
A novel pathway combining calreticulin
exposure and ATP secretion in immunogenic
cancer cell death

Abhishek D Garg1, Dmitri V Krysko2,3,
Tom Verfaillie1, Agnieszka Kaczmarek2,3,
Gabriela B Ferreira4, Thierry Marysael5,
Noemi Rubio1, Malgorzata Firczuk6,7,
Chantal Mathieu4, Anton JM Roebroek8,
Wim Annaert9, Jakub Golab6,7,
Peter de Witte5, Peter Vandenabeele2,3

and Patrizia Agostinis1,*
1Cell Death Research and Therapy Unit, Department of Cellular and

Molecular Medicine KU Leuven, KU Leuven, Leuven, Belgium,
2Molecular Signaling and Cell Death Unit, Department for Molecular

Biomedical Research, VIB, Ghent, Belgium, 3Department of Biomedical

Molecular Biology, Ghent University, Ghent, Belgium, 4Laboratory for

Experimental Medicine and Endocrinology (LEGENDO), Department of

Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium,
5Laboratory for Pharmaceutical Biology, Department of Pharmaceutical

and Pharmacological Sciences, KU Leuven, Leuven, Belgium,
6Department of Immunology, Centre of Biostructure Research, Medical

University of Warsaw, Warsaw, Poland, 7Department 3, Institute of

Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland,
8Experimental Mouse Genetics, Department of Human Genetics, KU

Leuven, Leuven, Belgium and 9Laboratory for Membrane Trafficking,

Department of Human Genetics, KU Leuven and VIB-Center for the

Biology of Disease, Leuven, Belgium

Surface-exposed calreticulin (ecto-CRT) and secreted ATP

are crucial damage-associated molecular patterns

(DAMPs) for immunogenic apoptosis. Inducers of immu-

nogenic apoptosis rely on an endoplasmic reticulum (ER)-

based (reactive oxygen species (ROS)-regulated) pathway

for ecto-CRT induction, but the ATP secretion pathway is

unknown. We found that after photodynamic therapy

(PDT), which generates ROS-mediated ER stress, dying

cancer cells undergo immunogenic apoptosis character-

ized by phenotypic maturation (CD80high, CD83high,

CD86high, MHC-IIhigh) and functional stimulation (NOhigh,

IL-10absent, IL-1bhigh) of dendritic cells as well as induction

of a protective antitumour immune response. Intriguingly,

early after PDT the cancer cells displayed ecto-CRT and

secreted ATP before exhibiting biochemical signatures

of apoptosis, through overlapping PERK-orchestrated

pathways that require a functional secretory pathway

and phosphoinositide 3-kinase (PI3K)-mediated plasma

membrane/extracellular trafficking. Interestingly, eIF2a

phosphorylation and caspase-8 signalling are dispensable

for this ecto-CRT exposure. We also identified LRP1/CD91

as the surface docking site for ecto-CRT and found that

depletion of PERK, PI3K p110a and LRP1 but not caspase-8

reduced the immunogenicity of the cancer cells. These

results unravel a novel PERK-dependent subroutine for the

early and simultaneous emission of two critical DAMPs

following ROS-mediated ER stress.
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Introduction

Current anticancer regimens mediate killing of tumour cells

mainly by activating apoptosis, an immunosuppressive or

even tolerogenic cell death process. However, it has recently

emerged that a selected class of cytotoxic agents (e.g., anthra-

cyclines) can cause tumour cells to undergo an immunogenic

form of apoptosis and these dying tumour cells can induce an

effective antitumour immune response (Locher et al, 2010).

Immunogenic apoptosis of cancer cells displays the main

biochemical hallmarks of ‘tolerogenic’ apoptosis: phosphati-

dylserine exposure, caspase activation, and mitochondrial

depolarization. However, this type of cell death also seems

to have two other important properties: (1) surface exposure

or secretion of critical ‘immunogenic signals’ that fall in the

category of damage-associated molecular patterns (DAMPs;

Zitvogel et al, 2010a) and (2) the ability to elicit a protective

immune response against tumour cells (Obeid et al, 2007;

Green et al, 2009; Garg et al, 2010b; Zitvogel et al, 2010b).

Several DAMPs have recently been identified as crucial for

immunogenic apoptosis. These include surface calreticulin

(ecto-CRT), surface HSP90 (ecto-HSP90), and secreted ATP

(Spisek et al, 2007; Kepp et al, 2009). Ecto-CRT has been

shown to act primarily as an ‘eat me’ signal (Gardai et al,

2005), presumably essential for priming the innate immune

system, since depletion of CRT by siRNA knockdown averts

the immunogenicity of cancer cell death (Obeid et al, 2007).

Similarly, bortezomib-induced ecto-HSP90 exposure is crucial

for immunogenic death of tumour cells and their subsequent

contact with dendritic cells (DCs; Spisek et al, 2007). On the

other hand, secreted ATP acts either as a ‘find me’ signal or as

an activator of the NLRP3 inflammasome (Elliott et al, 2009;

Ghiringhelli et al, 2009). However, while the signalling

pathways governing surface exposure of CRT have been

delineated to some extent (Panaretakis et al, 2009), insuffi-

cient information exists on the molecular pathway behind

ATP secretion. Finally, immunogenic apoptosis is sometimes

associated with disappearance of certain surface-associated

molecules, for example CD47, which are referred to as ‘do not

eat me’ signals (Chao et al, 2010).
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One common feature of all immunogenic apoptosis-indu-

cing stimuli so far identified is induction of endoplasmic

reticulum (ER) stress (Panaretakis et al, 2009; Garg et al,

2010b; Zitvogel et al, 2010b). Importantly, in the case of ecto-

CRT triggered by anthracyclines, both ER stress and reactive

oxygen species (ROS) production have been found to be

mandatory (Panaretakis et al, 2009). However, anthracyclines

suffer from dose-limiting side effects (Minotti et al, 2004;

Vergely et al, 2007). Moreover, ROS production is neither a

primary effect of anthracyclines nor predominantly ER direc-

ted, which makes the anthracycline-induced ‘ROS-based’ ER

stress less effective and secondary in nature (Minotti et al,

2004; Vergely et al, 2007).

Thus, we envisaged that one way of improving the

immunogenicity of dying cancer cells is by using a therapeu-

tic approach that can generate strong ROS-dependent ER

stress as a primary effect (Garg et al, 2011). We hypothesized

that photodynamic therapy (PDT; Agostinis et al, 2011) might

fit the criterion of primary ER-directed ROS production. PDT

can induce oxidative stress at certain subcellular sites by

activating organelle-associated photosensitizers (Castano

et al, 2006; Buytaert et al, 2007). Once excited by visible

light and in the presence of oxygen, photosensitizers can

generate organelle-localized ROS that can cause lethal

damage to the cells (Agostinis et al, 2002). Additionally,

this ROS-based anticancer therapy can also cause ‘emission’

of DAMPs and activate the host immune system (Korbelik

et al, 2005; Garg et al, 2010a).

To test this hypothesis, we used the ER-associated photo-

sensitizer, hypericin. When it is activated by light, it causes a

ROS-mediated loss-of-function of SERCA2 with consequent

disruption of ER-Ca2þ homeostasis, followed by BAX/BAK-

based mitochondrial apoptosis (Buytaert et al, 2006). This

photo-oxidative ER stress (phox-ER stress) is accompanied by

transcriptional upregulation of components of the unfolded

protein response (UPR) and by changes in the expression of

various genes coding for immunomodulatory proteins

(Buytaert et al, 2008; Garg et al, 2010a).

