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Abstract—In this article, a statistical similarity measure
is introduced to quantify the similarity between two random
vectors. The measure is, then, employed to develop a novel
outlier-robust Kalman filtering framework. The approxima-
tion errors and the stability of the proposed filter are ana-
lyzed and discussed. To implement the filter, a fixed-point
iterative algorithm and a separate iterative algorithm are
given, and their local convergent conditions are also pro-
vided, and their comparisons have been made. In addition,
selection of the similarity function is considered, and four
exemplary similarity functions are established, from which
the relations between our new method and existing outlier-
robust Kalman filters are revealed. Simulation examples are
used to illustrate the effectiveness and potential of the new
filtering scheme.

Index Terms—Heavy-tailed noise, Kalman filter, outliers,
statistical similarity measure, separate iterative algorithm.

I. INTRODUCTION

THE Kalman filter is best-known as an optimal recursive
state estimator in the sense of minimum variance for a

linear system with Gaussian noises. In view of this, the Kalman
filter has been widely used in positioning, navigation, target
tracking, and signal processing [1]. The estimation accuracy of
the Kalman filter degrades dramatically for a linear system with
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non-Gaussian heavy-tailed noises, which are often induced by
state and measurement outliers from external interference or
unreliable sensors [2].

For such non-Gaussian filtering problems, the particle filter
(PF) can achieve an approximate state estimate by modeling
the noises as non-Gaussian heavy-tailed distributed and approx-
imating the posterior probability density function (pdf) as a set
of weighted random samples using the sequential Monte Carlo
sampling technique [3]–[5]. The Gaussian sum filter (GSF) can
be also used to address the non-Gaussian filtering problem by
running a group of Kalman filters, in which a finite sum of Gaus-
sian distributions are employed to model non-Gaussian noises,
and the posterior pdf can be updated as a weighted sum of Gaus-
sian pdfs [6]. Moreover, the interacting multiple model (IMM)
filter is a promising approach to address model uncertainty, in
which several subfilters are performed in parallel based on the
preselected model set and the corresponding model transition
probability matrix, and the subfilters interact with each other
by fusing the state estimates and corresponding estimation error
covariance matrices based on the recursive estimates of the mode
probabilities [7]. Normally, the performances of the PF, GSF, and
IMM filter rely heavily on the preselected distributions to model
non-Gaussian state and measurement noises. Unfortunately, it is
very difficult to select accurate distributions to model unknown
and time-varying non-Gaussian noises, which are often induced
by outliers so that the estimation accuracy of the PF, GSF, and
IMM filter degrades significantly when inaccurate or even wrong
noise distributions are used. The contribution of this article is,
therefore, to provide a unified theoretical framework to solve the
non-Gaussian filtering problem for a linear state-space model
with unknown non-Gaussian heavy-tailed noises.

A large number of outlier-robust Kalman filters have been
proposed to achieve a tradeoff between estimation accuracy
and computational complexity. As a classic robust regression
technique, the M-estimator is robust to measurement outliers and
has been successfully extended to the Kalman filter setting [8].
By employing the influence function approach on the prediction
error and residual error, many outlier-robust Kalman filters have
been proposed based on the M-estimate method [9]. The Huber
Kalman filter (HKF) is the most famous extension of the M-
estimator to the Kalman filter setting, which utilizes a combined
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l1 and l2 norm as a robust cost function, and a generalized robust
maximum likelihood estimate is achieved by minimizing the
Huber cost function [10]. The maximum correntropy Kalman
filter (MCKF) is an alternative method to handle state and
measurement outliers. The sum of the Gaussian kernel functions
of the prediction error and residual error are selected as the
robust cost function, and many MCKFs have been proposed
by maximizing such robust cost functions [11]–[13]. Motivated
by the fact that the outlier contaminated state and measurement
noises often have non-Gaussian heavy-tailed distributions, many
outlier-robust filters have been proposed by modeling the state
and measurement noises as Student’s t distributed [14]–[23].
These robust filters can be divided into two categories: Student’s
t filter and robust Student’s t based Kalman filter (RSTKF). In the
Student’s t filter, the posterior pdf is approximated as a Student’s
t pdf with fixed degrees of freedom (DOF) parameter based
on the Bayesian rule [14]–[16], nevertheless, in the RSTKF,
the posterior pdf is approximated as a Gaussian pdf based on
the variational Bayesian (VB) approach [22], [23]. For a linear
system with moderately heavy-tailed state and measurement
noises, the RSTKF can achieve better estimation accuracy than
the Student’s t filter but at the cost of higher computational
complexity. Also, the adaptive Kalman filter based on the VB
approach can to some extent address the heavy-tailed state and
measurement noises induced by outliers based on the adaptive
modifications of the one-step prediction error covariance matrix
and measurement noise covariance matrix [24].

Although the HKF, MCKF, and RSTKF can all achieve better
estimation accuracy than the standard Kalman filter for a linear
system with outlier corrupted state and measurement noises,
their interrelationships have as yet not been revealed. Except
for the Gaussian scale mixture distributions, the design method
of the existing RSTKF cannot be generalized to a general
non-Gaussian heavy-tailed distribution, which limits its further
improvement. In addition, it is worth studying whether the esti-
mation accuracy of the existing HKF, MCKF, and RSTKF can be
further improved. An advanced outlier-robust Kalman filtering
framework is, therefore, required to reveal the interrelationships
between the existing HKF, MCKF, and RSTKF and further
improve the estimation accuracy of the existing HKF, MCKF,
and RSTKF.

In this article, a statistical similarity measure (SSM) is intro-
duced to quantify the similarity between two random vectors.
The measure is then used to develop a novel outlier-robust
Kalman filtering framework, in which lower bounds of the SSM
between the state vector and the predicted state vector and that
between the measurement vector and the predicted measurement
vector are maximized, and the posterior pdf is approximated as
Gaussian. To illustrate the effectiveness of the proposed frame-
work, the effects of the approximation errors on the proposed
framework are analyzed in detail, and the numerical and filtering
stabilities of the proposed framework are also discussed. To
implement the proposed framework, the fixed-point iterative
algorithm and the separate iterative algorithm are proposed, and
their local convergence conditions are also provided and com-
pared. Furthermore, the selections of the similarity functions are
presented, and four exemplary similarity functions are provided,

from which the relations between the proposed method and the
existing outlier-robust Kalman filters are revealed. Simulation
results of a manoeuvring target tracking example illustrate that
by selecting appropriate similarity functions, the proposed filters
have improved estimation accuracy but higher computational
complexities than the existing state-of-the-art filters.

The remainder of this article is organized as follows. In
Section II, a novel SSM is proposed to quantify the similarity be-
tween two random vectors. In Section III, a novel outlier-robust
Kalman filtering framework based on the SSM is proposed,
and its error analyses and stability discussions are provided.
In Section IV, two novel iterative algorithms for proposed
outlier-robust Kalman filtering framework are proposed, and
their local convergence conditions are provided. In Section V, we
present the selections of the similarity functions. In Section VI,
simulation results of a manoeuvring target tracking example
and comparisons with existing filters are given. Conclusions are
drawn in Section VII.

II. PROPOSED SSM

In this article, a novel SSM is proposed to quantify the simi-
larity between two random vectors. The proposed SSM s(x,y)
for random vectors x and y is defined as follows:

s(x,y) = E
[
f(‖x− y‖2)] = ∫∫ f(‖x− y‖2)p(x,y)dxdy

(1)
where E[·] denotes the expectation operation, ‖ · ‖ denotes the
Euclidean norm, and p(x,y) denotes the joint pdf of random
vectors x and y. In this article, the scalar function f(·) is named
as the similarity function, and it must satisfy the following three
conditions.

1) Condition 1: f(·) is a continuous function defined on
[0,+∞).

2) Condition 2: f(·) is a strictly monotonically decreasing
function: ḟ(t) < 0 for t ∈ [0,+∞).

3) Condition 3: The second derivative of f(·) is nonnegative:
f̈(t) ≥ 0 for t ∈ [0,+∞).

The monotonically decreasing property of the similarity func-
tion f(·) can guarantee that the proposed SSM s(x,y) is increas-
ing as the distance between x and y decreases. As a result, the
proposed SSM conforms to the usual definition of a similarity
measure that is in some sense the inverse of distance metrics.
The higher similarity between random vectorsx andy, the larger
SSM becomes. The proposed SSM has some basic properties as
follows.

1) Property 1: The proposed SSM is symmetric: s(x,y) =
s(y,x).

2) Property 2: The proposed SSM achieves the maximum
value if and only if the random vectors x and y are
identical.

3) Property 3: The proposed SSM includes all the even
order moments of the random vector x− y: s(x,y) =∑+∞

l=0
f(l)(0)

l! E[‖x− y‖2l], if the Taylor expansion of the
similarity function f(t) exists when t ≥ 0.

Property 1 can be easily verified using the definition of the
proposed SSM in (1), and Property 3 can be directly derived by



HUANG et al.: NOVEL OUTLIER-ROBUST KALMAN FILTERING FRAMEWORK BASED ON STATISTICAL SIMILARITY MEASURE 2679

exploiting the Taylor series expansion of the similarity function
f(t) at t = 0. Next, we will prove Property 2 in the following
Theorem 1.

Theorem 1: If the similarity function f(·) satisfies Condition
2, then Property 2 holds.

Proof: See Appendix A. �
Property 2 guarantees that the proposed SSM has a maximum

point, i.e.,x = y. It is noteworthy that the proposed SSM s(x,y)
is an upper bound of f(E[‖x− y‖2]), and they have the same
maximum point, i.e., x = y.

Remark 1: The proposed SSM is a generalized similarity
measure between two random vectors and encompasses existing
similarity measures. For example, the proposed SSM s(x,y) is
the negative mean squared error (MSE) between random vectors
x and y when the similarity function is chosen as f(t) = −t.
The proposed SSM s(x,y) is the correntropy between random
vectors x and y when the similarity function is selected as
f(t) = exp(− 1

2σ2 t) [11], [13]. More interestingly, the gener-
alized correntropy [25] between random vectors x and y is also
a special case of the proposed SSM s(x,y) when the similarity
function is chosen as f(t) = α

2βΓ(1/α) exp(−t
α
2 β−α) and the

shape parameter satisfies the constraint 0 < α ≤ 2.
Remark 2: For the proposed SSM, except for the first two

conditions, the similarity function f(·) has to satisfy the third
condition. The third condition not only can facilitate the design
of an outlier-robust Kalman filter but also can guarantee robust-
ness to outliers and local convergence of fixed point iterations,
as shown in Sections III, IV, and V.

The proposed SSM can be used in Bayesian inference. Dif-
ferent SSMs are achieved when different similarity functions
f(·) are selected, based on which different state estimates can
be obtained by maximizing the corresponding SSMs. Next, we
will propose an outlier-robust Kalman filtering framework based
on the proposed SSM.

