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A novel oxidative stress- and
ferroptosis-related gene
prognostic signature for
distinguishing cold and hot
tumors in colorectal cancer

Xu Wang1†, Yuanmin Xu1†, Longfei Dai1†, Zhen Yu1,
Ming Wang1, Shixin Chan1, Rui Sun1, Qijun Han1, Jiajie Chen2,
Xiaomin Zuo1, Zhenglin Wang1, Xianyu Hu1, Yang Yang1,
Hu Zhao1, Kongwang Hu1*, Huabing Zhang3,4* and Wei Chen1*

1Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei,
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Hefei, Anhui, China, 3Department of Biochemistry and Molecular Biology, Metabolic Disease
Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China, 4The First
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Oxidative stress and ferroptosis exhibit crosstalk in many types of human

diseases, including malignant tumors. We aimed to develop an oxidative

stress- and ferroptosis-related gene (OFRG) prognostic signature to predict

the prognosis and therapeutic response in patients with colorectal cancer

(CRC). Thirty-four insertion genes between oxidative stress-related genes and

ferroptosis-related genes were identified as OFRGs. We then performed

bioinformatics analysis of the expression profiles of 34 OFRGs and clinical

information of patients obtained from multiple datasets. Patients with CRC

were divided into three OFRG clusters, and differentially expressed genes

(DEGs) between clusters were identified. OFRG clusters correlated with

patient survival and immune cell infiltration. Prognosis-related DEGs in three

clusters were used to calculate the risk score, and a prognostic signature was

constructed according to the risk score. In this study, patients in the low-risk

group had better prognosis, higher immune cell infiltration levels, and better

responses to fluorouracil-based chemotherapy and immune checkpoint

blockade therapy than high-risk patients; these results were successfully

validated with multiple independent datasets. Thus, low-risk CRC could be

defined as hot tumors and high-risk CRC could be defined as cold tumors. To

further identify potential biomarkers for CRC, the expression levels of five

signature genes in CRC and adjacent normal tissues were further verified via an

in vitro experiment. In conclusion, we identified 34 OFRGs and constructed an
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OFRG-related prognostic signature, which showed excellent performance in

predicting survival and therapeutic responses for patients with CRC. This could

help to distinguish cold and hot tumors in CRC, and the results might be helpful

for precise treatment protocols in clinical practice.
KEYWORDS

oxidative stress, ferroptosis, colorectal cancer, prognosis, tumor microenvironment,
chemotherapy, immunotherapy
Introduction

Colorectal cancer (CRC) has become the third most

common malignant tumor in males and the second most

common in females worldwide, with nearly 19 million new

cases and 10 million cancer-related deaths observed in 2020

(1). In addition, it accounts for approximately 10% of all cancer

types and is the second most frequent cause of cancer-related

death (2, 3). Therefore, CRC has become a global public health

challenge owing to its increasing incidence, mortality, and

requirement for medical service utilization (4). A certain

proportion of patients are diagnosed with advanced CRC, and

metastases are observed in approximately 20% of diagnosed

CRC cases (5). Clinical outcomes for CRC patients have

improved markedly over the past few decades, which is

credited to advances in surgical approaches, anti-cancer drugs,

and other more effective therapeutic approaches. In addition to

traditional chemotherapy, immunotherapy has been used for

cancer treatment in recent years, and patients with metastatic

CRC with high microsatellite instability or deficient mismatch

repair can significantly benefit from immune checkpoint

blockade therapy (6). However, majority of patients with CRC

cannot benefit considerably from immunotherapy. To solve this

problem, more biomarkers have been identified, such as tumor

burden mutation (TMB), microsatellite instability, and

neoantigen load (NAL); nevertheless, the predictive ability of

these biomarkers is limited because they are associated with

small proportions of the population or moderate predicting

efficiency. In addition, although some tumor markers and the

clinical stage can be used to predict patient prognosis in CRC,

these variables cannot be used to efficiently predict

chemotherapy or immunotherapy benefits. Thus, developing a

novel approach to distinguish cold and hot tumors is vital for the

individualized treatment of patients with CRC.

Oxidative stress is defined as a relative excess of reactive

oxygen species (ROS) when compared with antioxidant levels,

and it has been proven to be associated with various types of

human diseases. Aberrant redox homeostasis can be observed in

cancer cells; although ROS can promote tumor growth, high
02
ROS levels also have toxic effects on malignant tumors (7). The

excessive proliferation of tumor cells is often accompanied by

enhanced ROS production; however, tumor cells can grow under

conditions in which this oxidative load pushes the redox balance

away from a reduced state. Moreover, tumor cells optimize ROS-

driven proliferation by increasing their antioxidant status, while

avoiding ROS thresholds that trigger cellular senescence,

apoptosis, or ferroptosis to achieve this (8, 9). In recent years,

many researchers have focused on increasing ROS levels in

cancer cells to induce ROS-mediated cell death, which is

defined as oxidation therapy (10–12).