We report here that phox-ER stress induces immunogenic

apoptosis in treated cancer cells. Early after phox-ER stress

and largely preceding phosphatidylserine externalization,

cancer cells mobilize CRT at the surface and secrete ATP

through an overlapping PERK- and phosphoinositide 3-kinase

(PI3K)-mediated mechanism, which is dissociated from cas-

pase signalling. Intriguingly, we found that LRP1 is required

for the docking of ecto-CRT.

Results

Phox-ER stress causes cancer cells to undergo

immunogenic apoptosis

At the outset, we decided to investigate whether cancer cells

dying in response to phox-ER stress (Hyp-PDT based; unless

otherwise mentioned) can activate human immature DCs

(hu-iDCs). We used phox-ER stress (Supplementary Figure

S1) mediated apoptosis-inducing conditions reported in our

previous studies (Hendrickx et al, 2003; Buytaert et al, 2006)

generating B87% of cell death of the human bladder carci-

noma T24 cells within 24 h (Supplementary Figure S2). T24

cells subjected to Hyp-PDT underwent phagocytic interac-

tions with hu-iDCs (Figure 1A). They were also phagocytosed

by Mf4/4 phagocytes preferentially over untreated T24 cells

(Supplementary Figure S3). Moreover, these Hyp-PDT-treated

dying T24 cells induced phenotypic maturation of hu-iDCs, as

indicated by surface upregulation of MHC class II (HLA-DR)

and co-stimulatory CD80, CD83 and CD86 molecules

(Figure 1B; Supplementary Figure S4A and B). The significant

surface expression of these molecules was similar to that

induced by lipopolysaccharide (LPS), a known pathogen-

associated molecular pattern (PAMP) (Figure 1B;

Supplementary Figure S4A and B). In contrast, freeze-thawed

T24 cells undergoing accidental necrosis (AN) did not

strongly stimulate DC maturation (Figure 1B; Supplemen-

tary Figure S4A and B). These findings rule out the possibility

that AN might be responsible for the increased DC maturation

seen against phox-ER stressed cells.

To get further insight into the functional status of DCs, we

evaluated the pattern of certain cytokines including the

generation of nitric oxide (NO) as a marker for respiratory

burst (Stafford et al, 2002). We compared DCs exposed to

Hyp-PDT-treated T24 cells with those exposed to LPS or T24

cells dying following AN. We found that hu-iDCs exposed to

Hyp-PDT-treated cancer cells displayed a distinguished pat-

tern of functional activation characterized by NOhigh,

IL-10absent (Figure 1C and D). This was clearly different

from that induced by accidental necrotic cells (NOhigh,

IL-10high) or by LPS (NOlow, IL-10low) (Figure 1C and D).

Interestingly, LPS and especially accidental necrotic cells

stimulated the production of IL-10 (Figure 1D), whereas

Hyp-PDT-treated cells failed to stimulate the production of

this immunosuppressive cytokine (Kim et al, 2006; Zitvogel

et al, 2006) by hu-iDCs.

To investigate the ability of cancer cells undergoing

phox-ER stress to activate the adaptive immune system,

we carried out in-vivo experiments in immunocompetent

BALB/c mice. Before initiating the in-vivo experiments, we

optimized the mouse colon carcinoma CT26 cell line for Hyp-

PDT-induced apoptosis (Supplementary Figure S5) and ER

stress (Supplementary Figure S1). As observed previously in

other cells (Hendrickx et al, 2003; Buytaert et al, 2006),

hypericin colocalized strongly with ER Tracker (Supplemen-

tary Figure S5A) and upon light irradiation induced not

only appreciable cell killing (Supplementary Figure S5B)

but also the main hallmarks of apoptosis, including cas-

pase-3 and PARP cleavage (Supplementary Figure S5C).

Furthermore, the CT26 cells exposed to Hyp-PDT were pre-

ferentially phagocytosed over untreated CT26 cells by murine

JAWSII DCs (Supplementary Figure S6). Then, in the in-vivo

study, we immunized BALB/c mice with Hyp-PDT-treated

dying/dead CT26 cells. As positive and negative controls

for immunogenic cell death, respectively, we used CT26

cells treated with the anthracycline, mitoxantrone (MTX)

or tunicamycin (TN, an inhibitor of N-linked glycosylation)

(Obeid et al, 2007). The immunized mice were then rechal-

lenged with live CT26 tumour cells. Protection against

tumour growth at the rechallenge site was interpreted as a

sign of successful priming of the adaptive immune system

(Figure 1E). Mice immunized with CT26 cells treated

with MTX or Hyp-PDT showed robust signs of activation of

the adaptive immune system: both procedures strongly

prevented the tumour growth seen in the non-immunized

mice. By contrast, most of the mice immunized with tunica-

mycin-treated CT26 cells experienced tumour growth

after rechallenge (Figure 1E), which confirms the poor
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immunogenic properties of cancer cell death induced by

this ER stress agent (Obeid et al, 2007). These data suggest

that apoptotic cancer cells dying from phox-ER stress

induced by Hyp-PDT activate the immune system, which

is one of the important properties of immunogenic

apoptosis.
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Figure 1 Tumour cells dying under phox-ER stress conditions induce DC maturation and activate the adaptive immune system. (A) In-vitro
phagocytosis of T24 cells treated with Hyp-PDT (red) by human immature dendritic cells (hu-iDCs) (green). The confocal fluorescence images
show various phagocytic interactions between dying T24 cells and hu-iDCs, such as tethering (a), initiation of engulfment by extending the
pseudopodia (b), and final stages of engulfment (c); scale bar¼ 20mm. (B) Human DC maturation analysis. T24 cells were left untreated
(CNTR), freeze/thawed (accidental necrosis¼AN), or treated with a high PDT dose. They were then co-incubated with hu-iDCs. As a positive
control, hu-iDCs were stimulated with LPS for 24 h. After co-incubation, the cells were immunostained in two separate groups for CD80/CD83
positivity and CD86/HLA-DR positivity and scored by FACS analysis. Data have been normalized to the ‘CNTR T24 þ hu-iDCs’ values. Fold
change values are means of two independent experiments (two replicate determinations in each)±s.e.m. (*Po0.05, versus ‘CNTR T24þhu-
iDCs’). (C, D) Cytokine and respiratory burst patterns exhibited by human DCs. The T24-hu-iDC co-incubation conditioned media obtained
during the experiments detailed in (B) were recuperated followed by analysis for concentrations of nitrite (solubilized form of nitric oxide or
NO) (C), and IL-10 (D). Absolute concentrations are the means of two independent experiments (four replicate determinations in each)±s.d.
(*Po0.05 versus hu-iDC only). (E) Priming of adaptive immune system by dead/dying CT26 cells. Following immunization with PBS (CNTR)
or with CT26 cells treated with tunicamycin (TUN), mitoxantrone (MTX) and the highest PDT dose, the mice were rechallenged with live CT26
tumour cells. Subsequently, the percentage of mice with tumour-free rechallenge site was determined (n represents the number of mice).
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Cancer cells exposed to phox-ER stress surface expose

or secrete/release immunogenic DAMPs

We next analysed the surface exposure/release of CRT,

secreted ATP and extracellular heat-shock proteins (i.e.,

HSP90 and HSP70) following phox-ER stress using three

different Hyp-PDT doses—low, medium, and high PDT.