III. PROPOSED OUTLIER-ROBUST KALMAN FILTERING

FRAMEWORK BASED ON SSM

Consider a linear dynamical system described by a linear
discrete-time state-space model as follows:{

xk = Fkxk−1 +wk (state equation)
zk = Hkxk + vk (measurement equation)

(2)

where k is the discrete time index, xk ∈ Rn is the state vector,
zk ∈ Rm is the measurement vector, Fk ∈ Rn×n and Hk ∈
Rm×n are, respectively, the known state transition matrix and
measurement matrix, and wk ∈ Rn and vk ∈ Rm are, respec-
tively, state and measurement noise vectors. In this article, the
state and measurement noises are assumed to have non-Gaussian
distributions that are, respectively, induced by state and measure-
ment outliers.

A. Design of Outlier-Robust Kalman Filtering Framework

Similar to the standard Kalman filter, the proposed outlier-
robust Kalman filtering framework is also composed of time and
measurement updates. In the time update, the one-step predicted
state vector x̂k|k−1 and corresponding nominal prediction error

covariance matrix Pk|k−1 are calculated as follows:{
x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

(3)

where x̂k−1|k−1 and Pk−1|k−1 are, respectively, the state esti-
mate and corresponding estimation error covariance matrix at
time k − 1, and Qk denotes the nominal state noise covariance
matrix. Note that Pk|k−1 is called the nominal prediction error
covariance matrix since the used nominal state noise covariance
matrix Qk is inaccurate in the presence of state outliers.

In the measurement update, we aim to achieve an approximate
posterior pdf q∗(xk) ≈ p(xk|z1:k) through maximizing the sum
of the SSM between S−1

k|k−1xk and S−1
k|k−1x̂k|k−1 and the SSM

between S−1
Rk

zk and S−1
Rk

Hkxk, i.e.,

q∗(xk) = arg max
q(xk)

{
s
(
S−1
k|k−1xk,S

−1
k|k−1x̂k|k−1

)
+ s

(
S−1
Rk

zk,S
−1
Rk

Hkxk

)}
(4)

where Sk|k−1 and SRk
are, respectively, the square roots of

the predicted error covariance matrix Pk|k−1 and the nominal
measurement noise covariance matrix Rk, i.e.,

Pk|k−1 = Sk|k−1S
T
k|k−1 Rk = SRk

ST
Rk

(5)

where Rk denotes the nominal measurement noise covariance
matrix. Note that the 1-step statistical similarity measure based
cost function in (4) is sufficient for designing an outlier-robust
Kalman filtering framework in this article, in which the one-step
predicted state vector x̂k|k−1 and measurement vector zk at the
current time are used to construct the cost function. The idea of
this article can be extended to derive an outlier-robust Kalman
smoothing framework based on a multiple-steps SSM cost func-
tion by resorting to some standard techniques for designing a
maximum a posterior estimator in a Bayesian framework [26].

Considering that the one-step predicted state vector x̂k|k−1

and measurement vector zk are known and deterministic quan-
tities in the measurement update of the Kalman filter, the maxi-
mization problem in (4) can be reformulated as

q∗(xk) = arg max
q(xk)

{∫
fx(‖S−1

k|k−1(xk − x̂k|k−1)‖2)q(xk)dxk

+

∫
fz(‖S−1

Rk
(zk −Hkxk)‖2)q(xk)dxk

}
(6)

where fx(·) and fz(·) denote the similarity functions of state
and measurement models, respectively.

It is very difficult to achieve an optimal solution for the
maximization problem in (6) since both the explicit form of
posterior pdf q(xk) and closed form solutions for the integrals
are unavailable. To solve this problem, we propose to achieve an
approximate q∗(xk) by approximating the posterior pdf q(xk) as
Gaussian and maximizing the lower bound of the cost function.

First, we propose to approximate the posterior pdf q(xk) as a
Gaussian pdf, i.e.,

q(xk) ≈ N(xk;μk,Σk) (7)

where μk and Σk are, respectively, the mean vector and covari-
ance matrix of the posterior pdf q(xk).
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Substituting (7) in (6), the maximization problem with respect
to the posterior pdf q(xk) in (6) is approximately transformed
into a maximization problem with respect to the posterior mean
vector and covariance matrix, i.e.,

{μ∗
k,Σ

∗
k} ≈ arg max

{µk,Σk}

{∫
fx(‖S−1

k|k−1(xk − x̂k|k−1)‖2)

×N(xk;μk,Σk)dxk +

∫
fz(‖S−1

Rk
(zk −Hkxk)‖2)N

×(xk;μkΣk)dxk

}
, s.t. Σk > 0 (8)

where μ∗
k and Σ∗

k denote the optimal posterior mean vector
and covariance matrix. Next, the cost function in (8) will be
approximated as its lower bound, and then an approximate
solution can be obtained.

Theorem 2: If the similarity functions satisfy Condition 3,
i.e., f̈x(t) ≥ 0 and f̈z(t) ≥ 0 for t ∈ [0,+∞), the maximization
problem in (8) can be transformed as follows:

{μ∗
k,Σ

∗
k} ≈ arg max

{µk,Σk}
J1(μk,Σk) s.t. Σk > 0 (9)

where J1(μk,Σk) is the lower bound of the cost function in (8)
and formulated as

J1(μk,Σk) = fx

(
tr(AkP

−1
k|k−1)

)
+ fz

(
tr(BkR

−1
k )
)

(10)

where tr(·) denotes the trace operation of a matrix, and Ak and
Bk are, respectively, given by

Ak =

∫
(xk − x̂k|k−1)(xk − x̂k|k−1)

TN(xk;μk,Σk)dxk

= Σk + (μk − x̂k|k−1)(μk − x̂k|k−1)
T (11)

Bk =

∫
(zk −Hkxk)(zk −Hkxk)

TN(xk;μk,Σk)dxk

= (zk −Hkμk)(zk −Hkμk)
T +HkΣkH

T
k . (12)

Proof: See Appendix B. �
Define four auxiliary variables ξk, λk, ξ̃k, and λ̃k as follows:⎧⎨

⎩
ξk � −2ḟx

(
tr(AkP

−1
k|k−1)

)
, λk � −2ḟz

(
tr(BkR

−1
k )
)

ξ̃k � 2f̈x

(
tr(AkP

−1
k|k−1)

)
, λ̃k � 2f̈z

(
tr(BkR

−1
k )
)
(13)

and three auxiliary matrices as follows:⎧⎪⎨
⎪⎩

Δμk
(μk,Σk) =

∂J1(µk,Σk)
∂µk

ΔΣk
(μk,Σk) =

∂J1(µk,Σk)
∂Σk

Θμk
(μk,Σk) =

∂2J1(µk,Σk)

∂µk∂µT
k

(14)

where Δμk
(μk,Σk) and ΔΣk

(μk,Σk) denote the Jacobian
matrices of the approximate cost function J1(μk,Σk) with
respect to the posterior mean vector and covariance matrix,
respectively, and Θμk

(μk,Σk) denotes the Hessian matrix of
the approximate cost function J1(μk,Σk) with respect to the
posterior mean vector.

Theorem 3: The optimal solution μ∗
k of the approximate cost

function J1(μk,Σk) is formulated as follows:

μ∗
k = x̂k|k−1 + K̃∗

k(zk −Hkx̂k|k−1) (15)

K̃∗
k = P̃∗

k|k−1H
T
k

(
HkP̃

∗
k|k−1H

T
k + R̃∗

k

)−1

(16)

where P̃∗
k|k−1 and R̃∗

k are, respectively, the modified one-step
prediction error covariance matrix and measurement noise co-
variance matrix given by

P̃∗
k|k−1 = Pk|k−1/ξ

∗
k, R̃∗

k = Rk/λ
∗
k (17)

and the auxiliary parameters ξ∗k and λ∗
k are given by

ξ∗k = −2ḟx

(
tr(A∗

kP
−1
k|k−1)

)
, λ∗

k = −2ḟz
(
tr(B∗

kR
−1
k )
)

(18)
and the auxiliary parameters A∗

k and B∗
k are given by

A∗
k = Σ∗

k + (μ∗
k − x̂k|k−1)(μ

∗
k − x̂k|k−1)

T (19)

B∗
k = (zk −Hkμ

∗
k)(zk −Hkμ

∗
k)

T +HkΣ
∗
kH

T
k . (20)

Proof: See Appendix C. �
Next, we will further confirm the extreme point μ∗

k in (15)
is a maximum point or a minimum point, and present the
monotonicity of the approximate cost function J1(μk,Σk) with
respect to the posterior covariance matrix Σk.

Theorem 4: If the similarity functions satisfy Condition 2 and
Condition 3 and the following inequalities hold:

−(ξ∗k)
2 + 2ξ̃∗k < 0, −(λ∗

k)
2 + 2λ̃∗

k < 0 (21)

then both the Hessian matrix Θμk
(μ∗

k,Σ
∗
k) and the Jacobian

matrix ΔΣk
(μk,Σk) are negative definite, i.e.,

Θμk
(μ∗

k,Σ
∗
k) < 0, ΔΣk

(μk,Σk) < 0. (22)

Proof: See Appendix D. �
Theorem 4 implies that the extreme point μ∗

k in (15) is a
maximum point of the approximate cost function J1(μk,Σk).
It can be also observed from Theorem 4 that the approximate cost
function J1(μk,Σk) is monotonically decreasing with respect
to the posterior covariance matrix Σk, and then the approximate
cost function J1(μk,Σk) can achieve a unique optimal solution
Σ∗

k at the lower bound of the posterior covariance matrix. Next,
we will determine the optimal posterior covariance matrix Σ∗

k.
To obtain the maximum pointΣ∗

k, we need to find a reasonable
constraint to apply upon Σk. Motivated by the fact that the
covariance matrix of the posterior pdf is the negative inverse
of the Hessian matrix of the least squares cost function in the
traditional maximum a posteriori estimation framework, we
propose a heuristic assumption that Σk is not less than the
negative inverse of the Hessian matrix Θμk

(μ∗
k,Σ

∗
k), i.e.,

Σk ≥ −Θ−1
μk
(μ∗

k,Σ
∗
k). (23)

It is worth noting that the well-known M-estimate employs a
similar way to deal with the posterior covariance matrix, which is
set as the negative inverse of the Hessian matrix of the robust cost
function [8]–[10]. Since the cost function J(μk,Σk) is mono-
tonically decreasing with respect to Σk, the optimal covariance
matrix should be the negative inverse of the Hessian matrix, i.e.,
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−Θ−1
μk
(μ∗

k,Σ
∗
k). Unfortunately, the Hessian matrix can easily

lose its negative definiteness during the iterative computation,
and then the filter was often found to halt its operation due to the
numerical problem. To keep the negative definiteness, the pos-
itive semidefinite term D1(μ

∗
k,Σ

∗
k) is mandatorily subtracted

from the Hessian matrix Θμk
(μ∗

k,Σ
∗
k). That is to say, the lower

bound of the posterior covariance matrix is further reduced, i.e.,

Σk ≥ −Θ−1
μk
(μ∗

k,Σ
∗
k) ≥ − [Θμk

(μ∗
k,Σ

∗
k)−D1(μ

∗
k,Σ

∗
k)]

−1 .
(24)

Exploiting (24) and (60), the maximum point Σ∗
k can be

formulated as

Σ∗
k =

(
ξ∗kP

−1
k|k−1 + λ∗

kH
T
kR

−1
k Hk

)−1

. (25)

Employing the matrix inversion lemma [1, pp. 11–12] and
(16), (17), and (25) gives

Σ∗
k = P̃∗

k|k−1 − K̃∗
kHkP̃

∗
k|k−1. (26)

B. Error Analyses of the Proposed Framework

In Section III-A, three approximations are employed to derive
an analytical solution for the original maximization problem in
(6), which are listed as follows.