Resistance to cell death has been proven to be one of the

basic cancer hallmarks (13). Apoptosis was once considered the

only form of programmed cell death (PCD); however, with a

broader understanding of such processes, more new forms of

PCD have been identified, including ferroptosis (14),

pyroptosis (15), necroptosis (16), and cuproptosis (17).

Ferroptosis is a new type of PCD that is iron-dependent, and

it differs from apoptosis, necroptosis, and autophagy. The

ferroptosis process is often accompanied by the accumulation

of large amounts of iron ions, occurrence of lipid peroxidation,

and increase in ROS. In terms of cell structural changes,

mitochondria appear smaller than those in normal cells, and

the mitochondrial membrane shrinks, while the mitochondrial

cristae decrease or disappear, and the outer membrane breaks;

nonetheless, morphological changes in the nucleus are not

obvious (14, 18, 19). Many recent studies have elaborated on

the role of ferroptosis in cancer (20–22). As such, strategies to

control ferroptosis induction could effectively inhibit tumor

development, even in tumors that show resistance to

chemotherapy (22, 23).

Since crosstalk between oxidative stress and ferroptosis has

been found in many human diseases, exploring the role of

oxidative stress and ferroptosis-related genes (OFRGs) in CRC

might help to develop new treatment strategies. In this study,

OFRGs were identified and their expression levels, genetic

alterations, and prognostic value in CRC were evaluated.

Patients were classified into three OFRG clusters, and

prognosis-related DEGs between OFRG clusters were used to
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construct the prognostic signature, which showed satisfactory

efficiency in predicting patient survival, the tumor immune

microenvironment (TME), chemotherapy effects, and

immunotherapy benefits. These results were successfully

validated based on multiple independent cohorts from

different public datasets. Low-risk patients had a significantly

longer survival time than high-risk patients; they also showed

higher therapeutic sensitivity after receiving fluorouracil-based

chemotherapy or immune checkpoint blockade therapy,

indicating that our signature could help distinguish cold and

hot tumors in CRC, which might provide a reference for precise

mediation in clinical practice.
Material and methods

Collection and processing of
transcriptional and clinical data

Transcriptional and clinical information of patients in

13 independent public datasets was retrieved from The

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov),

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

geo/, ID: GSE39582, GSE17536, GSE17537, GSE29621, GSE38832,

GSE19860, GSE45404, GSE62080, and GSE78820), iMvigor210

(http://research-pub.gene.com/IMvigor210CoreBiologies), and

Tumor Immune Dysfunction and Exclusion (TIDE) website

(https://tide.dfci .harvard.edu/, ID: PRJEB23709 and

PRJEB25780). Among these datasets, six datasets (TCGA-CRC,

GSE39582, GSE17536, GSE17537, GSE29621, and GSE38832)

containing complete follow-up information were used for

constructing our prognostic signature and verifying its efficiency

in predicting the survival of patients with CRC. For drug-related

datasets, three CRC datasets (GSE19860, GSE45404, and

GSE62080) comprising patients treated with fluorouracil-based

chemotherapy (FOLFOX or FOLFIRI) were used in our study.

In addition, four immunotherapy-related datasets (GSE78820,

iMvigor210, PRJEB23709 and PRJEB25780) for melanoma,

urothelial, and metastatic gastric cancers, comprising treatment

with PD-1, PD-L1, or CTLA-4 blockade therapy, were used to

evaluate the performance of our signature in predicting

immunotherapy benefits. Fragments per kilobase million data

from TCGA-CRC cohort were transformed into transcripts per

million using R studio software (version 1.4.1106). All CRC

datasets from the GEO database were downloaded from the

GPL570 platform (Affymetrix Human Genome U133 Plus 2.0

Array). TCGA-CRC data and GSE39582 data were combined and

used as the training group, and batch effects were removed using

the ComBat algorithm. Expression profiles were normalized and

log2 transformed using the sva R package. Patients with missing

overall survival (OS) or clinical information were excluded from

our study.
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Genetic and transcriptional alterations to
OFRGs in CRC

Oxidative stress-related genes (ORGs) were retrieved from

the Genecards database (https://www.genecards.org/), the top

200 genes with the highest relevance score were identified as

ORGs, and a list of ferroptosis-related genes (FRGs) was

downloaded from the FerrDb database (http://www.zhounan.

org/ferrdb/current/). Thirty-four insertion genes between ORGs

and FRGs were identified as OFRGs. Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses

were performed to explore relevant biological functions and

pathways in which these OFRGs are involved. Copy number

variation frequency and locations of OFRGs in chromosomes

were analyzed and presented. The expression levels between

normal and CRC tissues were compared and analyzed using the

Wilcoxon method with the limma package of R software.

