absence of isotropic hardening, with a larger range of applicability.

Clearly an important question, which is the application to different plasticity models, is still
open; the authors are trustful that these same principles can be extended to other models.

APPENDIX A

In the following the reader is provided with the proofs of the lemmas recalled in Section 5.5
devoted to the numerical analysis of the exponential-based algorithms. Subsequently, we present
a thorough derivation of the consistent tangent operator of the ESC2 integration scheme.

A.1. Two lemmas

We now introduce and prove the two lemmas mentioned in the previous sections by first
recalling the following identities which can be derived from the new formulation of Section 3.
At all time instants during plastic steps it holds

Xs = �−1
y,0X

1−q

0 � (A1)

� = �y,0X
q−1
0 Xs (A2)

Lemma A.1
Let two initial couples (�(t0), �y(t0)), (�̃(t0), �̃y(t0)) and a strain increment �e = ė�t be as-
signed. Assume to apply one step of the ESC or ESC2 algorithm with strain increment �e
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to both initial couples and assume that both steps are totally plastic. Then at all instants
t ∈ [t0, t0 + �t] during the time step, it holds

d

dt
|||�(t) − �̃(t), �y(t) − �̃y(t)|||

� ‖ė‖[K1|||�(t0)−�̃(t0), �y(t0)−�̃y(t0)|||+K2|||�(t) − �̃(t), �y(t)−�̃y(t)|||] (A3)

where the positive constants K1, K2, depending only on the material constants and ‖�e‖, are

bounded on all sets of the type {�e ∈ R6, ‖�e‖ � c, c ∈ R+}.
Proof
The proof will be shown only in the case of the ESC2 algorithm. The proof for the ESC
scheme is a simpler version of the one that follows and can be trivially derived following the
same steps. In the sequel, in order to shorten the notation, the dependence of the variables on
time will not be explicited; unless differently noted, the time dependent equations and identities
that follow are valid for all t ∈ [t0, t0 + �t].

We will again adopt the notation introduced in (125). Direct derivation gives

d

dt
|||�E, �E

y |||2 = 2[(2G)−1(�E, �̇
E
) + (Hiso)

−1�E
y �̇E

y ] (A4)

Deriving in time definition (A2) and using (24)–(A1) we easily get, without showing all the
calculations

�̇
E = d

dt
(� − �̃) = �y,0T1 + T2 (A5)

T1 =
[

2G

R
X

q

0 − 2G

R̃
X̃

q

0

]
ė (A6)

T2 = (q − 1)

[
2G

R
(ė · �)

�

�y
− 2G

R̃
(ė · �̃)

�̃

�̃y

]
(A7)

As a consequence, the first member in the right-hand side of (A4) can be bounded with

(2G)−1�E · �̇
E = (2G)−1[�y,0T1 + T2] · �E �C(‖T1‖ + ‖T2‖)‖�E‖ (A8)

where here and in the sequel C indicates a general positive constant depending only on the
material constants. We now have

‖T1‖ � C

∣∣∣∣∣ R̃ − R

RR̃
X

q

0 + 1

R̃
(X

q

0 − X̃
q

0 )

∣∣∣∣∣ ‖ė‖

� C

(∣∣∣∣∣ R̃ − R

RR̃
X

q

0

∣∣∣∣∣+
∣∣∣∣ 1

R̃
(X

q

0 − X̃
q

0 )

∣∣∣∣
)

‖ė‖ = (A1 + A2)‖ė‖ (A9)
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The definition of R, recalling that both couples are undergoing a purely plastic step, becomes

R = ‖�i‖
c−1 ln (1 + c)

(A10)

c = 2Gq�i · �e
‖�i‖2

(A11)

and the analogous for the bar variables. Therefore R is a real C1 function of �i .
Recalling that both couples are in plastic phase, it follows immediately that both ‖�i‖ and

‖�̃i‖ are greater or equal to �y,0. It is therefore easy to check that there exists a smooth path �
in R6 from �̃i to �i such that

� : [0, L] −→ R6 (A12)

‖∇�(s)‖ = 1 ∀s ∈ [0, L] (A13)

‖�(s)‖ � �y,0 ∀s ∈ [0, L] (A14)

L � 4‖�i − �̃i‖ (A15)

Note that the above conditions simply mean that � is a C1 path of length L lesser than
4‖�i−�̃i‖, written with respect to its curvilinear abscissae and bounded outside a sphere of
radius �y,0 centred at the origin.