1) Approximation 1: The posterior pdf q(xk) is approxi-
mated as a Gaussian pdf in (7).

2) Approximation 2: The original cost function is approxi-
mated as its lower bound by Theorem 2.

3) Approximation 3: The original Hessian matrix is approx-
imated as Θμk

(μ∗
k,Σ

∗
k)−D1(μ

∗
k,Σ

∗
k).

First, we discuss the reasonability of Approximation 1. The
outlier-contaminated state and measurement noises often have
non-Gaussian distributions, and then the true posterior pdf
p(xk|z1:k) also has a non-Gaussian distribution [14], [16]. Un-
fortunately, there is often not a mathematical formulation for a
general non-Gaussian distribution. As a result, it is not possible
to achieve an optimal solution of the maximization problem in
(6) for a general non-Gaussian linear system. Motivated by the
fact that the Gaussian approximation to the posterior pdf has
been widely accepted in designing a cost-effective filter for a
linear system with non-Gaussian noises, the posterior pdf is
also approximated as a Gaussian pdf in this article, as shown in
(7), based on which an approximately analytical solution can be
obtained. Although such an approximation may impose an error
on the posterior pdf, it often exhibits good estimation accuracy
with reasonable computational complexity. Thus, the Gaussian
approximation to the posterior pdf can provide a tradeoff be-
tween estimation accuracy and computational complexity.

Second, we analyze the effects of Approximation 2 on the
optimal solution. To this end, the relation between the max-
imization problem in (8) and the maximization problem in
(9)–(12) will be further revealed. Define four auxiliary variables
as follows:{

Y1k = ‖S−1
k|k−1(xk − x̂k|k−1)‖2, Y ∗

1k = tr(A∗
kP

−1
k|k−1)

Y2k = ‖S−1
Rk

(zk −Hkxk)‖2, Y ∗
2k = tr(B∗

kR
−1
k )

(27)

where Y ∗
1k and Y ∗

2k are, respectively, the expectations of Y1k

and Y2k with respect to the approximate posterior pdf q∗(xk)
= N(xk;μ

∗
k,Σ

∗
k).

Taking the first-order Taylor series expansions of the similar-
ity functions fx(t) and fz(t) at t = Y ∗

1k and t = Y ∗
2k, respec-

tively, we have{
fx(t) = fx(Y

∗
1k) + ḟx(Y

∗
1k)(t− Y ∗

1k) + o(t− Y ∗
1k)

fz(t) = fz(Y
∗
2k) + ḟz(Y

∗
2k)(t− Y ∗

2k) + o(t− Y ∗
2k)

(28)

where o(t− Y ∗
1k) and o(t− Y ∗

2k) denote the first-order remain-
der terms of the similarity functions fx(t) and fz(t) at t = Y ∗

1k

and t = Y ∗
2k, respectively.

Using (28) yields{
fx(Y1k) ≈ fx(Y

∗
1k) + ḟx(Y

∗
1k)(Y1k − Y ∗

1k)

fz(Y2k) ≈ fz(Y
∗
2k) + ḟz(Y

∗
2k)(Y2k − Y ∗

2k).
(29)

Proposition 1: The maximization problem in Theorem 2 and
the maximization problem in (8) with the first-order Taylor
approximations (27) and (29) have the same optimal solution
{μ∗

k,Σ
∗
k}.

Proof: See Appendix E. �
Proposition 1 means that the lower bound of the original cost

function and the first-order approximation of the original cost
function have the same maximum solution. Thus, the effects
of Approximation 2 on the optimal solution are determined
by the higher order approximation errors o(Y1k − Y ∗

1k) and
o(Y2k − Y ∗

2k). Since Y ∗
1k and Y ∗

2k are the mean values of the
random variables Y1k and Y2k, the difference values Y1k − Y ∗

1k

and Y2k − Y ∗
2k depend heavily on the variances of the random

variables Y1k and Y2k. That is to say, the higher variances of the
random variables Y1k and Y2k, the larger fluctuation ranges of
the difference valuesY1k − Y ∗

1k andY2k − Y ∗
2k will be generated

and then result in larger higher order approximation errors, and
vice versa. Thus, the approximation accuracy of Theorem 2 is
mainly dominated by the variances of the random variables Y1k

and Y2k. Therefore, next, we will study the variances of the
random variables Y1k and Y2k.

Proposition 2: The variances of the random variablesY1k and
Y2k satisfy the following upper bound constraints:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Var[Y1k] ≤ (n2 + 2n− 1)
[
tr(ΣkP

−1
k|k−1)

]2
+
∥∥∥2ΣT

2

k P−1
k|k−1(μk − x̂k|k−1)

∥∥∥2
Var[Y2k] ≤ (n2 + 2n− 1)

[
tr(HkΣkH

T
kR

−1
k )
]2

+
∥∥∥2ΣT

2

k HT
kR

−1
k (zk −Hkμk)

∥∥∥2
(30)

where Var[·] denotes the variance operation.
Proof: See Appendix F. �
It is observed from Proposition 2 that both the variances of

the random variables Y1k and Y2k depend on the state dimension
n and the posterior covariance matrix Σk. It can be observed
from (30) that the higher the state dimension, the larger will
be the variances of the random variables Y1k and Y2k. Such a
result is consistent with the intuition that the higher the state
dimension, the larger the errors will be when the original cost
function is approximated by its lower bound in Theorem 2.
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TABLE I
EXEMPLARY SIMILARITY FUNCTIONS f(·) AND THEIR FIRST AND

SECOND DERIVATIVES

We can also observe from (30) that the larger the posterior
covariance matrix Σk, the larger will be the variances of the
random variables Y1k and Y2k. This result is also consistent with
the fact that the approximation errors are mainly dominated by
the randomness of state vector xk (i.e., the covariance matrix)
when the original cost function is approximated by its lower
bound based on Jensen’s inequality. In conclusion, the effects
of Approximation 2 on the optimal solution relies mainly on
the state dimension and the posterior covariance matrix of the
state vector. Fortunately, the posterior uncertainty is gradually
reduced as the filter converges, which can to some extent mitigate
the effects of Approximation 2 on the optimal solution. More
importantly, both the errors Y1k − Y ∗

1k and Y2k − Y ∗
2k can be

deemed as small terms as the filter converges, and the higher
order derivatives of the similarity functions fx(t) and fz(t)
are significantly smaller than the first-order derivatives for the
exemplary similarity functions in Table I. As a result, the higher
order approximation errors o(Y1k − Y ∗

1k) and o(Y2k − Y ∗
2k) are

significantly smaller than the first-order terms for the exemplary
similarity functions, which contributes to the effectiveness and
reasonability of Approximation 2.

Finally, we discuss the effects of Approximation 3 on the
optimal solution. The original Hessian matrix is forcibly reduced
by subtracting a positive semidefinite matrix, and the resultant
posterior covariance matrix is less than the optimal value. Al-
though such approximation imposes an error on the posterior
covariance matrix, it is beneficial to guarantee the positive
definiteness of the posterior covariance matrix and then improve
the numerical and filtering stabilities, as shown in Sections III-C
and IV-A. Moreover, the reduction of the posterior covariance
matrix is also beneficial to mitigate the effects of Approximation
2 on the optimal solution.

C. Stability Discussions of Proposed Framework

In order to employ the proposed algorithm in engineering
applications, it is necessary to guarantee the numerical and
filtering stabilities of the proposed method. Next, these will be
discussed.

It is seen from (18) that if the similarity functions fx(·) and
fz(·) satisfy Condition 2, i.e., ḟx(t) < 0 and ḟz(t) < 0 for t ∈
[0,+∞), then both the auxiliary parameters ξ∗k and λ∗

k are greater
than zero, i.e.,

ξ∗k > 0, λ∗
k > 0. (31)

Using (17), (25) and (31) yields

P̃∗
k|k−1 > 0, R̃∗

k > 0, Σ∗
k > 0. (32)

We can see from (32) that if ḟx(t) < 0 and ḟz(t) < 0 for
t ∈ [0,+∞), then the modified one-step prediction error and
measurement noise covariance matrices and the posterior covari-
ance matrix are all positive definite. Thus, the proposed filter is
numerically stable if the similarity function similarity functions
fx(·) and fz(·) satisfy Condition 2.

In this article, the filtering stability means that the state
estimation error x̃k|k is bounded in the sense of mean square, i.e.,
E{‖x̃k|k‖2} < +∞ [27]. According to the theoretical analysis
of the filtering stability in [27], if the modified one-step predic-
tion error and measurement noise covariance matrices and the
posterior covariance matrix satisfy the following constraints:{

P̃∗
k|k−1 ≤ qmaxIn, R̃∗

k ≥ rminIm
pminIn ≤ Σ∗

k ≤ pmaxIn
(33)

where qmax, rmin,pmin, andpmax are all positive real numbers, then
the state estimation error x̃k|k of the proposed filter is bounded
in the sense of mean square, i.e., E{‖x̃k|k‖2} < +∞. Note that
the other conditions for guaranteeing the filtering stability in
[27] hold naturally for linear systems.

Proposition 3: If there exists positive real numbers ξmin, ξmax,
λmin, and λmax such that the following constraints are fulfilled:

ξmin ≤ ξ∗k ≤ ξmax, λmin ≤ λ∗
k ≤ λmax (34)

then, the inequalities in (33) hold.
Proof: See Appendix G. �
Proposition 3 demonstrates that if both the auxiliary pa-

rameters ξ∗k and λ∗
k have lower and upper bounds, then the

proposed outlier-robust Kalman filtering framework is always
stable, which will impose additional constraints on the similarity
functions fx(·) and fz(·).