Prognostic values of OFRGs in patients with CRC were

evaluated using KM and univariate Cox regression methods.
Consensus clustering to identify
OFRG clusters

Based on 34 OFRGs, a consensus clustering method was

performed to classify patients into distinct OFRG clusters. The

classification with the lowest intergroup and highest intragroup

correlations were identified by increasing the clustering variable

k. Principal component analysis (PCA) was used to distinguish

three OFRG clusters with the stats R package. The OS of patients

in different clusters was analyzed using the KM method and log-

rank test with survival and survminer R packages. Clinical

characteristics and outcomes of patients in OFRG clusters

were compared, and differentially expressed genes (DEGs)

were identified with the criteria fold-change >1.5 and p-value

<0.05. Gene set variation analysis (GSVA) and single-sample

gene set enrichment analysis (ssGSEA) were applied to explore

immune cell infiltration and immune-related pathways.
Construction and validation of the
OFRGs-related prognostic signature

Univariate Cox regression analysis was performed to identify

prognosis-related DEGs (PRDEGs) between OFRG clusters.

Least absolute shrinkage and selection operator (LASSO) and

stepwise Cox regression analyses were applied to screen genes

for constructing the prognostic signature using the survival,

survminer, and glmnet R packages. The risk score was

calculated based on gene expression levels and corresponding

coefficient values. Based on the risk score, patients were divided

into high- and low-risk groups, and the survival status and
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survival times in different risk groups were compared. The

receiver operating characteristic (ROC) method was performed

to evaluate the efficiency of the risk score in predicting patient

survival. Proportion of clinicopathologic factors in high- and

low-risk groups was shown in pie charts using Chi-squared test.

addition, the results were verified using four independent CRC

cohorts from the GEO database. Univariate and multivariate

Cox regression analyses were used to determine independent

prognostic characteristics of patients with CRC in the training

cohort, and a nomogram model was established to predict

patient prognosis more accurately based on the results of Cox

regression analysis. A calibration graph was generated to show

the differences between nomogram-predicted survival rates and

actual observed survival rates of patients with CRC.
Immune cell infiltration differences in
high- and low-risk groups

Immune cell infiltration in CRC tissues was quantified using

the CIBERSORT algorithm, and the Spearman method was

applied to analyze the correlation between risk score and

abundance of infiltrating immune cells. The association

between signature genes and immune cells was also analyzed.

Immune-related scores, including stromal, immune, and

ESTIMATE scores, were compared between high- and low-risk

groups. Then, pathology slide images were downloaded from

TCGA database, and the images were used to show the

differences in immune cell infiltration between high- and low-

risk patients.
Relationship between risk score and IC50
values of therapeutic drugs

The IC50 is the half-maximal inhibitory concentration and

represents the concentration of the drug required to achieve 50%

inhibition in cell lines. Using the pRRophetic R package, IC50

values of different therapeutic drugs in high- and low-risk

groups were compared using the Wilcoxon signed rank test,

including the first line chemotherapeutic drug 5-fluorouracil.
Efficiency of risk score in predicting
patient response to fluorouracil-based
adjuvant chemotherapy
and bevacizumab

All patients with CRC from GSE19860, GSE45404, and

GSE62080 datasets were treated with fluorouracil-based ACT.

Among the three datasets, 12 patients in the GSE19860 dataset

received additional bevacizumab therapy. Patients were divided

into no-response (NR) and response (R) groups according to
Frontiers in Immunology 04
therapeutic responses. The risk scores of high- and low-risk

patients in these three datasets were compared using a Wilcoxon

signed rank test, and the proportions of patients in NR and R

groups were calculated.
Immune checkpoints expression, TIDE
score, and immune cell proportion score
in the high- and low-risk groups

Expression levels of some well-known immune checkpoint

genes were compared between high- and low-risk groups using

the Wilcoxon signed rank test. TIDE scores were retrieved from

the TIDE website, and IPS data were downloaded from The

Cancer Immunome Atlas (TCIA, https://tcia.at/). The TIDE

score was applied to evaluate the probability of tumor immune

escape, with higher TIDE score representing an increased

likelihood of immune escape and less benefit from

immunotherapy. IPS was used to predict the response to

various types of ICI therapy in patients, including PD-1/PD-

L1/PD-L2, CTLA-4, CTLA-4, and PD-1/PD-L1/PD-L2 blockade

therapy. TIDE score and the IPS were also compared between

high- and low-risk groups.
Evaluating the performance of risk score
in predicting immunotherapy benefits

IMvigor210 is a clinical cohort of patients with urothelial

carcinoma who received PD-L1 blockade immunotherapy.