From the Lagrange theorem applied to the function R(�) along the path �, it follows the
existence of 	 ∈ [0, L] such that

R − R̃ = L∇R|�∗
i
· ∇�|	 (A16)

where

�∗
i = �(	) 0 � 	 �L (A17)

Using (A13) and (A15), from (A16) we get

|R − R̃| � 4‖∇R|�∗
i
‖‖�i − �̃i‖ (A18)

Substituting (A18) in the definition of A1 and using the Cauchy–Schwartz inequality now leads
to

A1 �
‖∇R|�∗

i
‖

R̃

X
q

0

R
‖�i − �̃i‖ (A19)

We now want to bound the pieces in (A19). A direct calculation gives

∇R|�∗
i
= 1

c−1 ln (1 + c)
∇‖�‖ − ‖�∗

i ‖
1

c(1 + c)
− ln (1 + c)

c2

(c−1 ln (1 + c))2

[
�c

��

]
(A20)
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where all the functions and derivatives are calculated in �∗
i . We now note that the functions

1

c(1 + c)
− ln (1 + c)

c2
, c−1 ln (1 + c) (A21)

are bounded from above on all the positive real line. Also, recalling (A11), it is easy to check
that the latter function c−1 ln (1 + c) is bounded from below by a positive constant (independent
of ‖�∗

i ‖) on all sets of the type {�e ∈ R6, ‖�e‖ � c, c ∈ R+}. A direct calculation also easily
gives ∥∥∥∥

[
�c

��

]∣∣∣∣ �∗
i

∥∥∥∥ �C
‖�e‖
‖�∗

i ‖2
(A22)

Joining the latter three statements with (A20) and noting that the norm of ∇(‖�‖) is equal
to one, gives

‖∇R|�∗
i
‖ �K ′

3(1 + ‖�∗
i ‖−1) (A23)

where K ′
3 depends only on ‖�e‖ and is bounded on all sets of the type {�e ∈ R6, ‖�e‖ � c,

c ∈ R+}. Finally, due to definition (A17) and condition (A14), the above bound becomes

‖∇R|�∗
i
‖ �K3 (A24)

where K3 depends only on ‖�e‖ and is bounded on all sets of the type {�e ∈ R6, ‖�e‖ � c,

c ∈ R+}.
Using again the boundedness from above of c−1 ln (1 + c) and recalling (A10), (55) we have

1

R̃
� c̃−1 ln (1 + c̃)

�y,0
�C (A25)

1

R
= c−1 ln (1 + c)

�y,0X
q

0,i

�C
1

X
q

0,i

(A26)

Using (A26) and recalling that X0 never decreases during the step, we now haver

X
q

0

R
�C

(
X0

X0,i

)q

�C

(
X0,f

X0,i

)q

(A27)

We now observe that, due to (43)–(44) and recalling that

‖Xs‖ = X0 during plastic phases (A28)

it follows

X0,f = b
ė · Xs

i

‖ė‖ + aX0,i � b‖Xs
i‖ + aX0,i � (b + a)X0,i (A29)
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Therefore, from (A27) and (A29), it follows

X
q

0

R
�C(b + a)q �C exp

(
2Gq

R
‖�e‖

)
�K4 (A30)

with K4 bounded on all sets of the type {�e ∈ R6, ‖�e‖ � c, c ∈ R+}.
Finally, simply applying the three bounds (A24), (A25) and (A30) into (A19), we obtain

A1 �K5‖�i − �̃i‖ (A31)

with K5 depending only on �e and bounded on all sets of the type {�e ∈ R6, ‖�e‖ � c, c ∈ R+}.
Using (A25) and observing that any difference of vector norms is bounded by the norm of the
difference, we get for the second term in (A9)

A2 =
∣∣∣∣ 1

R̃
�−1

y,0(‖�‖ − ‖�̃‖)
∣∣∣∣ �C(‖�‖ − ‖�̃‖) �C‖� − �̃‖ (A32)