Remark 3: The proposed outlier-robust Kalman filtering
framework is related to some existing advanced Kalman filtering
algorithms. The standard Kalman filter and existing RSTKF
[22] are special cases of the proposed outlier-robust Kalman
filtering framework. The proposed outlier-robust Kalman filter
becomes the standard Kalman filter when the similarity func-
tions are, respectively, chosen as fx(t) = −0.5t and fz(t) =
−0.5t, and the proposed outlier-robust Kalman filter becomes
the existing RSTKF when the similarity functions are, respec-
tively, selected as fx(t) = −0.5(ν + n) log(1 + t

ν ) and fz(t) =
−0.5(ν +m) log(1 + t

ν ).

IV. NOVEL ITERATIVE ALGORITHMS FOR PROPOSED

OUTLIER-ROBUST KALMAN FILTERING FRAMEWORK

A. Fixed-Point Iterative Algorithm

In general, it is very difficult to find analytical solutions for
μ∗

k and Σ∗
k through solving (15)–(20) and (26) directly when

the similarity functions fx(·) and fz(·) are nonlinear functions.
To solve this problem, we employ fixed-point iterations to solve
these equations approximately. The detailed implementation of
the proposed outlier-robust Kalman filtering framework based
on fixed-point iterations is listed in Algorithm 1, where ε denotes
the iteration threshold, Nm denotes the maximum number of
iterations, i∗ denotes the cyclic variable at the end of the loop,
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Algorithm 1: One Time Step of The Proposed Outlier-
Robust Kalman Filtering Framework Based On Fixed-Point
Iterations.

Inputs: x̂k−1|k−1, Pk−1|k−1, Fk, Hk, zk, Qk, Rk, fx(·),
fz(·), ε, Nm, δ.
Time update:
1: x̂k|k−1 = Fkx̂k−1|k−1

2: Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Iterative measurement update:
3: Initialization: ξ(0)k = 1, λ

(0)
k = 1

for i = 0 : Nm − 1
Calculate P̃

(i+1)
k|k−1 and R̃

(i+1)
k

4: P̃
(i+1)
k|k−1 = Pk|k−1/ξ

(i)
k , R̃

(i+1)
k = Rk/λ

(i)
k

Evaluate μ
(i+1)
k and Σ

(i+1)
k

5: K̃
(i+1)
k = P̃

(i+1)
k|k−1H

T
k (HkP̃

(i+1)
k|k−1H

T
k + R̃

(i+1)
k )−1

6: μ
(i+1)
k = x̂k|k−1 + K̃

(i+1)
k (zk −Hkx̂k|k−1)

7: Σ
(i+1)
k = P̃

(i+1)
k|k−1 − K̃

(i+1)
k HkP̃

(i+1)
k|k−1

Check the convergence of iteration

8: If ‖µ(i+1)
k −µ

(i)
k ‖

‖µ(i)
k ‖ ≤ ε, stop iteration.

Calculate A
(i+1)
k and B

(i+1)
k

9: A
(i+1)
k =

Σ
(i+1)
k + (μ

(i+1)
k − x̂k|k−1)(μ

(i+1)
k − x̂k|k−1)

T

10: B
(i+1)
k = (zk −Hkμ

(i+1)
k )(zk −Hkμ

(i+1)
k )T +

HkΣ
(i+1)
k HT

k

Evaluate ξ
(i+1)
k and λ

(i+1)
k

11: ξ
(i+1)
k = −2ḟx(tr(A

(i+1)
k P−1

k|k−1))

12: λ
(i+1)
k = −2ḟz(tr(B

(i+1)
k R−1

k ))
Check the constraints in (36)
13: If ξ(i+1)

k < δ, then ξ
(i+1)
k = δ.

14: If λ
(i+1)
k < δ, then λ

(i+1)
k = δ.

end for
13: x̂k|k = μ

(i∗)
k , Pk|k = Σ

(i∗)
k

Outputs: x̂k|k and Pk|k

and δ denotes the lower bounds of the auxiliary parameters ξk
and λk that is beneficial to guarantee the filtering stability, as
discussed in Section V.

The premise of applying the proposed outlier-robust filtering
algorithm to practical engineering is to guarantee the conver-
gence of fixed-point iterations. To this end, the relation between
the fixed-point iterative algorithm and the existing nonlinear
optimization algorithm is first revealed.

Proposition 4: The fixed-point iterative algorithm is identical
to the existing Newton’s method with the modified Hessian
matrix as follows:

Θ̃μk
(μ

(i)
k ,Σ

(i)
k ) = Θμk

(μ
(i)
k ,Σ

(i)
k )−D1(μ

(i)
k ,Σ

(i)
k ). (35)

Proof: See Appendix H. �
Proposition 4 means that the fixed-point iterative algorithm

is an improved version of the existing Newton’s method. The

positive semidefinite term D1(μ
(i)
k ,Σ

(i)
k ) is subtracted from the

original Hessian matrix so that the negative definiteness can be
preserved. As a result, the fixed-point iterative algorithm has
better numerical stability than the standard Newton’s method.
Normally, to guarantee the local convergence of the Newton’s
method, the Hessian matrix needs to satisfy the Lipschitz con-
dition, and the initial value is sufficiently close to the optimal
value. Next, we will provide the convergence conditions of the
fixed-point iterative algorithm.

Theorem 5: If the initial mean vector μ(0)
k is sufficiently close

to the optimal mean vectorμ∗
k and there are positive and bounded

real numbers α1 and α2 making the following inequalities hold:{
0 ≤ f̈x(t

2)t ≤ α1

0 ≤ f̈z(t
2)t ≤ α2

, ∀t ≥ 0 (36)

then, the fixed-point iterative algorithm has local convergence.
Proof: See Appendix I. �
Generally, the initial mean vector μ

(0)
k is selected as the

one-step predicted state vector x̂k|k−1, i.e., μ(0)
k = x̂k|k−1, since

x̂k|k−1 is the only available information for the mean vector
before the iterative measurement update. It is seen from Theorem
5 that the initial value μ

(0)
k , i.e., x̂k|k−1, needs to be sufficiently

close to the optimal value μ∗
k to guarantee the local conver-

gence of the fixed-point iterative algorithm. Unfortunately, the
one-step predicted state vector x̂k|k−1 may be far away from
the optimal value μ∗

k when the linear system suffers from large
process uncertainty or a state outlier. As a result, the fixed-point
iterative algorithm may not converge to a local optimum when
the linear system suffers from large process uncertainty or a state
outlier, which will degrade the filtering accuracy of the proposed
outlier-robust filter dramatically.

B. Novel Separate Iterative Algorithm

In order to motivate the proposed separate iterative algorithm,
we first present the problems that exist in the fixed-point iterative
algorithm. It can be seen from Algorithm 1 that the Kalman gain
K̃

(i+1)
k plays an important role in the iterative measurement

update because it can adjust the weights of one-step predicted
state vector x̂k|k−1 and measurement innovationzk −Hkx̂k|k−1

adaptively. Next, we will discuss the behavior of the Kalman gain
K̃

(i+1)
k during the iterative measurement update.
Using the 4th and 5th equations in Algorithm 1, the Kalman

gain K̃
(i+1)
k can be rewritten as

K̃
(i+1)
k = Pk|k−1H

T
k

(
HkPk|k−1H

T
k +

ξ
(i)
k

λ
(i)
k

Rk

)−1

. (37)

It is observed from (37) that the behavior of the Kalman gain
K̃

(i+1)
k depends only on the ratio of auxiliary parameters, i.e.,

ξ
(i)
k

λ
(i)
k

, during the iterative measurement update. It can be also

observed from 9th–12th equations in Algorithm 1 that the ratio

of auxiliary parameters ξ
(i)
k

λ
(i)
k

relies on not only the similarity

functions fx(·) and fz(·) but also the parameters A(i)
k and B

(i)
k ,

and the parameters A
(i)
k and B

(i)
k are adaptively adjusted by
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Algorithm 2: One Time Step of The Proposed Outlier-
Robust Kalman Filtering Framework Based on The Pro-
posed Separate Iterative Algorithm.

Inputs: x̂k−1|k−1, Pk−1|k−1, Fk, Hk, zk, Qk, Rk, fx(·),
fz(·),
ε1, ε2, N1, N2, δ.
Time update:
1: x̂k|k−1 = Fkx̂k−1|k−1

2: Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Iterative measurement update:
3: Initialization: ξ(0)(0)k = 1, λ

(0)(0)
k = 1

for i = 0 : N1 − 1
Calculate P̃

(i+1)(0)
k|k−1 and R̃

(i+1)(0)
k

4: P̃
(i+1)(0)
k|k−1 = Pk|k−1/ξ

(0)(0)
k , R̃

(i+1)(0)
k = Rk/λ

(i)(0)
k

Evaluate μ
(i+1)(0)
k and Σ

(i+1)(0)
k

5: K̃
(i+1)(0)
k =

P̃
(i+1)(0)
k|k−1 HT

k (HkP̃
(i+1)(0)
k|k−1 HT

k + R̃
(i+1)(0)
k )−1

6: μ
(i+1)(0)
k = x̂k|k−1 + K̃

(i+1)(0)
k (zk −Hkx̂k|k−1)

7: Σ
(i+1)(0)
k = P̃

(i+1)(0)
k|k−1 − K̃

(i+1)(0)
k HkP̃

(i+1)(0)
k|k−1

Calculate B
(i+1)(0)
k

8: B
(i+1)(0)
k =

(zk −Hkμ
(i+1)(0)
k )(zk −Hkμ

(i+1)(0)
k )T+

HkΣ
(i+1)(0)
k HT

k

Evaluate λ
(i+1)(0)
k

9: λ
(i+1)(0)
k = −2ḟz(tr(B

(i+1)(0)
k R−1

k ))
Check the constraints in (36)
10: If λ

(i+1)(0)
k < δ, then λ

(i+1)(0)
k = δ.

Check the convergence of iteration

11: If |λ(i+1)(0)
k −λ

(i)(0)
k |

|λ(i)(0)
k | ≤ ε1, stop iteration.

end for
for j = 0 : N2 − 1

Calculate P̃
(i∗1)(j+1)

k|k−1 and R̃
(i∗1)(j+1)
k

12: P̃
(i∗1)(j+1)

k|k−1 = Pk|k−1/ξ
(0)(j)
k ,

R̃
(i∗1)(j+1)
k = Rk/λ

(i∗1)(0)
k

Evaluate μ
(i∗1)(j+1)
k and Σ

(i∗1)(j+1)
k

13: K̃
(i∗1)(j+1)
k =

P̃
(i∗1)(j+1)

k|k−1 HT
k (HkP̃

(i∗1)(j+1)

k|k−1 HT
k + R̃

(i∗1)(j+1)
k )−1

14: μ
(i∗1)(j+1)
k = x̂k|k−1 + K̃

(i∗1)(j+1)
k (zk −Hkx̂k|k−1)

15: Σ
(i∗1)(j+1)
k = P̃

(i∗1)(j+1)

k|k−1 − K̃
(i∗1)(j+1)
k HkP̃

(i∗1)(j+1)

k|k−1

Calculate A
(0)(j+1)
k

16: A
(0)(j+1)
k =

(μ
(i∗1)(j+1)
k − x̂k|k−1)(μ

(i∗1)(j+1)
k − x̂k|k−1)

T+

Σ
(i∗1)(j+1)
k

Evaluate ξ
(0)(j+1)
k

17: ξ
(0)(j+1)
k = −2ḟx(tr(A

(0)(j+1)
k P−1

k|k−1))
Check the constraints in (36)
18: 18. If ξ(0)(j+1)

k < δ, then ξ
(0)(j+1)
k = δ.