GSE78820 contains transcriptional and clinical information of

patients with melanoma who received PD-1 blockade therapy.

PRJEB23709 includes tumor biopsies from melanoma patients

treated with anti-PD-1 monotherapy or combined anti-PD-1

and anti-CTLA-4 agents. Patients with metastatic gastric cancer

with complete follow-up and transcriptional information from

the PRJEB25780 cohort were also included in our study.

According to responses to immunotherapy, patients were

classified into complete response (CR)/partial response (PR)

and stable disease (SD)/progressive disease (PD) groups. The

risk score between two groups was calculated and compared, and

the proportion of CR/PR and SD/PD patients in each cohort

was determined.
In-vitro verification of signature genes
using quantitative real-time polymerase
chain reaction

Ten pairs of CRC and adjacent normal tissues were collected

from patients after surgical resection at The First Affiliated

Hospital of Anhui Medical University, and the experiments

were approved by the Ethics Committee. The samples were
frontiersin.org
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stored at -80°C until use. All participants provided signed

informed consent. TRIzol reagent (Invitrogen, Carlsbad, CA,

USA) was applied to extract total RNA from the collected

samples, and the PrimeScript RT kit (Vazyme, Nanjing,

China) was used to transcribe extracted RNA into cDNA. The

concentrations of all cDNA samples were measured using TB

Green Premix Ex Taq II (GenStar, China) with the

LightCycler480 System (Applied Biosystems, Waltham, MA,

United States). The relative expression levels of signature

genes were computed through the 2-DDCt strategy, normalizing

to levels of GAPDH. The expression levels between normal and

tumor tissues were compared using paired and unpaired t-tests.

The primer sequences used for qRT-PCR are presented in

Supplementary Table S1.
Results

Genetic and transcriptional alterations of
OFRGs in CRC

The clinical information of patients in all datasets is shown

in Supplementary Table S2. Thirty-four OFRGs were identified

after considering the insertion between ORGs and FRGs

(Figure 1A; Supplementary Table S3). GO and KEGG analyses

were performed to explore OFRG-related biological processes

(BP), cellular components, molecular functions, and pathways

(Figure 1B). The results showed that these OFRGs were mainly

associated with the following BP: ROS metabolic process,
Frontiers in Immunology 05
cellular response to oxidative stress, and response to oxidative

stress, indicating that OFRGs were closely related to oxidative

stress. The copy number variation (CNV) among the OFRGs in

CRC was also analyzed (Figure 1C). NOS2, NFS1, HSF1,

ADIPOQ, MAPK3, and MAPK9 showed the most widespread

CNV increases, whereas PARK7, MTOR, GSTM1, JUN, and

TGFB1 showed CNV decreases. The locations of CNVs in the

OFRGs on human chromosomes are presented in Figure 1D.

The somatic mutation incidence of OFRGs in patients was also

calculated (Supplementary Figure S1). The expression levels of

OFRGs between normal and tumor samples from TCGA

database were compared (Figure 1E). A network among

OFRGs was constructed to show the interactions between the

OFRGs and their prognostic significance (Figure 1F). KM curves

of prognosis-related OFRGs are also shown (Supplementary

Figure S2).
Identification of OFRG clusters using
consensus clustering

Patients with CRC were classified into three OFRG clusters

using a consensus clustering method based on expression levels

of OFRGs (Figure 2A). Separation between OFRG clusters was

shown using PCA (Figure 2B). The KM curve indicated that

OFRG cluster B had more favorable outcomes than OFRG

clusters A and C (Figure 2C). The expression levels of OFRGs

and clinical characteristics in OFRG clusters are shown in the

heatmap (p = 0.022, Figure 2D). The results of ssGSEA revealed
B C

D E F

A

FIGURE 1

Genetic, transcriptional alterations and functional analyses of OFRGs in CRC. (A) Identification of 34 OFRGs. (B) GO and KEGG analyses of
OFRGs. (E) Expression levels of differentially expressed OFRGs between normal and tumor samples. (C) Frequencies of CNV gain, loss, and
non-CNV among OFRGs. (D) Locations of CNV alterations in OFRGs on 23 chromosomes. (F) Interactions among OFRGs in CRC. The lines
among the genes represent their interactions. Blue and red represent positive and negative correlations. *p < 0.05; **p < 0.01; ***p < 0.001.
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that cluster C had the highest immune cell infiltration levels,

whereas the lowest immune cell infiltration levels were observed

in cluster A (Figure 2E, p < 0.05). In addition, related enriched

pathways between each of the two OFRG clusters were

compared using the GSVA method (Figures 2F–H).
Construction and validation of the
OFRGs-related prognostic signature