Moreover, because of the reported effects of anthracyclines,

MTX, and doxorubicin (DOXO) on immunogenic cell death

(Obeid et al, 2007), we used them throughout the study for

comparison.

Ecto-CRT surface exposure, detected by immunofluores-

cence staining of T24 cells treated with Hyp-PDT or MTX,

showed the characteristic surface ‘patches’ reported pre-

viously (Gardai et al, 2005; Obeid et al, 2007; Figure 2A).

Cell surface biotinylation followed by immunoblot analysis of

the isolated plasma membrane proteins derived from T24

cancer cells treated with Hyp-PDT revealed that phox-ER

stress (Supplementary Figure S1) induced enhanced surface

exposure of CRT (Figure 2B). This ecto-CRT preceded

apoptosis-associated phosphatidylserine exposure (Supple-

mentary Figure S2) under plasma membrane non-permeabi-

lizing conditions (Figure 2C). On-cell western assay

(Gonzalez-Gronow et al, 2007) confirmed these results

(Supplementary Figure S7). In general, Hyp-PDT was

observed to be superior to DOXO and MTX (Figure 2D and

E), in terms of mobilizing CRT to the surface of cancer cells.

Moreover, ecto-CRT was detectable as early as 30min after

Hyp-PDT and increased with time (Figure 2E). The 30-min

threshold is much earlier than reported for anthracyclines

(Obeid et al, 2007). This induction of ecto-CRT by Hyp-PDT

was diminished in the presence of the 1O2 quencher

L-histidine, thus revealing its ROS dependence (Buytaert

et al, 2006; Supplementary Figure S8A). In contrast to

anthracycline-induced ecto-CRT exposure (Panaretakis et al,

2008), ecto-CRT exposure following Hyp-PDT was not

accompanied by co-translocation of ERp57 to the surface

(Figure 2B).

Likewise ecto-HSP90, certain ER proteins, such as calnexin

(CNX), PERK and BiP were also undetectable on the surface

of the cells under the same conditions that efficiently mobi-

lized ecto-CRT (Supplementary Figure S8B). In addition,

several other ER proteins have been reported to undergo

translocation to the plasma membrane (Zai et al, 1999;

Korbelik et al, 2005; Zhang et al, 2010). Therefore, we used

cell surface biotinylation combined with immunoblotting to

screen for surface-translocated proteins containing the KDEL

‘ER retrieval’ signal sequence, in wild-type (WT) and CRT�/�

MEFs. Ecto-CRT (B63 kDa) was the only protein with the

KDEL sequence recognizable on the surface of Hyp-PDT-

treated cells (Figure 2F). No KDEL-containing proteins were

found in the plasma membrane fraction of cells lacking CRT

(Figure 2F). On the other hand, KDEL sequences of ER

resident proteins, such as GRP94, GRP78, ERp72 (ER resident

protein 72), and PDI, were identifiable by their molecular

weights in the intracellular protein fractions of WT and

CRT�/� cells (Figure 2F). Overall, these results indicate that

phox-ER stress does not lead to a general surface scrambling

of ER proteins (luminal or membrane associated) but rather

to a selective and rapid surface exposure of CRT in pre-

apoptotic conditions.

We next asked whether photo-oxidative stress mediated by

other photosensitizers known to localize to other subcellular

sites in addition to the ER were equally capable of surface-

exposing CRT. To this end, we used photofrin (PF-PDT), a

photosensitizer used in the clinic and known to induce

phox-ER stress (Szokalska et al, 2009). Interestingly, while

phox-ER stress mediated by Hyp-PDT strongly induced ecto-

CRT, it was not so for PF-PDT (Supplementary Figure S8C)

under similar apoptosis-inducing conditions as reported pre-

viously (Szokalska et al, 2009). This difference between Hyp-

PDT and PF-PDT in ecto-CRT induction might be due to the

more pronounced ER localization of hypericin when com-

pared with photofrin (Buytaert et al, 2007; Szokalska et al,

2009; Luo et al, 2010). These data further underline

the importance of a robust ER-directed oxidative stress in

inducing ecto-CRT.

Next, we addressed the possibility that apart from induc-

tion of ecto-CRT, Hyp-PDT-treated T24 cancer cells can

secrete ATP into the extracellular environment. Analysis of

the conditioned media showed that T24 cancer cells treated

with Hyp-PDT secreted ATP (Figure 3A) under non-permea-

bilizing plasma membrane conditions (Figure 2C). Secretion

of ATP preceded apoptosis-associated phosphatidylserine

exposure (Supplementary Figure S2) and downregulation of

the ‘do not eat me’ signal CD47 (Supplementary Figure S8D).

Interestingly, at least at medium Hyp-PDT dose, the corre-

sponding intracellular ATP content rose considerably in the

pre-apoptotic stages (Figure 3B).

It has been shown that extracellular ATP can activate

NLRP3-dependent IL-1b production by DCs (Ghiringhelli

et al, 2009). Hence, we quantified IL-1b secretion in the

co-incubation conditioned media used in the DC maturation

analysis experiments. We found that the hu-iDCs released

significant amounts of IL-1b when exposed to accidental

necrotic T24 cells or those treated with Hyp-PDT, and

in greater amounts than that released against untreated

T24 cells or after LPS treatment (Figure 3C). This further

substantiates the possibility of inducing immunogenic cancer

cell death by phox-ER stress. Moreover, we also detected

passive extracellular release of CRT, HSP90, and HSP70

(Figure 3D) in the conditioned media of late apoptotic

cancer cells.

These data together indicate that phox-ER stress

induced by Hyp-PDT in cancer cells causes an early induction

of ecto-CRT and active secretion of ATP in stressed

cells, followed by late apoptotic passive release of HSPs

such as HSP70 and HSP90. Thus, from the data presented

in this and the previous section, we conclude that

phox-ER stress can induce immunogenic apoptosis in cancer

cells.

Ecto-CRT induction and ATP secretion follow

overlapping trails consisting of a secretory pathway

and PI3K-dependent plasma membrane/extracellular

trafficking

DAMPs observed in the current study reached the extracel-

lular space actively, thereby implying a possible role for

active transport mechanisms like the secretory pathway in

their emission. For investigating this plausibility, we used

several well-established small molecule inhibitors that affect

the (early biosynthetic and/or distal) secretory pathway.

Inhibition of microtubule-dependent retrograde transport

with nocodazole did not affect ecto-CRT induction

(Supplementary Figure S9A). However, inhibition of ER-to-

CRT, ATP, and immunogenic cancer cell death
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Golgi transport (i.e., early biosynthetic pathway) with bre-

feldin A (BFA) reduced ecto-CRT induction in cancer cells

treated with anthracyclines or Hyp-PDT (Figure 4A and B).

Furthermore, the translocation of CRT was found to be actin

dependent because latrunculin B, an actin inhibitor, reduced

ecto-CRT induction in treated cancer cells (Supplementary

Figure S9B). Intriguingly, BFA also reduced the ability of

cancer cells to secrete ATP after Hyp-PDT treatment

(Figure 4C). The intracellular levels of ATP were not affected

significantly by the presence of BFA (data not shown). This

observation also points to ER and Golgi as possible sources

for the ATP actively secreted after Hyp-PDT. Thus, these data
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suggest that both CRT and ATP follow ER-to-Golgi transport

pathway to reach the plasma membrane or be secreted.