Applying the bounds (A31) and (A32) to (A9), it immediately follows

‖T1‖ � ‖ė‖[K5‖�i − �̃i‖ + C‖� − �̃‖] (A33)

The second term T2 is bound following the same techniques; in the end we obtain a similar
bound

‖T2‖ � ‖ė‖[K6‖�i − �̃i‖ + K7‖� − �̃‖] (A34)

where K6, K7 depend only on ‖�e‖ and are bounded on all sets of the type {�e ∈ R6, ‖�e‖ � c,

c ∈ R+}.
For the second term in (A4), using the identities (55) and (28) it follows

|�E �̇E | = |�y − �̃y|�y,0|Xq−1
0 Ẋ0 − X̃

q−1
0

˙̃
X0| (A35)

which, recalling that in plastic phase �y = ‖�‖, becomes

|�E �̇E | �C‖� − �̃‖�y,0|Xq−1
0 Ẋ0 − X̃

q−1
0

˙̃
X0| (A36)

Applying identity (A1), bound (A36) becomes

|�E �̇E | �C‖� − �̃‖
(

2G

R
ė · � − 2G

R̃
ė · �̃

)
(A37)

where the term in parentheses can be bounded with the usual techniques. We then get

|�E �̇E | � ‖� − �̃‖‖ė‖[K10‖�i − �̃i‖ + K11‖� − �̃‖] (A38)

where K10, K11 share the usual property of the previous cases.
Simply applying the four bounds (A8), (A33), (A34) and (A38) into (A4), we now obtain

d

dt
|||�E(t), �y(t)

E |||2 � ‖ė‖[K1‖�i − �̃i‖ + K2‖� − �̃‖]‖�E‖

� C‖ė‖[K1‖�i − �̃i‖ + K2‖� − �̃‖]|||�E(t), �y(t)
E ||| (A39)
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where K1, K2 depend only on ‖�e‖ and are bounded on all sets of the type {�e ∈ R6, ‖�e‖ � c,

c ∈ R+}. Now observing that

d

dt
|||�E(t), �y(t)

E |||2 = 2|||�E(t), �y(t)
E ||| d

dt
|||�E(t), �y(t)

E ||| (A40)

bound (A39) trivially proves the lemma. �

Lemma A.2
Let two initial couples (�(t0), �y(t0)), (�̃(t0), �̃y(t0)) and a strain increment �e = ė�t be
assigned. Assume to apply one step of the ESC algorithm with strain increment �e to both
initial couples; assume also that the step for the first couple is totally plastic, while the step
for the second couple is totally elastic. Then at all instants t ∈ [t0, t0 +�t] during the time step,
it holds

d

dt
|||�(t) − �̃(t), �y(t) − �̃y(t)|||

� ‖ė‖[K1|||�(t0)−�̃(t0), �y(t0)−�̃y(t0)|||+K2|||�(t)−�̃(t), �y(t) − �̃y(t)|||] (A41)

where the positive constants K1, K2 depend only on ‖�e‖ and are bounded on all sets of the
type {�e ∈ R6, ‖�e‖ � c, c ∈ R+}.
Proof
As in the proof of Lemma A.1 in the Appendix, the dependence of the variables on time will
not be explicited. Unless differently noted, the time dependent equations and identities that
follow are valid for all t ∈ [t0, t0 + �t].

We will again adopt the notation introduced in (125). Following the same identical initial
steps as in Lemma 1, we get

d

dt
|||�E, �E

y |||2 = 2[(2G)−1�E · �̇
E + (Hiso)

−1�E
y �̇y] (A42)

where we implicitly used that �̇E
y = �̇y because the second couple is in elastic phase. Note that

for the time derivative of X̃, which is in elastic phase, it holds

d

dt
X̃s = 2G

�y,i

X̃0ė (A43)

d

dt
X̃0 = 0 (A44)

while the time derivative of X still follows (24)–(A1). Deriving in time definition (A2), then
using (24)–(A1) and (A43)–(A44), we easily get, without showing all the calculations

�̇
E = d

dt
(� − �̃) = �y,0T1 + T2 (A45)
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T1 =
[