To identify genes that could be used in the prognostic signature,

DEGs between OFRG clusters were identified. Among these genes,

S100A8, TRIB2, PLA2G2A, RGS2,CCL8,CXCL13,CXCL9, RAMP1,

SFRP4, C10orf99, and OLFM4 were screened as PRDEGs using

univariate Cox regression analysis (Figure 3A, p < 0.05). CXCL9,

CXCL13, CCL8, PLA2G2A, and TRIB2 were identified as signature

genes using LASSO (Figures 3B, C) and the stepwise Cox regression

method, and the coefficient values are shown in Figure 3D and
Frontiers in Immunology 06
Supplementary Table S4. The risk score was calculated according to

expression levels of five signature genes and corresponding

coefficient values using the formula below: risk score =

[expression level of CXCL9 × (-0.145099)] + [expression level of

CXCL13 × (-0.130486)] + [expression level of CCL8 × (0.230145)] +

[expression level of PLA2G2A × (-0.072124)] + [expression level of

TRIB2 × (0.297347)]. Patients with CRC were divided into high-

and low-risk groups based on the risk score, and high-risk patients

had a higher risk of mortality (Figure 3E). The KM curve also

showed that high-risk patients had significantly worse prognosis

than low-risk patients (p < 0.001, Figure 3F). The AUC values of 1-,

3-, and 5-year survival were 0.665, 0.652, and 0.637, respectively

(Figure 3G). Pie charts showed that high-risk patients were more

likely to have CRC with more advanced pathological stage than

low-risk patients (Figure 3H). To further evaluate the efficiency of

the risk score in predicting patient survival, KM and ROC analyses

were performed on four independent CRC cohorts, which were

GSE17536 (Figure 4A, p = 0.034, 1-year AUC = 0.604, 3-year
B C

D E

F G H

A

FIGURE 2

OFRG clusters and clinical characteristics, tumor microenvironment between CRC samples in OFRG clusters. (A) Three OFRG clusters were
defined using consensus clustering analyses. (B) PCA showed the distinction between three OFRG clusters. (C) The KM curve revealed
significant difference in the survival time between the three clusters (p = 0.022); (D) Heatmaps showed the relationship between OFRG clusters
and clinical features and OFRGs expression in patients with CRC. (E) ssGSEA investigated the differences of immune cell infiltration between
OFRG clusters. (F–H) GSVA showed the enriched pathways between each two OFRG clusters. *p < 0.05, ***p < 0.001.
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AUC = 0.665, 5-year AUC = 0.640), GSE17537 (Figure 4B, p <

0.001, 1-year AUC = 0.690, 3-year AUC = 0.781, 5-year AUC =

0.792), GSE29621 (Figure 4C, p < 0.001, 1-year AUC = 0.883, 3-year

AUC = 0.845, 5-year AUC = 0.743), and GSE38832 (Figure 4D, p =

0.040, 1-year AUC = 0.640, 3-year AUC = 0.686, 5-year AUC =

0.676). Factors with a p-value <0.05 in the univariate analysis

(Figure 4E) were included in the multivariate analysis (Figure 4F).

Age (p < 0.001, HR = 1.98, 95% CI [1.51–2.59]), T (p < 0.001, HR =

1.65, 95% CI [1.29–2.11]), M (p < 0.001, HR = 3.33, 95% CI [1.91–

5.83]), and risk score (p = 0.008, HR = 1.22, 95% CI [1.05–1.42])

remained significant after multivariate analysis, and these four

factors were included in the nomogram model (Figure 4G). The

calibration graph showed that the nomogram-predicted survival

rates were close to actual the survival rates (Figure 4H).
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Immune cell infiltration differences in
high- and low-risk groups

The correlation between immune cell infiltration and the risk

score is presented in Figure 5A. Ten types of immune cells were

correlated with the risk score (p < 0.05). The association between

the risk score and five signature genes is shown in Figure 5B.