In the distal secretory pathway, PI3Ks have been reported

to modulate the plasma membrane trafficking and mediate

exocytotic/secretory processes which are wortmannin sensi-

tive (Campos-Toimil et al, 2002; Safaei et al, 2005; Abe et al,

2009; Low et al, 2010). Inhibition of secretion/plasma mem-

brane trafficking by wortmannin (Wilson and Guild, 2001;

Cousin et al, 2003; Laurino et al, 2005) reduced ecto-CRT in

cancer cells treated with anthracyclines or Hyp-PDT (Figure

4D and E). In fact, Hyp-PDT-induced secretion of ATP was

also found to be sensitive to wortmannin-based inhibition

(Figure 4F), whereas wortmannin did not affect the intracel-

lular ATP levels (data not shown). Since, wortmannin tends

to exhibit a high affinity for the p110a domain of the PI3K

protein (Campos-Toimil et al, 2002; Yuan and Cantley, 2008)

we used a small hairpin RNA (shRNA) to stably deplete the

PI3K p110a protein in CT26 cancer cells (Supplementary

Figure S9C) in order to confirm the specific involvement of

PI3Ks in plasma membrane/extracellular trafficking of CRT

and ATP. Knockdown of PI3K p110a significantly attenuated

ecto-CRT induction, after both anthracyclines and Hyp-PDT

treatment (Figure 4G), as well as ATP secretion after Hyp-PDT

treatment (Figure 4H) in cancer cells.

Thus, we conclude that in response to phox-ER stress, CRT

and ATP reach the extracellular space by following over-

lapping molecular pathways consisting of the classical secre-

tory pathway and PI3K-dependent (wortmannin inhibitable)

plasma membrane/extracellular trafficking.

Cells subjected to phox-ER stress display ecto-CRT and

secrete ATP through a common molecular pathway

requiring PERK

ER stress-associated molecular mechanisms behind pre-apop-

totic ecto-CRT induction, which we will refer to as the

‘canonical CRT pathway’, were recently scrutinized for an-

thracycline-based immunogenic cell death. The pathways

involved were mainly governed by PERK-mediated S51

eIF2a phosphorylation, ER-proximal caspase-8 activation,

BAX/BAK and ER-Ca2þ depletion (Panaretakis et al, 2009).

Therefore, we evaluated the relevance of these molecular

components in the induction of ecto-CRT by phox-ER stress

and used anthracyclines (MTX or DOXO) as a reference for

‘canonical CRT pathway’ inducers.

Hyp-PDT was capable of inducing early eIF2a phosphor-

ylation and late CHOP induction, which indicates that func-

tional activation of the UPR (Supplementary Figure S1) was

taking place (Buytaert et al, 2008). Cells lacking PERK were

incapable of exposing ecto-CRT after Hyp-PDT or anthracy-

clines treatment (Figure 5A). Moreover, shRNA-based stable

knockdown of PERK in CT26 cancer cells (Supplementary

Figure S10A) also reduced ecto-CRT (Figure 5B). These

results highlight the crucial role of PERK in mediating

ecto-CRT induction. In agreement with previous work

(Panaretakis et al, 2009), cells in which the WT eIF2a was

replaced heterozygously with a non-phosphorylable S51A

mutant failed to induce ecto-CRT in response to anthracy-

clines treatment, but Hyp-PDT-induced ecto-CRT was not

affected (Figure 5C). Moreover, we observed that cells lacking

PERK (Figure 5D) as well as cancer cells with depleted PERK

(Figure 5E) failed to secrete ATP following Hyp-PDT treat-

ment (whereas in both cases, the intracellular ATP content

was not affected (data not shown)). Interestingly, it has been

recently reported that PERK might play a crucial role in

proper secretory pathway functioning (Gupta et al, 2010;

Teske et al, 2011). Since, following phox-ER stress, both

ecto-CRT (Figure 4B) and secreted ATP (Figure 4C) were

reduced by defects in the secretory pathway we wondered

whether ablation of PERK affected the cell’s ability to main-

tain a proper secretory protein load. Interestingly, we

observed that following Hyp-PDT, while PERK competent

cells were able to efficiently modulate their total extracellular

secretory protein content (Supplementary Figure S10B and C)

cells lacking PERK (Supplementary Figure S10B) or cancer

cells with depleted PERK (Supplementary Figure S10C)

exhibited difficulties in maintaining corresponding levels of

total extracellular secretory protein content. Thus, under

phox-ER stress, PERK might help in proper maintenance of

extracellular secretory protein load.

Next, to address the involvement of ER-proximal caspases

in CRT surface translocation, we used zVAD-fmk, a pan-

caspase inhibitor. We found that zVAD-fmk strongly sup-

pressed anthracycline-induced ecto-CRT in cancer cells

(Figure 6A), but it did not affect ecto-CRT induction following

Hyp-PDT (Figure 6A). Similar effects were also observed in

HeLa cells (Figure 6B). These observations suggest that ecto-

CRT induced by phox-ER stress is caspase independent. In

line with these findings, ecto-CRT induction by Hyp-PDTwas

not diminished in cells overexpressing the cytokine response

Figure 2 Phox-ER-stressed cancer cells expose calreticulin on the surface (ecto-CRT). (A) Immunofluorescence analysis of ecto-CRT. T24 cells
were treated with MTX (1mM for 4 h) and a high PDT dose (recovered 1 h post PDT) or left untreated (CNTR). Alternatively, some cells were
saponin permeabilized. This was followed by staining with Sytox Green (exclusion dye), fixation, and immunostaining for CRT and
counterstaining with DAPI; scale bar¼ 20 mm. (B) Surface biotinylation analysis of ecto-CRT following phox-ER stress. T24 cells were treated
with indicated doses of PDT. They were recovered at the indicated intervals after PDT treatment. Surface proteins were biotinylated followed by
immunoblotting. In (B), (D), and (F), ‘þBIO’ indicates controls exposed to buffer with biotin and ‘�BIO’ indicates controls exposed to buffer
without biotin (negative control). (C) Plasma membrane permeabilization kinetics following phox-ER stress. T24 cells were treated with PDT
and the resulting conditioned media derived at the indicated times post-PDTwere analysed for the presence of cytosolic LDH. Total LDH content
was determined following Triton-based permeabilization of cells. Data are presented as percent LDH release; values are means of five replicate
determinations±s.d. (*Po0.05, versus CNTR). (D) Phox-ER stress induces more ecto-CRT than anthracyclines. T24 cells were treated with
PDT, DOXO (25 mM for 4 h), and MTX (1mM for 4 h). They were recovered at the indicated intervals after PDT treatment. Surface proteins were
biotinylated as described for (B). (E) Integrated band densitometric analysis of ecto-CRT. T24 cells were treated with DOXO (25mM for 4 h),
MTX (1 mM for 4 h), and PDT (dose and recovery time points are indicated); and surface proteins were resolved as detailed in (B). Following
this, the ecto-CRT protein bands were quantified for the integrated band density via Image J software. Data have been normalized to the CNTR
values. Fold change values are means of three independent determinations±s.e.m. (*Po0.05, versus CNTR). (F) Surface biotinylation analysis
for KDEL sequence detection following phox-ER stress. CRT WT and KO MEFs were treated with a low PDT dose and surface biotinylated as
mentioned in (B). Immunoblotting was done to detect the C-terminal KDEL sequence of various ER proteins (expected molecular weights are
indicated).
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modifier A (CrmA) protein, an inhibitor of caspase-1 and

caspase-8 (Rodriguez et al, 2003); whereas ecto-CRT induc-

tion by anthracyclines was suppressed (Figure 6B). Moreover,

shRNA-based stable depletion of caspase-8 in CT26 cancer

cells (Supplementary Figure S11A) abolished anthracycline-

induced ecto-CRT without affecting Hyp-PDT-induced ecto-

CRT (Figure 6C). Thus, while caspase-8 is involved in the

canonical CRT pathway as reported previously (Panaretakis

et al, 2009), it is dispensable for induction of ecto-CRT by

phox-ER stress.