Check the convergence of iteration

Continued

19: If |ξ(0)(j+1)
k −ξ

(0)(j+1)
k |

|ξ(0)(j)k | ≤ ε2, stop iteration.

end for
20: x̂k|k = μ

(i∗1)(j
∗
2)

k , Pk|k = Σ
(i∗1)(j

∗
2)

k

Outputs: x̂k|k and Pk|k

the iterative posterior mean vector μ(i)
k and covariance matrix

Σ
(i)
k at the same time. As a result, the behavior of the Kalman

gain K̃
(i+1)
k is likely to be indefinite and depends heavily on the

relative size of state and measurement outliers. The indefinite
behavior of the Kalman gain K̃(i+1)

k is easy to cause the iterative

posterior mean vector μ(i)
k and covariance matrix Σ

(i)
k not to

converge to local optimums.
In this article, we propose a heuristic idea that the iterations of

auxiliary parameters are separated to guarantee the definite be-
havior of the Kalman gain. That is to say, the auxiliary parameter
λ
(i)(0)
k is first iterated with fixed auxiliary parameter ξ(0)(0)k = 1

until convergence, i.e., limi→+∞ λ
(i)(0)
k = λ̄k, and then the aux-

iliary parameter ξ(0)(j)k is iterated with fixed auxiliary parameter

λ̄k until convergence, i.e., limj→+∞ ξ
(0)(j)
k = ξ̄k, where ξ̄k and

λ̄k denote the local optimums of the auxiliary parameters. The
detailed implementation of the proposed outlier-robust Kalman
filtering framework based on the proposed separate iterative
algorithm is listed in Algorithm 2, where ε1 and ε2 denote
the iteration thresholds of ξk and λk, respectively, and N1 and
N2 denotes the maximum numbers of iterations of ξk and λk,
respectively, and i∗1 and j∗2 denote the cyclic variables at the end
of the first and second loops, respectively.

Theorem 6: If the similarity functions fz(·) and fx(·) satisfy
Condition 3 and ḟz(0) and ḟx(0) have lower bounds, then the
iterative auxiliary parameters λ

(i)(0)
k and ξ

(0)(j)
k will converge to

local optimums λ̄k and ξ̄k, respectively, i.e.,

lim
i→+∞

λ
(i)(0)
k = λ̄k, lim

j→+∞
ξ
(0)(j)
k = ξ̄k. (38)

Proof: See Appendix J. �
We can see from Theorem 6 that if the similarity functions

fx(·) and fz(·) satisfy Condition 3 and ḟz(0) and ḟx(0) have
lower bounds, the iterative auxiliary parameters λ

(i)(0)
k and

ξ
(0)(j)
k will converge to local optima, and then the corresponding

posterior mean vector and covariance matrix also converge to
local optima, which guarantees the local convergence of the
proposed separate iterative algorithm. As compared with the
fixed-point iteration algorithm, the proposed algorithm does
not require initial mean vector to be sufficiently close to the
optimal mean vector. Thus, the local convergence conditions of
the fixed-point iterative algorithm are more harsh than those of
the proposed separate iterative algorithm.

V. SELECTIONS OF THE SIMILARITY FUNCTIONS

It is seen from Algorithms 1 and 2 that the similarity func-
tions fx(·) and fz(·) are necessary to implement the proposed
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outlier-robust framework. Next, we will provide the selections
of the similarity functions to guarantee that the proposed frame-
work is identical to the standard Kalman filter for the case of
Gaussian noises and robust to state and measurement outliers.

First, the relationship between the approximate one-step pre-
diction error covariance matrix A∗

k and the true one-step pre-
diction error covariance matrix Pk|k−1 and that between the
approximate measurement noise covariance matrix B∗

k and the
true measurement noise covariance matrix Rk are studied for a
linear state-space model with Gaussian state and measurement
noises.

Proposition 5: For a linear state-space model with Gaussian
state and measurement noises, A∗

k and B∗
k can be, respectively,

approximated as the one-step prediction error covariance matrix
and measurement noise covariance matrix, i.e.,

A∗
k ≈ Pk|k−1, B∗

k ≈ Rk. (39)

Proof: See Appendix K. �
Second, we study the conditions of the similarity functions

fx(·) and fz(·) to guarantee that the proposed framework is
identical to the standard Kalman filter for the case of Gaussian
noises. Substituting (39) in (18), we have

ξ∗k = −2ḟx(n), λ∗
k = −2ḟz(m) (40)

where n and m are, respectively, the dimensions of the state
vector and the measurement vector.

It is seen from Algorithms 1 and 2 that the proposed robust
filter is identical to the standard Kalman filter when the modified
parameters are unity, i.e., ξ∗k = λ∗

k = 1. Therefore, in order to
guarantee that the proposed filter is identical to the standard
Kalman filter when there are no state and measurement outliers,
the similarity functions fx(·) and fz(·) need to satisfy the
following:

ḟx(n) = −0.5, ḟz(m) = −0.5. (41)

Finally, we discuss the conditions of the similarity functions
fx(·) and fz(·) to guarantee that the proposed framework is
robust to outliers. Define two auxiliary matrices as follows:

Ψk1 = A∗
k −Pk|k−1, Ψk2 = B∗

k −Rk. (42)

In general, if there are state and measurement outliers, the
approximate one-step prediction error covariance matrix A∗

k is
not less than the nominal one-step prediction error covariance
matrix Pk|k−1, and the approximate measurement noise covari-
ance matrix B∗

k is also not less than the nominal measurement
noise covariance matrix Rk, i.e.,

Ψk1 ≥ 0, Ψk2 ≥ 0. (43)

Furthermore, the auxiliary matricesΨk1 andΨk2 depend on the
magnitudes of the state and measurement outliers, respectively,
and the larger the state and measurement outliers, the larger
auxiliary matrices Ψk1 and Ψk2 will be generated.

Proposition 6: For a linear state-space model with outlier-
contaminated state and measurement noises, if the similarity

functions fx(·) and fz(·) satisfy the following:{
ḟx(t) < 0 f̈x(t) ≥ 0 ḟx(n) = −0.5 t ∈ [0,+∞)

ḟz(t) < 0 f̈z(t) ≥ 0 ḟz(m) = −0.5 t ∈ [0,+∞)
(44)

then, the modified auxiliary parameters ξ∗k and λ∗
k satisfy the

following:

0 < ξ∗k ≤ 1, 0 < λ∗
k ≤ 1 (45)

and the larger state and measurement outliers, the smaller mod-
ified auxiliary parameters ξ∗k and λ∗

k will be obtained.
Proof: See Appendix L. �
Employing (45) in (17) results in

P̃∗
k|k−1 −Pk|k−1 ≥ 0, R̃∗

k −Rk ≥ 0. (46)

It is observed from (46) that the modified prediction error
covariance matrix and the modified measurement noise co-
variance matrix are, respectively, not less than the nominal
prediction error covariance matrix and the nominal measurement
noise covariance matrix when there are, respectively, state and
measurement outliers. Moreover, according to Proposition 6
and (17), the larger the state and measurement outliers, the
smaller the modified auxiliary parameters ξ∗k and λ∗

k will be, and
the larger the modified prediction error covariance matrix and
modified measurement noise covariance matrix will become.

Using (16) and (17), the Kalman gain K̃∗
k can be reformulated

as

K̃∗
k = Pk|k−1H

T
k

(
HkPk|k−1H

T
k +

ξ∗k
λ∗
k

Rk

)−1

. (47)

According to Proposition 6 and (47), the Kalman gain K̃∗
k

depends heavily on the relative magnitudes of the state and
measurement outliers. Specifically, the Kalman gain is increased
if the state outlier has larger magnitude than the measurement
outlier, and vice versa. As a result, the negative effects of outliers
on the proposed Kalman filtering framework can be resisted
through adjusting the Kalman gain adaptively.

As an example, some exemplary similarity functions f(·)
are listed in Table I, where p denotes the dimension of the
state vector for f(·) = fx(·) and p denotes the dimension of
the measurement vector for f(·) = fz(·), and σ and ν are,
respectively, named as the kernel size and the DOF parameter
to be consistent with the existing MCKF [12] and RSTKF [22],
and ω is also named as the DOF parameter.

It is easy to verify that the exemplary similarity functions
listed in Table I satisfy the conditions of Theorems 1 and 2 and
Proposition 6. Theorem 3 and Propositions 1, 2, 4, and 5 do not
need the exemplary similarity functions to satisfy the additional
conditions. Next, we will further confirm whether the exemplary
similarity functions satisfy the conditions of Theorems 4–6 and
Proposition 3.

Corollary 1: If the kernel size σ and the DOF parameter ν
satisfy the following constraints:

σ2 exp

(
n− Y ∗

1k

2σ2

)
> 1, σ2 exp

(
m− Y ∗

2k

2σ2

)
> 1, ν > 2− p

(48)
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then, the exemplary similarity functions in Table I satisfy (21)
in Theorem 4.

It is worth noting that there is not a constraint on the DOF
parameter ω to guarantee that Theorem 4 holds. It is seen from
Corollary 1, the constraint on the kernel size σ depends on the
auxiliary parameters Y ∗

1k and Y ∗
2k. As a result, the constraint on

the kernel size σ may change for different application scenarios.
To address this problem, a reasonable scheme is choosing a
sufficiently large kernel sizeσ so that the constraint on the kernel
size always holds.

It is seen from (45) that ξ∗k and λ∗
k have positive upper bounds

ξmax = λmax = 1. Since the second derivatives of the similarity
functions are nonnegative, the minimum values of the negative
derivatives of the similarity functions −ḟx(t) and −ḟz(t) are
achieved at t = +∞. It can be seen from Table I that the negative
derivatives of the exemplary similarity functions approach 0 as
t tends to +∞. As a result, the modified auxiliary parameters ξ∗k
and λ∗

k do not have positive lower bounds, and then Proposition 3
does not hold, which may lead to filtering instability. To address
this problem, we can impose a very small lower bound δ on the
modified auxiliary parameters ξ∗k and λ∗

k to guarantee filtering
stability, as shown in the 13th and 14th equations of Algorithm 1
and the 10th and 18th equations of Algorithm 2.