Stromal, immune, and ESTIMATE scores were also compared

between high- and low-risk groups. Figure 5C shows that the low-

risk group had a lower stromal score (p < 0.01) and higher

immune score (p < 0.001), indicating increased immune cell

infiltration levels in the low-risk group. TCGA pathology slides

confirmed that immune cell infiltration was greater in the tumors

of low-risk patients than in those of high-risk patients (Figure 5D).
B C

D E F

G H

A

FIGURE 3

Construction of the prognostic signature. (A) PRDEGs were identified using univariate Cox regression analysis. (B, C) The LASSO regression
analysis and partial likelihood deviance on the prognostic genes. (D) The coefficient values of the multivariate Cox regression. (E) Risk score and
survival outcome of each case. KM (F) and ROC (G) curves showing the prognostic value in the training cohort. (H) Pie charts showing the Chi-
squared test of clinicopathologic factors in high- and low-risk groups.
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Relationship between risk score and IC50
values of therapeutic drugs

The therapeutic effects of 15 types of drug molecules were

evaluated using IC50 values (Figure 6A). The IC50 of 5-

fluorouracil was significantly higher in the high-risk group

(p < 0.05), indicating that low-risk patients might have better

responses to fluorouracil-based chemotherapy. Low-risk

patients also had higher sensitivities to the other 14 types of

drug molecules (Figures 6B–O, p < 0.05).
Frontiers in Immunology 08
Efficiency of risk score in predicting
patient response to ACT
and bevacizumab

To validate patient responses to drug therapy, three

independent CRC cohorts, including transcriptional data and

the complete information of patients’ responses to drug therapy,

were used. Patients with no response to 5-fluorouracil

chemotherapy had higher risk scores in GSE19860 (Figure 7A,

p < 0.05), GSE45404 (Figure 7B, p > 0.05), and GSE62080
B

C D

E F

G H

A

FIGURE 4

The KM and ROC methods were used to evaluate the efficiency of the risk score at predicting patient survival and construction of the nomogram
model. (A–D) KM and ROC curves showing the prognostic value in multiple cohorts. Forest plots of univariate (E) and multivariate (F) Cox regression
analyses in patients with CRC. (G) Construction of the nomogram model using risk score and other clinical features. (H) Calibration plot showing the
differences between nomogram-predicted survival rates and actual survival rates.
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(Figure 7C, p < 0.05) cohorts, and the proportions of patients in

NR and R groups among these three cohorts are also shown. In

the GSE19860 cohort, 12 patients also received bevacizumab

therapy, and non-responders exhibited higher risk scores than

responders (p > 0.05). Specifically, 67% of patients in the low-

risk group were responders to bevacizumab, whereas only 17%

patients were responders to bevacizumab in the high-risk

group (Figure 7D).
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Immune checkpoints expression, TIDE
score, and IPS in the high- and
low-risk groups

Expression levels of some well-known immune checkpoint

genes in the high- and low-risk groups were further compared,

and the results showed that the low-risk group had higher

immune checkpoint expression, including PD-1 (PDCD1),
B C

D

A

FIGURE 5

Evaluation of tumor microenvironment in high- and low- risk groups. (A) Relationship between risk score and different immune cell types.
(B) Correlation between the abundance of immune cells and five genes in the prognostic signature. (C) Correlation between risk score and
immune-related scores. (D) TCGA Pathology Slides confirmed that immune cell infiltration was greater in the tumor of low-risk patients than in
high-risk patients. *p < 0.05; **p < 0.01; and ***p < 0.001.
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FIGURE 6

(A–O) Therapeutic drugs showed significant IC50 differences in high- and low-risk groups. *p < 0.05; **p < 0.01; and ***p < 0.001.
B

C D

A

FIGURE 7

(A–D) Non-responders to 5-Fluorouracil chemotherapy and bevacizumab had higher risk score in multiple cohorts, the proportion of NR and R
patients in these three cohorts was also shown. ns p > 0.05 and *p < 0.05.
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LAG-3, and CTLA-4 (Figure 8A, p < 0.05), suggesting that low-

risk patients might have better responses to immunotherapy.

The TIDE score is used to predict the probability of immune

escape, and immune dysfunction scores (Figure 8B, p > 0.05)

were not significantly different between the low- and high-risk

groups, whereas the high-risk group had higher immune

exclusion scores (Figure 8C, p < 0.001), indicating a higher

likelihood of immune exclusion and a worse response to

immunotherapy. IPSs between the two groups were also

compared, and low-risk patients who received different types

of immune checkpoint blockade therapy had significantly higher

scores (Figures 8D–G, p < 0.01), also suggesting that low-risk

patients might have better responses to immune checkpoint

blockade therapy.
Evaluating the performance
of the risk score in predicting
immunotherapy benefits

Four independent immunotherapy cohorts were applied to

evaluate the performance of risk scores in predicting

immunotherapy benefits. Responders had lower risk scores in

all four cohorts (p < 0.05), and the low-risk group showed a

higher proportion of responders to anti-PD-1, anti-PD-L1, or

combined anti-PD-1 and anti-CTLA-4 therapy (Figures 9A–D).