On the other hand, while cells lacking BAX/BAK showed a

compromised ability to surface expose CRT in response to

both anthracyclines and Hyp-PDT (Figure 6D); yet, they did

not show any defect in secretion of ATP following Hyp-PDT

(Figure 6E). The intracellular levels of ATP were not affected

by the absence of BAX/BAK (data not shown). For cells
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lacking BAX/BAK, it has been suggested that their reduced

steady-state levels of ER-Ca2þ (Scorrano et al, 2003) might

play an important role in ecto-CRT induction (Tufi et al, 2008;

Panaretakis et al, 2009). Hyp-PDT has been observed to

induce rapid ER-Ca2þ depletion, which causes a rise in

[Ca2þ ]Cyt (Buytaert et al, 2006); however, chelation of cyto-

solic Ca2þ with BAPTA-AM did not affect the surface mobi-

lization of CRT induced by Hyp-PDT (Supplementary Figure

S11B). Moreover, overexpressing SERCA2 in cells lacking

BAX/BAK (DKO/SERCAm cells) could not restore their ability

to induce ecto-CRT (Supplementary Figure S11C). Here,

SERCA2 overexpression is supposed to correct the low resting

[Ca2þ ]ER in cells lacking BAX/BAK (Scorrano et al, 2003).

Thus, we can assume that [Ca2þ ]Cyt does not govern

ecto-CRT induction after exposure to phox-ER stress, and

that SERCA2 overexpression in cells lacking BAX/BAK does

not restore ecto-CRT.

Based on these observations, we conclude that induction

of ecto-CRT by phox-ER stress follows a molecular pathway

orchestrated chiefly by PERK and BAX/BAK, and that this

pathway does not require caspases, eIF2a phosphorylation or

increased [Ca2þ ]Cyt. On the other hand, following phox-ER

stress, ATP is secreted independently of BAX/BAK in a PERK-

dependent manner.

Ecto-CRT docks on the surface of ER-stressed cells

predominantly via LRP1

The identity of the biological entity/surface receptor that

docks ecto-CRT is unknown (Zitvogel et al, 2010b). Ecto-

CRTcolocalizes at least partly with plasma membrane regions

rich in GM-1 gangliosides (Gardai et al, 2005); hence, we

hypothesized that ecto-CRT might bind to the lipid rafts.

Since cholesterol is crucial for the stability of lipid rafts we

used a cholesterol-depleting agent, methyl-b-cyclodextrin

(MBC), to study the surface translocation of CRT in treated

cells (Nyasae et al, 2003; Lancaster and Febbraio, 2005).

MBC-based destabilization of lipid rafts resulted in decreased

MTX-induced ecto-CRT. In contrast, Hyp-PDT-induced ecto-

CRT was increased to a certain extent (Figure 7A). These

results indicate that correct organization of lipid rafts is not

necessary for phox-ER stress-induced ecto-CRT.

To identify the surface receptor for ecto-CRT, we performed

an in-silico search for candidate molecules. We assumed that

a candidate receptor would have two properties: (i) it is a

common surface protein in at least human and mouse and (ii)

it has a higher affinity for ecto-CRT than for other major

KDEL-containing ER proteins. The in-silico approach con-

sisted of functional predictions (protein–protein binding)

derived from protein network analysis carried out by using

the STRING (Search Tool for the Retrieval of Interacting

Genes/Proteins) database and web-tool available at http://

string-db.org/ (Jensen et al, 2009). Analysis of the overall

binding interaction networks for both human (Supplemen-

tary Figure S12A) and murine CRT (Supplementary Figure

S12B) identified low-density lipoprotein receptor-related

protein 1 (LRP1 or CD91) as a potential candidate receptor.

Consequently, to look for a competitive protein–protein inter-

action network for LRP1 and KDEL-containing proteins, we

assembled the human (Supplementary Figure S12C) and the

murine LRP1 (Supplementary Figure S12D) into separate

networks with the respective major KDEL-containing ER

proteins, including PDI, ERp72, CRT, ERp57, Bip/GRP78,

HSP47, GRP94, P4HB, RCN1, and RCN2. This analysis

revealed that CRT is one of the KDEL-containing proteins

with which LRP1 consistently interacts in both human and

mouse, in silico.

To translate these in-silico results into in-vitro setting, we

used cells that are LRP1 competent (LRP1þ /þ MEF) or either

partially (LRP1þ /� MEF) or completely LRP1 deficient

(LRP1�/� MEF) (Willnow and Herz, 1994; Roebroek et al,

2006). We treated these cells with Hyp-PDT or MTX and

analysed the levels of ecto-CRT as well as ‘secreted’ or exo-

CRT. These studies revealed that cells lacking LRP1 display low

levels of ecto-CRT following MTX or Hyp-PDT treatment

(Figure 7B). Correspondingly, the amounts of secreted CRT

(or exo-CRT) increased in these treated cells lacking LRP1

(Figure 7C) in the absence of plasma membrane permeabiliza-

tion (data not shown). Interestingly, we observed that while

untreated and MTX-treated cells maintained a steady-state level

of secreted CRT in WT conditions, yet Hyp-PDT-treated cells

reduced the detectable levels of secreted CRT (Figure 7C). It is

worth mentioning here that the presence of secreted CRT in

untreated conditions is well documented (Patel et al, 1999).

Moreover, the presence or absence of secreted CRT tends to

vary from one ER stressor to another (Peters and Raghavan,

2011). Specifically in case of Hyp-PDT, not just the overall

secreted CRT content but also the total extracellular secretory

protein content was reduced considerably (data not shown),

thereby pointing towards a (as yet unexplained) general de-

crease in ‘secreted proteins’ after low-dose Hyp-PDT.

Kinetically, a decrease in LRP1 levels reduced overall ecto-

CRT, while increasing its active secretion (exo-CRT) after

MTX (Figure 7E) or Hyp-PDT treatment (Figure 7F).

Likewise, shRNA-based knockdown of LRP1 in CT26 cancer

cells (Supplementary Figure S13A) suppressed the surface

exposure of CRT (Figure 7G). Moreover, decrease in ecto-CRT

was also observed in LRP1-deficient CHO cells (Supplemen-

tary Figure S13B and C), while LRP1 reconstitution

(Supplementary Figure S13B) restored ecto-CRT (Supplemen-

tary Figure S13C). Coincidently, this reconstitution was ac-

companied by slight LRP1 overexpression (Supplementary

Figure S13B), which interestingly correlated with overall

increase in ecto-CRT as compared with the WT LRP1 CHO

cells (Supplementary Figure S13C). Thus, we can conclude

that LRP1-rich areas are predominant surface docking sites

for ecto-CRT, at least after phox-ER stress.