2G

�y,i

X
q

0 − 2G

�̃y,i

X̃
q

0

]
ė (A46)

T2 = (q − 1)

[
2G

R
(ė · �)

�

�y

]
(A47)

Joining (A42) and (A45) gives

d

dt
|||�E, �E

y |||2 = 2(2G)−1�y,0T1 · �E + 2[(2G)−1T2 · �E + (Hiso)
−1�E

y �̇y]

=: A1 + A2 (A48)

Recalling the identity (55), which holds in all phases and using that �̃y = �̃y,i during all the
step, we get

A1 = 2

(
�y

�y,i

− 1

)
ė · �E � 2

�y,i

|�y − �y,i |‖�E‖‖ė‖ (A49)

Observing that �y,i � �y,0 and �̃y = �̃y,i , due to a triangle inequality it follows

A1 � 2

�y,0
(|�y − �̃y| + |�y,i − �̃y,i |)‖�E‖‖ė‖ (A50)

which, from definition (123), becomes

A1 �C(|||�E
i , �E

y,i ||| + |||�E, �E
y |||)|||�E, �E

y |||‖ė‖ (A51)

where the scalar C depends only on the material constants.
Deriving in time and applying (28) we now get

�̇y = d

dt
[�y,0X

q

0 ] = q�y,0X
q−1
0 Ẋ0 = q�y,0X

q−1
0

2G

�y,i

ė · Xs (A52)

Applying (55) and (A1), the identity above easily gives

�̇y = q
2G

�y,i

ė · � (A53)

From the definition of q (see (55)), identity (A53) and rearranging the terms, the second
member in (A48) becomes

A2 =
[
−2

2G

2G + Hiso

�

�y
· �E + 2

2G

2G + Hiso
�E

y

]
ė · �

�y,i

= 2
2G

2G + Hiso

[
− �

�y
· �E + �y − �̃y

]
ė · �

�y,i

(A54)
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which we will show being lesser or equal than zero. Note that, being the first couple in purely
plastic phase, ė · � � 0; as a consequence, in order to show

A2 � 0 (A55)

it is sufficient to show

− �

�y
· �E + �y − �̃y � 0 (A56)

Multiplying and dividing by �y, then recalling that ‖�‖ = �y, we get

− �

�y
· �E + �y − �̃y = 1

�y
[−‖�‖2 + � · �̃ + �2

y − �y�̃y] (A57)

= 1

�y
[� · �̃ − �y�̃y] (A58)

A Cauchy–Schwarz inequality and the Kuhn–Tucker conditions applied to (A57) then give

− �

�y
· �E + �y − �̃y � 1

�y
[‖�‖‖�̃‖ − �y�̃y] � 0 (A59)

which implies (A55). Joining (A51) and (A55) with (A48) implies

d

dt
|||�E, �E

y |||2 �C(|||�E
i , �E

y,i ||| + |||�E, �E
y |||)|||�E, �E

y |||‖ė‖ (A60)

which recalling (A40) easily proves the lemma. �

A.2. Tangent matrix for the generalized stress

In the following we present the tangent matrix of the generalized stress vector addressed
in (66), which regards the new optimal exponential-based ESC2 integration scheme. For what
concerns the ESC scheme, the reader is referred to Reference [2] where a complete derivation
of its tangent operator is developed. As it will be clear in the following, the tangent moduli
operator corresponding to the ESC algorithm can be obtained in a straightforward manner
by simply cancelling the A5 and e5 terms arising in the new discrete formulation. We now
present the tangent matrix �Xs/�e and tangent vector �X0/�e for plastic phases, which, from
Equation (63), provide the tangent matrix ��/�� of the new algorithm during plastic or mixed
elasto-plastic steps. As usual, unless explicitly specified all relevant quantities are evaluated at
the actual time step end, i.e. at tn+1.