The results indicated that our risk score showed satisfactory

performance in predicting immunotherapy benefits.
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In vitro verification of signature genes
by qRT-PCR

We finally performed qRT-PCR to further explore the

expression levels of five signature genes in 10 pairs of human

CRC and adjacent normal tissues collected after surgical

resection from The First Affiliated Hospital of Anhui Medical

University. Among these five genes, CXCL9, CCL8, and

PLA2G2A did not show significant changes in expression

levels between normal and tumor tissues, whereas CXCL13

and TRIB2 exhibited significantly decreased expression in CRC

tissues compared with that in normal tissues (Figures 10A–E),

suggesting that these two genes might be potential therapeutic

targets for CRC.
Discussion

Crosstalk between oxidative stress and ferroptosis have been

identified in many human diseases. NOX4 promotes ferroptosis

in astrocytes through lipid peroxidation induced by oxidative

stress by impairing mitochondrial metabolism in Alzheimer’s

disease (24). Oxidative stress-dependent ferroptosis can be

regulated by GDF15 post-spinal cord injury (25). It was also

reported that the effects of nanomedicine in targeting ferroptosis

and apoptosis can be enhanced by oxidative stress (26). In recent

years, some studies focused on constructing oxidative stress or

ferroptosis-related risk models for predicting patient survival
frontiersin.org
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FIGURE 8

Immune checkpoint genes expression, TIDE score and IPS of patients in two risk groups. (A) The differences of immune checkpoint gene
expression in high-risk and low-risk groups. (B, C) Violin plots showed the relationship between TIDE score and risk groups. (D–G) Violin plots
showed the relationship between IPS and risk groups. *p < 0.05; **p < 0.01; and ***p < 0.001. ns p > 0.05.
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and immune landscapes in various types of malignant tumors

(27–31). However, few risk models were developed based on a

combination of these two phenotypes.

In this study, 34 genes related to oxidative stress and

ferroptosis were identified; among these OFRGs, some have

been proven to be associated with development and

progression of CRC. MAPK14 is significantly related to patient

survival, clinical characteristics, and immune infiltration in CRC
Frontiers in Immunology 12
(32). Further, NQO1 is a biomarker for prognosis and

chemosensitivity in patients with CRC liver metastasis (33).

Moreover, HSPA5 promotes CRC development by inhibiting

ferroptosis through the maintenance of GPX4 stability (34).

Oxaliplatin-based chemosensitivity in CRC can be weaken by

preventing PANoptosis via phosphorylated NFS1 (35).

Expression levels and genetic and transcriptional alterations of

the 34 OFRGs were analyzed in CRC, and most of these OFRGs
B

C D

A

FIGURE 9

(A–D) CR/PR patients had lower risk score in all the four cohorts, and low risk group showed higher proportion of responders to anti-PD-1,
anti-PD-L1, or combined anti-PD-1 and anti-CTLA-4 immunotherapy. *p < 0.05 and ***p < 0.001.
B C DA E

FIGURE 10

Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of CXCL9 (A), CXCL13 (B), CCL8 (C), PLA2G2A (D) and TRIB2 (E)
expression in 10 pairs of CRC tissues and adjacent non-cancer tissues. *p < 0.05 and **p < 0.01. ns p > 0.05.
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were differentially expressed and associated with patient

prognosis. Three OFRG clusters were identified using 34

OFRGs, and patients in the three clusters showed different

clinical outcomes, OFRG expression, and immune cell

infiltration levels. Cluster A had an immune-desert phenotype,

and it had the lowest infiltration levels of immune cells,

including activated B cells, activated CD4+ T cells, eosinophils,

MDSCs, macrophages, and natural killer T cells. Tumor-

infiltrating immune cells can affect the response to

immunotherapy, and expression levels of immune checkpoint

genes can be upregulated by tumor-infiltrating CD4+ T cells

(36). Eosinophils show high catalytic content of Fe (II), and the

accumulation of Fe (II) can promote ROS production and

eventually result in ferroptosis (37). MDSCs can inhibit

functions of NK cells and T cells to promote tumor immune

escape (38).