Depletion of PERK, PI3K p110a, and LRP1 but not

caspase-8 reduces immunogenicity of phox-ER stressed

dead/dying cancer cells

The in-vitro data discussed above indicate that for phox-ER

stress-induced ecto-CRT, caspase-8 is dispensable but PERK,

PI3K p110a, and LRP1 are crucial at various levels

(Figure 8A). In fact, PERK and PI3K p110a were also found

to be required for active ATP secretion (Figure 8A). In light of

these in-vitro observations, we hypothesized that PERK, PI3K

p110a, and LRP1 but not caspase-8 might be crucial for the

immunogenicity of phox-ER stressed cancer cells. To verify

this hypothesis in vivo, we decided to take advantage of the

CT26 mice immunization model (Figure 1E; Supplementary

Figure S5). Mice immunized with Hyp-PDT-treated CO-

shRNA CT26 cells were highly efficient in resisting tumour

growth at the rechallenge sites injected with live, untreated

CT26 cells as opposed to non-immunized CNTR mice
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(Figure 8B). This is a sign of high immunogenicity leading to

the activation of the adaptive immune system as observed for

the WT CT26 cells (Figure 1G). In line with the in-vitro

observations, when immunization was carried out with

Hyp-PDT-treated CT26 cells stably expressing the caspase-8

shRNA, the immunogenicity of these treated cells was not

compromised (Figure 8B). In contrast, mice immunized with

Hyp-PDT-treated CT26 cells stably expressing shRNA against

either PERK, PI3K p110a, or LRP1 showed attenuated resis-

tance to tumour growth at the rechallenge site, thereby

pointing towards reduced immunogenicity of these dead/

dying CT26 cells (Figure 8B). Depletion of PERK and PI3K
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p110a impaired immunogenicity of phox-ER stressed dying/

dead CT26 cells to a relatively larger extent than LRP1

depletion. Overall, based on these results we can conclude

that PERK, PI3K p110a and to some extent LRP1 are crucial

while caspase-8 is dispensable for mediating phox-ER stress-

induced immunogenicity of dying/dead cancer cells.

Discussion

In the current study, we observed that cell death induced by

phox-ER stress endows tumour cells with the major proper-

ties of immunogenic apoptosis, including: induction of

ecto-CRT, active secretion of ATP, phenotypic maturation

(CD80high, CD83high, CD86high, MHC-IIhigh), and functional

stimulation (NOhigh, IL-10absent, IL-1bhigh) of DCs as well as

activation of the adaptive immune system, in vivo.

Surface-exposed CRT was induced by phox-ER stress

before biochemical signs of apoptosis became apparent and

in that it resembled ecto-CRT induction described for anthra-

cyclines (Panaretakis et al, 2009). The anthracycline-induced

ecto-CRT translocation pathway has been shown to depend

on PERK-mediated eIF2a phosphorylation (eIF2a-P), fol-

lowed by caspase-8-mediated BAP31-dependent activation

of BAX/BAK proteins (Panaretakis et al, 2009). However,

we observed that the pathway governing ecto-CRT induction

by phox-ER stress differed markedly from the ‘canonical CRT

pathway’, as only PERK and BAX/BAK were required for it

(Supplementary Figure S14). The apparent dispensability of

eIF2a-P and caspase-8, or of caspase signalling in general,

indicates that ecto-CRT induction by phox-ER stress is orche-

strated by a different pathway. In fact, these observations

downplay the role of UPR signalling as well as ER-proximal

partial caspase activation during phox-ER stress. We further

explored the mechanism of ecto-CRTexposure and found that

for anthracyclines and phox-ER stress, the classical secretory

pathway and PI3 kinase-dependent plasma membrane traf-

ficking was involved in ecto-CRT translocation (Supplemen-

tary Figure S14). Interestingly, SNARE-based exocytosis has

also been implicated in the canonical CRT pathway thereby

substantiating the role of plasma membrane trafficking in this

process (Panaretakis et al, 2009). Additionally, we found that

the KDEL sequence of ecto-CRT is not proteolytically

removed (Krysko and Vandenabeele, 2008) but is carried

with it onto the surface, and that ERp57 is not found

‘complexed’ with ecto-CRT as has been reported for the

anthracycline-mediated translocation pathway (Obeid et al,

2007; Panaretakis et al, 2009). Intriguingly, this study also

sheds new light on the elusive mechanism of surface tether-

ing of CRT (Supplementary Figure S14). We show that LRP1-

deficient/depleted cells have impaired ability to properly

dock CRTon their surface and that this defect is independent

from the stress-specific translocation pathway.

Furthermore, we characterized the molecular mechanisms

underlying the secretion of another crucial DAMP, secreted

ATP, for which no clear-cut pre-apoptotic mechanism has

been proposed yet (Aymeric et al, 2010). Previously, secreted

ATP has been mostly associated with mechanical/osmotic

strain (Nandigama et al, 2006), cells in early apoptotic stages,

during which caspases are active (Elliott et al, 2009; Chekeni

et al, 2010) or in mid apoptotic stages, coincident with

nuclear fragmentation (Ghiringhelli et al, 2009; Martins

et al, 2009).

We report for the first time that ATP is secreted by stressed

cells at a stage that can be considered clearly pre-apoptotic. We

also observed that the concentration of this secreted ATP after

phox-ER stress differed from one cell type to another.