Corollary 2: For the exemplary similarity functions, if the
kernel size σ � 0 and the DOF parameters ν � 0 and ω � 0,
then there exists positive and bounded real numbers α1 and α2

making (36) in Theorem 5 hold.
Finally, we discuss the conditions of Theorem 6. It is easy to

verify that if the kernel size σ � 0 and the DOF parameters ν �

0 andω � 0, then ḟ(0) has a lower bound, which guarantees the
local convergence of the proposed separate iterative algorithm.
Also, according to Theorem 5 and Corollary 2, if the kernel
size σ � 0 and the DOF parameters ν � 0 and ω � 0, then
the fixed-point iterative algorithm has local convergence when
the initial mean vector μ(0)

k is sufficiently close to the optimal
mean vector μ∗

k. Thus, for the exemplary similarity functions,
the convergence conditions of the proposed separate iterative
algorithm is easier to be satisfied as compared with that of the
fixed-point iterative algorithm.

Remark 4: It is observed from Table I that the derivatives of
the exemplary similarity functions are all −0.5 when the kernel
size σ and the DOF parameters ν and ω tend to infinity, i.e.,
σ → +∞, ν → +∞ and ω → +∞. As a result, the proposed
outlier-robust Kalman filters based on the exemplary similarity
functions all reduce to the standard Kalman filter when the
parameters σ, ν, and ω tend to infinity.

Remark 5: The state vector is deemed as a random quantity in
the proposed outlier-robust Kalman filter but the state vector is
treated as a deterministic quantity in the existing M-estimator. It
is observed from Algorithms 1 and 2 that the posterior covariance
matrix is employed to calculate the modified parameters during
the iterative measurement update in the proposed filter but the
posterior covariance matrix is independent of the minimization
of the robust cost function in the existing M-estimator. As com-
pared with the existing M-estimator, the proposed outlier-robust
Kalman filter considers the randomness inherent in the state

vector by exploiting the posterior covariance matrix during the
iterative measurement update so that the state estimation accu-
racy can be further improved, as will be shown in the simulation
study.

Remark 6: Different from the existing MCKF, the corren-
tropy is approximated as its lower-bound by using Jensen’s
inequality in the proposed outlier-robust Kalman filter when
the similarity functions are, respectively, set as fx(t) =
σ2 exp( p−t

2σ2 ) and fz(t) = σ2 exp( p−t
2σ2 ), and the robust state

estimate is obtained by maximizing the lower-bound of the
correntropy. Thus, the proposed outlier-robust based Kalman
filter is an improved version of the existing MCKF when the sim-
ilarity functions are, respectively, set as fx(t) = σ2 exp( p−t

2σ2 )

and fz(t) = σ2 exp( p−t
2σ2 ), and the improved state estimation

accuracy can be achieved, as will be illustrated in the simulation
study.

VI. SIMULATION STUDY

A. Simulation Setup and Description

We consider a problem of tracking an agile target whose
positions are measured in clutter, and the horizontal positions
and corresponding velocities are chosen as elements of the state
vector. The state transition matrix and measurement matrix are,
respectively

Fk =

[
I2 T I2
0 I2

]

and Hk = [ I2 0 ], where T = 1s and I2 denote the sampling
interval and two-dimensional identity matrix, respectively. The
outlier contaminated state and measurement noises are generated
according to [28]⎧⎪⎪⎨

⎪⎪⎩
wk ∼

{
N(0,Q) w.p. 0.95
N(0, 100Q) w.p. 0.05

vk ∼
{
N(0,R) w.p. 0.95
N(0, 500R) w.p. 0.05

(49)

where the nominal state and measurement noise covariance
matrices are, respectively, selected as

Q =

[
T 3

3 I2
T 2

2 I2
T 2

2 I2 T I2

]

and R = 100I2. The true initial state vector is chosen as x0 =
[0, 0, 10, 10]T, and the initial estimation error variance is set
as P0 = diag([10000, 10000, 100, 100]), and the initial state
estimate is randomly selected from a Gaussian distribution, i.e.,
x̂0|0 ∼ N(x0,P0).

As an example, the similarity functions fx(·) and fz(·) are,
respectively, selected as exponential, logarithmic, and square-
root functions as in Table I, and the separate iterative algorithm
is employed to implement the proposed outlier-robust Kalman
filtering framework. Then, three outlier-robust Kalman filters
can be obtained including SSMKF-exp-S, SSMKF-log-S, and
SSMKF-sqrt-S, where SSMKF-exp-S denotes the exponential
similarity function and the separate iterative algorithm based
Kalman filter, and the explanations of the other two abbreviations
are similar to the SSMKF-exp-S.
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The proposed outlier-robust Kalman filters are compared with
the standard Kalman filter with true noise covariance matrices
(KFTNCM), the HKF [10], the MCKF [12], the RSTKF [22], the
IMM filter [7], and the PF [3], where the true noise covariance
matrices are used to obtain filtering estimates in the KFTNCM.
The tuning parameter of the existing HKF is set as a common
value of γ = 1.345 [10], and the kernel size of the proposed
SSMKF-exp-S and the existing MCKF is selected as σ = 10
to achieve a tradeoff between estimation accuracy and stability
[12], and the DOF parameter of the proposed SSMKF-log-S and
the existing RSTKF is set as ν = 10, and the DOF parameter
of the proposed SSMKF-sqrt-S is set as ω = 5. To guarantee
the convergence of the iterations, the iteration threshold and
the maximum number of iterations are, respectively, set as
ε = 10−16 and Nm = 50 in the proposed filters and the existing
outlier-robust Kalman filters. To guarantee the filtering stability
of the proposed filters, the lower bounds of the auxiliary param-
eters are set as δ = 10−8. To better show the advantages of the
proposed filters, two IMM filters and three particle filters are per-
formed. In the first IMM filter (IMM-1), the true instantaneous
values of state and measurement noise covariance matrices are
used, and the four corresponding noise models are, respectively,
{Q,R}, {Q, 500R}, {100Q,R}, and {100Q, 500R}, and the
model transition probability matrix of the first IMM filter is set as
Π1, where Π1(i, i) = 0.85 and Π1(i, j) = 0.05(i �= j). In the
second IMM filter (IMM-2), the inaccurate instantaneous state
and measurement noise covariance matrices are employed, and
the four corresponding noise models are, respectively, {Q,R},
{Q, 100R}, {1000Q,R}, and {1000Q, 100R}, and the model
transition probability matrix of the first IMM filter is selected
as Π2, where all elements of Π2 are 0.25. The initial model
probability vectors of the IMM-1 and IMM-2 are both cho-
sen as [0.25, 0.25, 0.25, 0.25]. In the first PF (PF-1) and the
third PF (PF-3), the true Gaussian mixture pdfs of state and
measurement noises given in (49) are used, and the particle
numbers are, respectively, selected as 1000 and 500 in the PF-1
and PF-3. In the second PF (PF-2), the inaccurate Gaussian
mixture pdfs of state and measurement noises are employed,
where the used state and measurement noise pdfs are, respec-
tively, p(wk) = 0.98N(wk;0,Q) + 0.02N(wk;0, 1000Q) and
p(vk) = 0.98N(vk;0,R) + 0.02N(vk;0, 100R). Note that the
IMM-1 and PF-1 are only used as filtering references since
the true instantaneous values of state and measurement noise
covariance matrices and the true state and measurement noise
pdfs are all unavailable in the presence of random and unknown
state and measurement outliers. All filtering algorithms are
coded with MATLAB and are executed on a computer with Intel
Core i7-6900K CPU @ 3.20 GHz. The MATLAB codes of this
article will be open access and can be freely downloaded from
the link https://www.researchgate.net/profile/Yulong_Huang3.

In this simulation, the simulation time is set as 200 s, and the
total number of Monte Carlo runs is selected as 1000. The root-
mean-square errors (RMSEs) and averaged RMSEs (ARMSEs)
of position and velocity are chosen as performance metrics to
compare the estimation accuracy, whose definitions are given in
the literature [22]. To better exhibit the RMSEs of position and

Fig. 1. RMSEs of the proposed SSMKF-exp-S, SSMKF-log-S, and
SSMKF-sqrt-S and the existing outlier-robust Kalman filters.

Fig. 2. RMSEs of the proposed SSMKF-exp-S, SSMKF-log-S, and
SSMKF-sqrt-S and the existing IMM filters and PFs.

velocity of all filters in Figs. 1 and 2, the RMSEs are smoothed
using a moving average method with span of 10 s.

B. Simulation Results and Comparisons

The RMSEs and ARMSEs (40–200s) of position and veloc-
ity and single step run time from the proposed SSMKF-exp-
S, SSMKF-log-S and SSMKF-sqrt-S and the existing outlier-
robust Kalman filters are, respectively, illustrated in Fig. 1 and
Table II. It can be seen from Fig. 1 and Table II that the
RMSEs and ARMSEs of position and velocity from the pro-
posed SSMKF-exp-S, SSMKF-log-S, and SSMKF-sqrt-S are all
smaller than those from the existing KFTNCM, HKF, MCKF,
and RSTKF. We can also see from Table II that the proposed
SSMKFs all require more run time than the existing outlier-
robust Kalman filters. As compared with the best ARMSEpos

https://www.researchgate.net/profile/Yulong_Huang3
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TABLE II
SINGLE STEP RUN TIME AND ARMSES OVER 40–200 S

from the existing RSTKF and the best ARMSEvel from the
existing MCKF, the ARMSEs of position and velocity from the
proposed SSMKF-log-S improve 20.91% and 5.18%, respec-
tively. Thus, the proposed SSMKF-exp-S, SSMKF-log-S, and
SSMKF-sqrt-S all have better estimation accuracy but higher
computational complexities than the existing KFTNCM, HKF,
MCKF, and RSTKF.

Fig. 2 and Table II, respectively, show the RMSEs and ARM-
SEs (40–200 s) of position and velocity and single step run time
from the proposed SSMKF-exp-S, SSMKF-log-S, and SSMKF-
sqrt-S and the existing IMM filters and PFs. It is observed from
Fig. 2 and Table II that the proposed SSMKF-exp-S, SSMKF-
log-S, and SSMKF-sqrt-S all have smaller RMSEs and ARMSEs
of position and velocity than the existing IMM-2 (inaccurate
noise models), PF-2 (inaccurate noise pdfs and 1000 particles),
and PF-3 (accurate noise pdfs and 500 particles). As compared
with the bestARMSEpos from the PF-2 and the bestARMSEvel

from the PF-3, the ARMSEs of position and velocity from the
proposed SSMKF-log-S improve 23.42% and 1.27%, respec-
tively. It can be also observed from Fig. 2 and Table II that the
RMSEs and ARMSEs of position of the proposed SSMKF-log-S
are close to those of the IMM-1 (filtering reference), and the RM-
SEs and ARMSEs of velocity of the proposed SSMKF-log-S are
close to those of the PF-1 (filtering reference), and the proposed
filters all have smaller RMSEs and ARMSEs of position than the
PF-1. The reason that PF-1 exhibits poor estimation accuracy of
position may be because the heavy-tailed features of posterior
pdfs are easily lost during the particle filtering process when
a limited number of particles are used. Furthermore, we can
observe from Table II that the proposed SSMKFs have slightly
greater run time than the IMM filters but significantly less run
time than the PFs. Although the computational time of the PF
can be significantly reduced if it is implemented in a parallel
fashion, it still requires accurate knowledge of the probability
distributions of the state and measurement noises. Thus, the
proposed SSMKF-exp-S, SSMKF-log-S, and SSMKF-sqrt-S all
have better estimation accuracy than the IMM-2, PF-2, and PF-3,
and slightly higher computational complexities than the IMM
filters but significantly lower computational complexities than
the standard PFs.