Recalling that purely plastic steps are a particular case within the range of mixed ones (see
Section 4), we start analysing the latter. From (53)–(54), we have

Xn+1 = ḠpḠeXn = Gp[(1 − �)�e, Rn]Ge[��e]Xn (A61)

where the above matrices are given by (44) and � (which depends on �e) is the ‘elastic step
proportion’ defined in (51). Consequently, following basic differentiation rules, we have

�Xn+1

��e
= [Ã1 + Ã2 + Ã3 + Ã4 + Ã5]Xn (A62)
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with

Ã1 = �Ḡp

��e
[(1 − �)�e, Rn]Ḡe[��e]

Ã2 = �Ḡp

��
[(1 − �)�e, Rn] d�

d�e
[�e]Ḡe[��e]

Ã3 = Ḡp[(1 − �)�e, Rn]�Ḡe

��e
[��e]

Ã4 = Ḡp[(1 − �)�e, Rn]�Ḡe

��
[��e] d�

d�e
[�e]

Ã5 = �Ḡp

�Rn

[(1 − �)�e, Rn]�Rn

��e
[�e, �y,n]Ḡe[��e]

(A63)

From Equation (A62) we can immediately derive �Xs
n+1/�e (first 6 components) and �X0,n+1/�e

(last component); in order to obtain the classical tangent matrix, the obtained equations must be
finally expressed as a linear function of the strain derivation vector instead of in the form (A62),
which is expressed as a linear function of Xn. Doing so, we finally obtain that for mixed steps

�Xs

�e
= A1 + A2 + A3 + A4 + A5 (A64)

�X0

�e
= b1 + b2 + b3 + b4 + b5 (A65)

where the matrices A and vectors b are described below without addressing the calculations. For
purely plastic steps, being � constantly equal to zero, we instead obtain the shorter formulation

�Xs

�e
= A1 (A66)

�X0

�e
= b1 (A67)

We start introducing (see again (51) for M, D, C in each step) the vector � = d�/d�e

� = 
1
dC

d�e
+ 
2

dD

d�e


1 = 1

D

(
C√

C2 − DM
− 1

)


2 = − 1

D2

(
DM

2
√

C2 − DM
+
√

C2 − DM − C

)
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dC

d�e
= 2G

�y,n

X0,nXs
n

dD

d�e
= 2

(
2G

�y,n

X0,n

)2

�e

(A68)

and the vector w

w = p(w1 + w2)

p = −�y,n

[c−1 ln(1 + c)]2

[
1

c(1 + c)
− ln(1 + c)

c2

]

p1 = 2Gq

�y,n

(�e · Xs
n)

p2 =
(

2G

�y,n

)2

q(1 − �)‖�e‖2

w1 = (1 − �)
2Gq

�y,n

Xs
n − p1�

w2 = p2� +
(

2G

�y,n

)2

q(1 − �)�e

(A69)

Introducing the scalars

a = cosh

(
2G

R
(1 − �)‖�e‖

)

b = sinh

(
2G

R
(1 − �)‖�e‖

)

s = �e · Xs
n

‖�e‖

k = 2G

R
(1 − �)

k̃ = −2G

R
‖�e‖

(A70)

and the matrices

M1 = s

(
kb − 2

a − 1

‖�e‖
)[

�e�eT

‖�e‖2

]
+ (a − 1)s

‖�e‖ I + a − 1

‖�e‖
[
�eXsT

n

‖�e‖
]

(A71)

M2 =
(

ka − b

‖�e‖
)[

�e�eT

‖�e‖2

]
+ b

‖�e‖ I (A72)
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We can show that the matrices in (A64) are

A1 = M1 + X0,nM2

A2 = k̃(bs + aX0,n)

[
�e�T

‖�e‖

]

A3 = 2G

R
�X0,n

[
I + (a − 1)

�e�eT

‖�e‖2

]

A4 = 2G

R
aX0,n[�e�T]

A5 = − k

R

(
bs

‖�e‖2
+ a

)
[�ewT]

(A73)

while the row vectors in (A65) are

b1 = XsT
n M2 + kbX0,n

�eT

‖�e‖
b2 = k̃(as + bX0,n)�

T

b3 = 2G

R
�bX0,n

�eT

‖�e‖

b4 = 2G

R
bX0,n‖�e‖�T

b5 = − k

R

(
as

‖�e‖ + b‖�e‖
)

wT

(A74)

where a column vector after a matrix, or a row vector before, represents a matrix–vector
product as usual.
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