Importantly, we also show that induction of ATP secretion by

phox-ER stress is dependent on PERK but independent of BAX/

BAK (Supplementary Figure S14). Furthermore, this process

of ATP secretion also involves the secretory pathway and

PI3 kinase-dependent extracellular trafficking (Supplementary

Figure S14), which makes this pathway different from the ATP

secretion pathway instigated during the early apoptotic stage

(Chekeni et al, 2010). This also points to ER/Golgi as the

possible sources of secreted ATP. Interestingly, we observed

that following phox-ER stress, intracellular ATP levels are

increased in the pre-apoptotic stage, as reported for certain

other apoptotic stimuli (Zamaraeva et al, 2005). We suspect

that this could be due to the increased ER-mitochondrial

coupling following ER stress favouring the enhanced uptake

of Ca2þ by the mitochondria (Bravo et al, 2011), a phenomen-

on that we also observe following phox-ER stress (Verfaillie

et al, unpublished data). Thus, after phox-ER stress, both

DAMPs (ecto-CRT and secreted ATP) follow overlapping path-

ways to reach the extracellular space (Supplementary Figure

S14). These overlapping paths are probably part of a specific

danger-signalling system that acts well before signs of apopto-

sis become manifested. Moreover, it should also be noted that

Figure 4 Induction of ecto-CRT and ATP secretion by phox-ER stress occurs via secretory pathway and PI3 kinase-dependent plasma
membrane/extracellular trafficking. (A, B) Induction of ecto-CRT by phox-ER stress is sensitive to Brefeldin A (BFA). T24 cells were
preincubated with 10mM of BFA for 1 h followed by treatment with a medium PDT dose, MTX (1mM for 4 h) or left untreated (CNTR) and
recovered 1 h post PDT. Surface proteins were biotinylated and immunoblotted (A). In (A), (D), and (G), ‘þBIO’ indicates controls exposed to
buffer with biotin and ‘�BIO’ indicates controls exposed to buffer without biotin (negative control). Also, the integrated density of the ecto-CRT
protein band was quantified by Image J software (B). In (B) and (E), data have been normalized to CNTR values; fold change values are mean
values of three independent experiments±s.e.m. (*Po0.05). (C) ATP secretion following phox-ER stress is sensitive to BFA. T24 cells were
preincubated with 10 mM of BFA for 1 h and then treated with medium PDT dose. The resulting conditioned media (1 h post PDT in serum-free
media) were analysed for the presence of ATP. Absolute concentrations are means of two independent experiments (five replicate
determinations in each)±s.d. (*Po0.05). (D, E) Induction of ecto-CRT by phox-ER stress is sensitive to Wortmannin (Wort). T24 cells
were preincubated with 100nM of Wort for 1 h and then treated with a medium PDT dose or MTX (1mM for 4 h). Cells were recovered 1 h post
PDT. This was followed by biotinylation of the surface proteins (D) and measurement of the integrated density of ecto-CRT protein bands (E) as
detailed in (A) and (B), respectively. (F) ATP secretion following phox-ER stress is sensitive to Wort. T24 cells were preincubated with 100nM
Wort for 1 h and then treated with medium PDT dose. The resulting conditioned media (1 h post PDT in serum-free media) were analysed for
the presence of ATP as detailed in (C). (G) PI3K p110a shRNA decreases phox-ER stress-induced ecto-CRT. CO-shRNA CT26 cells and CT26
expressing PI3K p110a shRNA 3 were treated with indicated PDT doses or MTX (1mM for 4 h). They were recovered 1 h post PDT followed by
biotinylation of the surface proteins as detailed in (A). (H) ATP secretion following phox-ER stress is reduced by PI3K p110a shRNA. CO-shRNA
CT26 cells and CT26 expressing PI3K p110a shRNA 3 were treated with medium PDT dose. The resulting conditioned media (1 h post PDT in
serum-free media) were analysed for the presence of ATP. Absolute concentrations are means of five replicate determinations±s.d. (*Po0.05).
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while ecto-CRT induction (Obeid et al, 2007; Panaretakis et al,

2009) and optimal ATP secretion (Martins et al, 2009) require

different doses of anthracyclines, in the case of Hyp-PDT they

are dose associated (i.e., induced by similar doses), thereby

integrating the emergence of these two critical immunogenic

signals within a single therapeutic set-up.

Interestingly, we observed that absence or depletion of

PERK compromised the ability of phox-ER stressed cells to

modulate their extracellular secretory protein content. This

along with the emerging evidence of PERK’s role in proper

secretory pathway functioning (Gupta et al, 2010; Teske et al,

2011) might imply that PERK could be regulating ecto-CRT
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induction and ATP secretion by governing the proper func-

tioning of the secretory pathway after phox-ER stress; a

premise that warrants systematic investigation in the near

future. On the other hand, the role of BAX/BAK proteins in

ecto-CRT induction is less clear. A recent study has shown

that these pro-apoptotic proteins regulate ER membrane

permeability in ER-stressed cells (Wang et al, 2011b).

Modulation of ER membrane permeability could expedite or

assist in the delivery of ER luminal proteins, such as CRT, to

the cell surface. However, more research is required to

ascertain the link between BAX/BAK and phox-ER stress-

induced ecto-CRT.

The depletion of PERK, PI3K p110a, and LRP1 (to a

relatively lesser extent) reduced the immunogenicity of

phox-ER-stressed cancer cells in vivo. The milder effect of

LRP1 depletion on immunogenicity could probably be

explained by the fact that even extracellularly secreted,

non-surface tethered form of CRTcan mediate DC maturation

(Bajor et al, 2011) and antitumour immunity (Wang et al,

2011a). However, in contrast to previous observations

for anthracyclines (Panaretakis et al, 2009), depletion of

caspase-8 had no effect on phox-ER stress-induced immuno-

genicity. These in-vivo observations further reinforce

the novel molecular pathway observed for phox-ER stress-

induced ecto-CRT, in vitro. Importantly, depletion of PERK,

PI3K p110a, and LRP1 did not completely abolish the

immunogenicity of cancer cells responding to phox-ER

stress meaning thereby that (1) either a minor residual

exposure/secretion of DAMPs regulated by these signalling

molecules is sufficient for conferring a particular degree of

immunogenicity or (2) there are additional yet-to-be-

described danger signals non-dependent on these pathway

components that contribute to phox-ER stress-induced im-

munogenicity.

In conclusion, this study shows that phox-ER stress leads

to the generation of the immunological and molecular hall-

marks of immunogenic apoptosis in cancer cells. Our findings

expand the set of experimental anticancer treatments that can

induce immunogenic cell death by adding Hyp-PDT. We also

demonstrate for the first time that two DAMPs, ecto-CRT and

secreted ATP, can be ‘emitted’ in the ‘pre-apoptotic’ phase of

cell death through a common molecular pathway in which

PERK, an ER stress sensor, is at the signalling core. This is the

first report on two critical DAMPs following overlapping

molecular pathways to reach the extracellular space.

Moreover, our study suggests that the LRP1-rich areas

might be the elusive surface docking entities for ecto-CRT

on the dying cancer cell surface.

In a more general sense, an important conclusion that can

be derived from our study is that the emission of key DAMPs,

like ecto-CRT and secreted ATP, by cancer cells can occur

through mechanisms that are evidently stress specific. The

dispensability of caspase signalling for the mobilization of

DAMPs and immunogenic apoptosis induced by phox-ER

stress is also a novel observation. It implies that emission

of danger signals by the stressed cancer cells is a phenom-

enon mediated by a separate ROS and ER stress-mediated

subroutine, which occurs in parallel to apoptosis induction.

This is a premise that deserves to be substantiated in further

investigations and which may have important implications

for the development of new treatment modalities harnessing

the immunogenicity of the cancer cells.

Materials and methods

Materials and reagents
Hypericin was prepared, purified, and stored as described previously
(Buytaert et al, 2006). Z-Val-Ala-Asp(OMe)-fmk (zVAD-fmk) was
purchased from Bachem (Weil am Rhein, Germany). Latrunculin B
(LanB) and 1,2-bis(2-aminophenoxy)ethane-N,N,N0,N0-tetracetate
acetyloxy methylester (BAPTA-AM) were purchased from Invitrogen
(Carlsbad, CA, USA). Brefeldin A (BFA), L-Histidine (L-Hist),
Mitoxantrone (MTX), Doxorubicin (DOXO), Nocodazole (Noco),
and Wortmannin (Wort) were purchased from Sigma (St Louis, MO,
USA). Methyl-b-cyclodextrin (MBC) was a kind gift from Prof. J
Swinnen (Catholic University of Leuven, Belgium). Antibodies
against ERp57, CHOP, P-eIF2a, eIF2a, HSP90, caspase 3, Bip/
GRP78, and PERK were purchased from Cell Signaling Technology
(Danvers, MA, USA). Anti-calnexin antibody was purchased from
Stressgen (Victoria, BC, Canada). Anti-calreticulin antibodies were
purchased from Stressgen or Pierce. Rabbit polyclonal antibody
(1704) recognizing the C-terminus of the LRP1 protein has been
described previously (Reekmans et al, 2010). Anti-PI3K p110a
antibody was purchased from Pierce. Anti-caspase-8 antibody was
purchased from Alexis Biochemicals (San Diego, CA, USA). Anti-
Naþ/Kþ ATPase antibody was purchased from Novus Biologicals
(Littleton, CO, USA). Anti-FAS/CD95 (N-18, M-20, and C-20), anti-
ICAM-1, and anti-HSP70 antibodies were purchased from Santa Cruz
Biotech (Santa Cruz, CA, USA). Anti-actin antibody was purchased
from Sigma. Antibody against the KDEL sequence was purchased
from Abcam (Cambridge, UK). Anti-PARP antibody was purchased
from BD Pharmingen (San Jose, CA, USA). Anti-CD47 antibody was
purchased from ImmunoTools (Friesoythe, Germany). Secondary
antibodies conjugated to horseradish peroxidase were purchased
from Cell Signaling Technology or Abcam.