VII. CONCLUSION

In this article, a SSM was proposed to quantify the sim-
ilarity between two random vectors. The measure was then
employed to develop a novel outlier-robust Kalman filtering
framework. Some theoretical analyses and discussions about the
approximate errors and the numerical and filtering stabilities
were provided to illustrate the effectiveness of the proposed
framework. The fixed-point iterative algorithm and the separate
iterative algorithm were proposed to implement the proposed
framework, and their local convergence conditions were also
provided and compared. In addition, the selections of the sim-
ilarity functions were presented, and four exemplary similarity
functions were provided, from which the relations between the
proposed method and the existing outlier-robust Kalman filters
were revealed. Simulation results illustrated that by selecting
appropriate similarity functions, the proposed filters can achieve
improved estimation accuracy but have higher computational
complexities than the existing outlier-robust Kalman filters.
Also, as compared with the existing IMM filter and PF, the
proposed filters are more suitable for addressing the filtering
problem of a linear system with outlier-contaminated state and
measurement noises.

APPENDIX

A. Proof of Theorem 1

Using ḟ(t) < 0 and ‖x− y‖2 ≥ 0 yields

f(‖x− y‖2) ≤ f(0). (50)

Substituting (50) in (1) gives

s(x,y) = E
[
f(‖x− y‖2)] ≤ E [f(0)] = f(0). (51)

Considering that the inequality (51) holds for arbitrary ran-
dom vectors x and y, we have

max s(x,y) = f(0). (52)

It is evident that the SSM s(x,y) is identical to f(0) when
x = y, and then x = y is a maximum point of the SSM s(x,y).

B. Proof of Theorem 2

Since f̈x(t) ≥ 0 and f̈z(t) ≥ 0 for t ∈ [0,+∞), fx(·), and
fz(·) are convex functions. Using Jensen’s inequality, we have∫

fx(‖S−1
k|k−1(xk − x̂k|k−1)‖2)N(xk;μk,Σk)dxk ≥

fx

(∫
‖S−1

k|k−1(xk − x̂k|k−1)‖2N(xk;μk,Σk)dxk

)
(53)

∫
fz(‖S−1

Rk
(zk −Hkxk)‖2)N(xk;μk,Σk)dxk ≥

fz

(∫
‖S−1

Rk
(zk −Hkxk)‖2N(xk;μk,Σk)dxk

)
(54)

where the equalities hold if and only if the similarity functions
fx(·) and fz(·) are linear or the covariance matrix of q(xk) is
zero.
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Substituting (53) and (54) into (8), the maximization problem
with respect to the posterior mean vector and covariance matrix
can be approximated as (9)–(12).

C. Proof of Theorem 3

Using (10)–(13), the Jacobian matrix Δμk
(μk,Σk) is calcu-

lated as

Δμk
(μk,Σk) = −ξkP

−1
k|k−1(μk − x̂k|k−1) + λkH

T
kR

−1
k

× (zk −Hkμk). (55)

According to the maximum criterion, the maximum point μ∗
k

satisfies the following:

Δμk
(μ∗

k,Σ
∗
k) = 0. (56)

Utilizing (18)–(20) and (55) and (56) yields

−ξ∗kP
−1
k|k−1(μ

∗
k − x̂k|k−1) + λ∗

kH
T
kR

−1
k (zk −Hkμ

∗
k) = 0.

(57)
Solving (57), we can obtain the maximum pointμ∗

k as follows:

μ∗
k =

(
P̃∗−1

k|k−1 +HT
k R̃

∗−1
k Hk

)−1 (
P̃∗−1

k|k−1x̂k|k−1

+ HT
k R̃

∗−1
k zk

)
(58)

Substituting (17) in (58) and employing the matrix inversion
lemma [1, pp. 11–12], we can obtain (15)–(16).

D. Proof of Theorem 4

Using (10)–(13), the Jacobian matrix ΔΣk
(μk,Σk) and the

Hessian matrix Θμk
(μk,Σk) can be calculated as

ΔΣk
(μk,Σk) = −0.5ξkP

−1
k|k−1 − 0.5λkH

T
kR

−1
k Hk

(59)

Θμk
(μk,Σk) = −ξkP

−1
k|k−1 − λkH

T
kR

−1
k Hk +D1(μk,Σk)

(60)

where D1(μk,Σk) denotes the second-order term given by

D1(μk,Σk) = 2ξ̃kP
−1
k|k−1(μk − x̂k|k−1)(μk − x̂k|k−1)

T

×P−1
k|k−1 + 2λ̃kH

T
kR

−1
k (zk −Hkμk)(zk −Hkμk)

TR−1
k Hk.

(61)

Utilizing ξk > 0 and λk > 0 in (59), we can obtain
ΔΣk

(μk,Σk) < 0, and then the maximum point Σ∗
k can be

given by (26). Substituting (17)–(20) in (60) yields

Θμk
(μ∗

k,Σ
∗
k) = −ξ∗kP

−1
k|k−1 − λ∗

kH
T
kR

−1
k Hk +D1(μ

∗
k,Σ

∗
k).

(62)
Employing (15) and (16) in (61) D1(μ

∗
k,Σ

∗
k) is calculated as

D1(μ
∗
k,Σ

∗
k) = 2ξ̃∗kP

−1
k|k−1K̃

∗
kP̄

zz
k|k−1

(
K̃∗

k

)T
P−1

k|k−1

+2λ̃∗
kH

T
kR

−1
k (Im −HkK̃

∗
k)P̄

zz
k|k−1(Im −HkK̃

∗
k)

TR−1
k Hk

(63)

where P̄zz
k|k−1 denotes an approximate innovation matrix given

by

P̄zz
k|k−1 = (zk −Hkx̂k|k−1)(zk −Hkx̂k|k−1)

T. (64)

It is seen from (63) that the second-order term D1(μ
∗
k,Σ

∗
k)

depends on the real-time measurement zk. As a result, it is very
difficult to compare the term −ξ∗kP

−1
k|k−1 − λ∗

kH
T
kR

−1
k Hk and

the second-order term D1(μ
∗
k,Σ

∗
k). To solve this problem, we

propose a reasonable approximation as follows:

P̄zz
k|k−1 ≈ P̃zz∗

k|k−1 = HkP̃
∗
k|k−1H

T
k + R̃∗

k (65)

where P̃zz∗
k|k−1 denotes the modified innovation matrix.

Exploiting (16), (26) and (65) yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K̃∗
kP̄

zz
k|k−1

(
K̃∗

k

)T
≈ P̃∗

k|k−1 −Σ∗
k < P̃∗

k|k−1

(Im −HkK̃
∗
k)P̄

zz
k|k−1(Im −HkK̃

∗
k)

T ≈ R̃∗
k×(

HkP̃
∗
k|k−1H

T
k + R̃∗

k

)−1

R̃∗
k < R̃∗

k.

(66)

Substituting (63) in (62) and using (17) and (66) obtains

Θμk
(μ∗

k,Σ
∗
k) = (−ξ∗k + 2ξ̃∗k/ξ

∗
k)P

−1
k|k−1 − (λ∗

k − 2λ̃∗
k/λ

∗
k)

×HT
kR

−1
k Hk. (67)

Employing (21) in (67), we can obtain Θμk
(μ∗

k,Σ
∗
k) < 0.

E. Proof of Proposition 1

Using (29), the cost function in (8) can be approximated as

J̃1(μk,Σk) =

∫
[ḟx(Y

∗
1k)Y1k + ḟz(Y

∗
2k)Y2k]N(xk;μk,Σk)

dxk + c{µk,Σk}. (68)

Substituting (27) in (68) and using (11)–(13) and (18) yields

J̃1(μk,Σk) = −0.5ξ∗ktr(AkP
−1
k|k−1)− 0.5λ∗

ktr(BkR
−1
k )

+ c{µk,Σk}. (69)

Employing (69), the Jacobian matrices of J̃1(μk,Σk) with
respect to μk and Σk and the Hessian matrix of J̃1(μk,Σk)
with respect to μk are, respectively, formulated as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂J̃1(µk,Σk)
∂µk

= −ξ∗kP
−1
k|k−1(μk − x̂k|k−1)

+λ∗
kH

T
kR

−1
k (zk −Hkμk)

∂J̃1(µk,Σk)
∂Σk

= −0.5ξ∗kP
−1
k|k−1 − 0.5λ∗

kH
T
kR

−1
k Hk

∂J̃2
1 (µk,Σk)

∂µk∂µT
k

= −ξ∗kP
−1
k|k−1 − λ∗

kH
T
kR

−1
k Hk.

(70)

According to the maximum criterion and utilizing (70), the
maximum points μ∗

k and Σ∗
k can be formulated as (15) and

(26). Thus, the maximization problem in Theorem 2 and the
maximization problem in (8) with the first-order Taylor approx-
imations (27) and (29) have the same optimal solution.
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F. Proof of Proposition 2

Using (27) yields⎧⎨
⎩Y1k = ‖S−1

k|k−1Σ
1
2

k τx‖2 + 2aTxS
−1
k|k−1Σ

1
2

k τx + ‖ax‖2
τx = Σ

− 1
2

k (xk − μk), ax = S−1
k|k−1(μk − x̂k|k−1).

(71)
Since the posterior mean vector and covariance matrix of the

Gaussian distributed random vector xk are, respectively, μk and
Σk, the random vector τx has a standard Gaussian distribution,
i.e., τx ∼ N(0, In). Employing (71) and τx ∼ N(0, In), the
variance of Y1k is calculated as

Var[Y1k] = E[‖S−1
k|k−1Σ

1
2

k τx‖4]−
[
tr(ΣkP

−1
k|k−1)

]2
+
∥∥∥2ΣT

2

k P−1
k|k−1(μk − x̂k|k−1)

∥∥∥2 (72)

where note that the cross variance between ‖S−1
k|k−1Σ

1
2

k τx‖2 and

2aTxS
−1
k|k−1Σ

1
2

k τx is zero since the odd origin moments of τx are
all zeros. According to the compatibility of matrix and vector
norms, we have

E[‖S−1
k|k−1Σ

1
2

k τx‖4] ≤ E[‖τ x‖4]
[
tr(ΣkP

−1
k|k−1)

]2
. (73)

Considering that the random vector τx has a standard Gaus-
sian distribution, then the random variable ‖τx‖2 is a sum of the
squares of n independent Gaussian random variables and has a
chi-square distribution with the DOF parameter n, i.e., ‖τx‖2 ∼
χ2(n). According the property of the chi-square distribution,
the second-order origin moment of ‖τx‖2 can be calculated
as E[‖τ x‖4] = n2 + 2n. Employing E[‖τ x‖4] = n2 + 2n and
(72)–(73), we can obtain the upper bound constraint of Var[Y1k]
in (30). Similarly, we can also derive the upper bound constraint
of Var[Y2k] in (30).