DEPRGs in the three OFRG clusters were identified and used

to construct the prognostic signature. LASSO and stepwise Cox

analyses were performed, and CXCL9, CXCL13, CCL8,

PLA2G2A, and TRIB2 were finally selected as signature genes

to calculate the risk score. CXCL13 correlates with poor prognosis

and 5-flurourouracil resistance in CRC (39, 40). TRIB2 acts as an

oncogene in CRC by blocking cellular senescence (41). Patients

with CRC were divided into high- and low-risk groups based on

the calculated risk score, and low-risk patients had better

prognosis than high-risk patients. Further, the efficiency for

predicting prognosis was validated based on four independent

CRC cohorts, suggesting that our risk score had convincing

predictive ability. The risk score remained significant after

univariate and multivariate Cox regression analyses, indicating

that it is an independent prognostic factor for patients with CRC.

In addition, a nomogram model was built based on risk scores

and other clinical features; high predictive efficiency was observed

based on the calibration graph. The TME consists of cellular

components, including stromal cells, endothelial cells, and

immune cells, and non-cellular components, including

cytokines, growth factors, matrix proteins, nucleic acids, and

metabolites (42). The TME plays a vital role in tumor occurrence,

progression, and chemotherapy resistance (43). The risk score

correlated with various types of immune cells, and four such

types were positively associated with the risk score, whereas the

other six types of immune cells were negatively related to the risk

score. Immune-related scores can be used to predict the efficacy

of chemotherapy and immunotherapy (44). In this study, the

low-risk group had lower stromal scores and higher immune

scores, indicating higher immune infiltration levels and better

responses to chemotherapy and immunotherapy. To further

verify our findings, we examined drug susceptibility, immune

checkpoint expression, TIDE scores, and IPS scores in high- and

low-risk groups. The low-risk group had lower IC50 values with

respect to 15 types of therapeutic drugs, including 5-fluorouracil,
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suggesting that low-risk patients might be more sensitive to

fluorouracil-based chemotherapy. Thus, three independent

CRC cohorts were used, and the results suggested that low-risk

patients have better responses to fluorouracil-based

chemotherapy. It was also found that non-responders to

bevacizumab had higher risk scores. Immune checkpoints were

expressed at higher levels in the low-risk group, and lower

exclusion scores and higher IPSs were also observed, suggesting

a lower probability of immune escape and better responses to

immune checkpoint blockades. These findings were verified

using four immunotherapy cohorts with melanoma, urothelial,

or metastatic gastric cancer. In addition, qRT-PCR was

performed to explore the expression differences between CRC

and adjacent normal tissues, and the results suggested that

CXCL9 and TRIB2 might be potential diagnostic or therapeutic

targets of CRC.

Clinically, tumor markers, including carcinoembryonic

antigen, carbohydrate antigen 125 (CA125), and carbohydrate

199 (CA199), as well as the AJCC staging system, are widely

used to evaluate tumor progression and prognosis in the peri-

operation of patients with CRC. However, chemotherapy is

recommended after surgery for advanced stage CRC, and tumor

markers and the AJCC stage cannot be used to accurately

predict therapeutic responses. To address this issue, MSI,

TMB, and NAL were identified as new biomarkers. MSI is

caused by different mismatch repair mechanisms, which are

strongly related to the response to PD-1 blockade therapy (45).

Patients with high-MSI CRC benefit significantly less from

neoadjuvant chemotherapy (46). TMB shows predictive value

for non-small-cell lung cancer patients treated with PD-1/PD-

L1 blockade therapy (47, 48). The correlation between the NAL

and immunotherapy response in solid tumors has also been

clarified in previous studies (49–51). However, these

biomarkers do not show perfect predictive ability because

they are associated with a small percentage of the patient

population or moderate efficiency. We constructed a novel

oxidative stress- and ferroptosis-related gene prognostic

signature, which can used to predict patient prognosis, the

immune landscape, and therapeutic responses in CRC; further,

the signature showed satisfactory efficiency in distinguishing

cold and hot tumors.

However, there are certain limitations to this study. First, our

analysis and conclusions were based on public databases and

retrospectively collected tumor samples, which might cause

inherent case selection bias. Although our findings were

validated using multiple cohorts, clinical samples should be

collected from a larger cohort of patients to further verify our

conclusion. Second, our sample size for verification experiments

was limited, and more in-depth in vitro and in vivo experiments

are required to further explore the functions of OFRGs in CRC.

Finally, clinical information related to surgery and tumor
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markers was not considered. Thus, more clinical cases are needed

to confirm our conclusion. In conclusion, we constructed a novel

prognostic signature based on OFRGs, which showed satisfactory

efficiency in predicting patient prognosis, the immune landscape,

and therapeutic effects in CRC.
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