G. Proof of Proposition 3

Using (34) in (17) and (25) yields

P̃∗
k|k−1 ≤ Pk|k−1/ξmin, R̃∗

k ≥ Rk/λmax (74)⎧⎨
⎩

Σ∗
k ≥

(
ξmaxP

−1
k|k−1 + λmaxH

T
kR

−1
k Hk

)−1

Σ∗
k ≤

(
ξminP

−1
k|k−1 + λminH

T
kR

−1
k Hk

)−1

.
(75)

Choosing qmax and pmax as the maximum eigenvalues of
Pk|k−1/ξmin and (ξminP

−1
k|k−1 + λminH

T
kR

−1
k Hk)

−1 and select-
ing rmim and pmin as the minimum eigenvalues of Rk/λmax and
(ξmaxP

−1
k|k−1 + λmaxH

T
kR

−1
k Hk)

−1, we can obtain (33).

H. Proof of Proposition 4

Using (35) and (60), the modified Hessian matrix is calculated
as

Θ̃μk
(μ

(i)
k ,Σ

(i)
k ) = −ξ

(i)
k P−1

k|k−1 − λ
(i)
k HT

kR
−1
k Hk. (76)

According to the Newton’s iterative scheme, we have⎧⎨
⎩

μ
(i+1)
k = μ

(i)
k −

[
Θ̃μk

(μ
(i)
k ,Σ

(i)
k )
]−1

Δμk
(μ

(i)
k ,Σ

(i)
k )

Σ
(i+1)
k = −

[
Θ̃μk

(μ
(i)
k ,Σ

(i)
k )
]−1

.

(77)
Employing (55) and (76) in (77) results in⎧⎨
⎩

μ
(i+1)
k = Σ

(i+1)
k

(
ξ
(i)
k P−1

k|k−1x̂k|k−1 + λ
(i)
k HT

kR
−1
k zk

)
Σ

(i+1)
k =

(
ξ
(i)
k P−1

k|k−1 + λ
(i)
k HT

kR
−1
k Hk

)−1

.

(78)
By utilizing the matrix inversion lemma [1, pp. 11–12],μ(i+1)

k

and Σ
(i+1)
k in (78) can be written as the 6th and 7th equations

in Algorithm 1. Thus, we can obtain Proposition 4.

I. Proof of Theorem 5

Let ΔΘ̃(μk,Σk) =
∂Θ̃μk

(µk,Σk)

∂µk
. Using (11)–(13), (35) and

(60) yields

ΔΘ̃(μk,Σk) = 2ξ̃k

[
P−1

k|k−1(μk − x̂k|k−1)
]⊗

P−1
k|k−1

−2λ̃k

[
HT

kR
−1
k (zk −Hkμk)

]⊗[
HT

kR
−1
k Hk

]
(79)

where
⊗

denotes the Kronecker product.
Taking the norm on both sides of (79) and utilizing the

properties of matrix norms results in∥∥ΔΘ̃(μk,Σk)
∥∥
F
≤ 2β1ξ̃k

∥∥∥S−1
k|k−1(μk − x̂k|k−1)

∥∥∥
F

+2β2λ̃k

∥∥S−1
Rk

(zk −Hkμk)
∥∥
F

(80)

where ‖ · ‖ denotes the Frobenius norm, and β1 and β2 are,
respectively, given by{

β1 =
∥∥∥S−T

k|k−1

∥∥∥
F

∥∥∥P−1
k|k−1

∥∥∥
F

β2 =
∥∥HT

k S
−T
Rk

∥∥
F

∥∥HT
kR

−1
k Hk

∥∥
F
.

(81)

Employing (5) and (11)–(12), we have⎧⎨
⎩
∥∥∥S−1

k|k−1(μk − x̂k|k−1)
∥∥∥
F
≤
√
tr(AkP

−1
k|k−1)∥∥S−1

Rk
(zk −Hkμk)

∥∥
F
≤
√

tr(BkR
−1
k ).

(82)

Exploiting (13), (36) and (81)–(82) in (80) gives∥∥ΔΘ̃(μk,Σk)
∥∥
F
≤ 4α1β1 + 4α2β2. (83)

Define an auxiliary function as follows:

ϕ(τ) = Θ̃μk
(μ2

k + τ(μ1
k − μ2

k),Σk), s.t., τ ∈ [0, 1] (84)

where μ1
k and μ2

k are arbitrary two posterior mean vectors.
Taking the first-order derivative of ϕ(τ) obtains

ϕ̇(τ) = ΔΘ̃(μ2
k + τ(μ1

k − μ2
k),Σk)(μ

1
k − μ2

k). (85)

According to the Lagrange mean value theorem, there is a
variable θ ∈ [0, 1] such that the following is fulfilled:

ϕ(1)− ϕ(0) = ϕ̇(θ)(1− 0). (86)
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Substituting (84)–(85) in (86) yields

Θ̃μk
(μ1

k,Σk)− Θ̃μk
(μ2

k,Σk)

= ΔΘ̃(μ2
k + θ(μ1

k − μ2
k),Σk)(μ

1
k − μ2

k). (87)

Taking the norm on both sides of (87) and using (83), we have∥∥∥Θ̃μk
(μ1

k,Σk)− Θ̃μk
(μ2

k,Σk)
∥∥∥
F
≤ β

∥∥μ1
k − μ2

k

∥∥ (88)

where β is given by

β = 4α1β1 + 4α2β2. (89)

It is seen from (88) and (89) that the modified Hessian
matrix Θ̃μk

(μk,Σk) satisfies the Lipschitz condition. Thus, if

the initial mean vector μ(0)
k is sufficiently close to the optimal

mean vectorμ∗
k, then the fixed-point iterative algorithm has local

convergence.

J. Proof of Theorem 6

First, we prove the convergence of λ
(i)(0)
k . To this end, we

consider the two cases: λ
(1)(0)
k ≥ λ

(0)(0)
k and λ

(1)(0)
k ≤ λ

(0)(0)
k .

Case 1: We first assume λ
(i)(0)
k ≥ λ

(i−1)(0)
k . Then, using the

4th–8th equations in Algorithm 2 yields⎧⎪⎪⎨
⎪⎪⎩

B
(i+1)(0)
k = (Im −HkK̃

(i+1)(0)
k )

(
zk −Hkx̂k|k−1

)
× (zk −Hkx̂k|k−1

)T
(Im −HkK̃

(i+1)(0)
k )T

Im −HkK̃
(i+1)(0)
k = Rk

(
Hkλ

(i)(0)
k Pk|k−1H

T
k +Rk

)−1

.

(90)
Employing (90) and λ

(i)(0)
k ≥ λ

(i−1)(0)
k results in

tr(B
(i)(0)
k R−1

k ) ≥ tr(B
(i+1)(0)
k R−1

k ). (91)

Since f̈z(t) ≥ 0, −ḟz(t) is a monotonically decreasing func-
tion. Utilizing (91) and the 9th equation in Algorithm 2 obtains

λ
(i+1)(0)
k ≤ λ

(i)(0)
k . (92)

According to the mathematical induction method, we have

λ
(0)(0)
k ≤ λ

(1)(0)
k ≤ · · · ≤ λ

(i)(0)
k ≤ · · · ≤ λ

(∞)(0)
k . (93)

Considering that −ḟz(t) is a monotonically decreasing func-
tion and tr(B

(i)(0)
k R−1

k ) ≥ 0, we obtain

λ
(i)(0)
k = −2ḟz

(
tr(B

(i)(0)
k R−1

k )
)
≤ −2ḟz(0). (94)

It is seen from (93) and (94) that {λ(i)(0)
k } is a monotonically

increasing sequence with an upper bound −2ḟz(0). Thus, the
sequence {λ(i)(0)

k } converges when λ
(1)(0)
k ≥ λ

(0)(0)
k and ḟz(0)

has lower bound.
Case 2: Similar to the Case 1, if λ

(1)(0)
k ≤ λ

(0)(0)
k , we have

λ
(0)(0)
k ≥ λ

(1)(0)
k ≥ · · · ≥ λ

(i)(0)
k ≥ · · · ≥ λ

(∞)(0)
k > 0. (95)

It can be seen from (95) that {λ(i)(0)
k } is a monotonically

decreasing sequence with a lower bound 0. Thus, the sequence
{λ(i)(0)

k } also converges when λ
(1)(0)
k ≤ λ

(0)(0)
k . Above all, the

sequence {λ(i)(0)
k } converges if the similarity function fz(·)

satisfies Condition 3 and ḟz(0) has lower bound. Similarly,
we can also prove that the sequence ξ

(0)(j)
k converges if the

similarity function fx(·) satisfies Condition 3 and ḟx(0) has
lower bound.

K. Proof of Proposition 5

Using the Kalman measurement update in (19) and (20) yields⎧⎨
⎩

A∗
k = Pk|k +KkP̄

zz
k|k−1K

T
k

B∗
k = (Im −HkKk)P̄

zz
k|k−1(Im −HkKk)

T+

HkPk|kHT
k .

(96)

Considering that P̄zz
k|k−1 ≈ HkPk|k−1H

T
k +Rk for the case

of Gaussian noises and employing (96) results in⎧⎨
⎩

A∗
k ≈ Pk|k +Kk(HkPk|k−1H

T
k +Rk)K

T
k

B∗
k ≈ Rk −HkPk|k−1H

T
k +HkKk×

(HkPk|k−1H
T
k +Rk)K

T
kH

T
k +HkPk|kHT

k .
(97)

Substituting the Kalman measurement update in (97), we can
obtain (39).

L. Proof of Proposition 6

Using (42) and (43) yields{
η1 = tr(A∗

kP
−1
k|k−1) = tr(Ψk1P

−1
k|k−1) + n ≥ n

η2 = tr(B∗
kR

−1
k ) = tr(Ψk2R

−1
k ) +m ≥ m.

(98)

Substituting (98) in (18) results in

ξ∗k = −2ḟx (η1) , λ∗
k = −2ḟz (η2) . (99)

Employing (44) in (99), we can obtain (45). Moreover, the
larger state and measurement outliers, the larger auxiliary ma-
trices Ψk1 and Ψk2 are generated. Then, the larger η1 and η2
are obtained, based on which the smaller modified auxiliary
parameters ξ∗k and λ∗

k are achieved by using (44).
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