Cell lines and induction of photo-oxidative (phox)-ER stress
and/or immunogenic apoptosis
T24, CT26, HeLa, and MEF cells were cultured at 371C under 5%
CO2 in DMEM containing 4.5 g/l glucose and 0.11 g/l sodium
pyruvate and supplemented with 2mM glutamine, 100 units/ml
penicillin, 100mg/l streptomycin and 10% fetal bovine serum
(referred to as normal culture medium hereafter). CHO cells were

Figure 5 Induction of ecto-CRTand ATP secretion by phox-ER stress are PERK dependent. (A) Induction of ecto-CRT by phox-ER is reduced in
the absence of PERK. MEF cells containing PERK (WT) or lacking it (KO) were treated with PDT, DOXO (25 mM for 4 h) or left untreated
(CNTR). They were recovered at the indicated time points post-PDT. Surface proteins were biotinylated and immunoblotted. In (A–C), ‘þBIO’
indicates controls exposed to buffer with biotin and ‘�BIO’ indicates controls exposed to buffer without biotin (negative control). (B) Induction
of ecto-CRT by phox-ER is reduced by PERK shRNA. CO-shRNACT26 cells and CT26 expressing PERK shRNA 3 were treated with medium PDT
dose and recovered 1 h post PDT followed by surface biotinylation as detailed in (A). (C) Ecto-CRT induced by phox-ER stress is not affected by
the presence of non-phosphorylable eIF2a. MEF cells expressing normal eIF2a (WT) or a non-phosphorylable mutant heterozygously (S51A
knock-in mutation) were treated with PDT or MTX (1mM for 4 h) and recovered at the indicated time points. This was followed by surface
biotinylation as detailed in (A). (D) PERK deficiency decreases phox-ER stress-induced secreted ATP. MEF cells that were PERKWTor PERK KO
were treated with a medium PDT dose. The resulting conditioned media (1 h post PDT in serum-free media) were analysed for the presence of
ATP. Absolute concentrations are mean values of two independent experiments (five replicate determinations in each)±s.d. (*Po0.05).
(E) PERK depletion decreases phox-ER stress-induced secreted ATP. CO-shRNA CT26 cells and CT26 expressing PERK shRNA 3 were treated
with a medium PDT dose. The resulting conditioned media (1 h post PDT in serum-free media) were analysed for the presence of ATP. Absolute
concentrations are mean values of five replicate determinations±s.d. (*Po0.05).
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Figure 6 Ecto-CRT induced by phox-ER stress is caspase-8 independent but BAX/BAK dependent. (A) Ecto-CRT induced by phox-ER stress is
caspase independent. T24 cells were preincubated with 0, 10, 25, or 50mM of zVAD for 1 h and then treated with PDT, MTX (1mM for 4 h) or left
untreated (CNTR), and recovered 1 h post PDT. Surface proteins were biotinylated and immunoblotted. In (A–D), ‘þBIO’ indicates controls
exposed to buffer with biotin and ‘�BIO’ indicates controls exposed to buffer without biotin (negative control). (B) Ecto-CRT induced by phox-
ER stress is caspase-8 independent. HeLa cells expressing empty vector Hyg or CrmAwere preincubated with 0, 25, or 50mM of zVAD for 1 h,
then treated with a high PDT dose or MTX (1 mM for 4 h) and recovered 1 h post PDT. This was followed by biotinylation as explained in (A).
(C) Induction of ecto-CRT by phox-ER is not affected by casp-8 shRNA. CO-shRNACT26 cells and CT26 expressing casp-8 shRNA 1 were treated
with medium PDT dose or MTX (1 mM for 4 h) and recovered 1 h post PDT followed by surface biotinylation as detailed in (A). (D) Ecto-CRT
induced by phox-ER stress is BAX/BAK dependent. MEF cells either containing BAX/BAK (WT) or lacking it (DKO) were treated with a medium
PDT dose or DOXO (25mM for 4 h) and recovered 30min post PDT. This was followed by surface biotinylation as detailed in (A). (E) BAX/BAK
deficiency does not affect phox-ER stress-induced secreted ATP. MEF cells that were BAX/BAK WT or DKO were treated with a medium PDT
dose. The resulting conditioned media (1 h post PDT in serum-free media) were analysed for the presence of ATP. Absolute concentrations are
mean values of two independent experiments (five replicate determinations in each)±s.d.
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cultured in HAM-F12 media supplemented with 2mM glutamine,
100 units/ml penicillin, 100 mg/l streptomycin, and 10% fetal bovine
serum. BAX/BAK DKO (double knock-out) MEF cells overexpres-
sing SERCA2 were maintained in culture medium containing 2mg/ml
puromycin (Invivogen, San Diego, CA, USA). Mf4/4 mouse macro-
phages were cultured in RPMI-1640 medium supplemented with 10%

fetal calf serum, 100 units/ml penicillin, 2mM glutamine, 1mM
sodium pyruvate and 2�10�5mM b-mercaptoethanol. JAWSII mouse
DC line was cultured in RPMI-1640 medium supplemented with 10%
fetal calf serum, 100 units/ml penicillin, 2mM glutamine and 5ng/ml
granulocyte macrophage-colony stimulating factor (GM-CSF; Pepro-
Tech, Rocky Hill, NJ, USA).
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Figure 7 Ecto-CRT induced by phox-ER stress docks on the surface via the LRP1 molecule. (A) Ecto-CRT induced by phox-ER stress is not
dependent on lipid rafts. T24 cells were preincubated with 2 mM of MBC for 1 h and then treated with a medium PDT dose, MTX (1mM for 1 h)
or left untreated (CNTR). They were recovered 5min post PDT. Surface proteins were biotinylated and immunoblotted. In (A), (B), and
(G), ‘þBIO’ indicates controls exposed to buffer with biotin and ‘�BIO’ indicates controls exposed to buffer without biotin (negative control).
(B–F) Ecto-CRT retention on ER-stressed cancer cells is dependent on the level of LRP1. MEF cells containing levels of 100% LRP1 (LRP1 WT),
50% LRP1 (LRP1þ /�), or 0% LRP1 (LRP�/�) were treated with a low PDT dose or MTX (1mM for 4 h in serum-free media) followed by
recovery in serum-free media after 1 h post PDT. Surface proteins were biotinylated and immunoblotted (B) as detailed in (A). Simultaneously,
the conditioned media (CM) derived from these cells were concentrated and immunoblotted (C). The integrated density of CRT protein bands
in (B) and (C) was quantified by Image J software for untreated (D), MTX-treated (E), and PDT-treated (F) conditions: where black is for ecto-
CRT bands in the immunoblots of biotinylated surface proteins and grey is for ‘exo-CRT’ bands in the immunoblots of concentrated CM. Data
have been normalized to the respective LRP1 WT values. Fold change values are means of three independent experiments±s.e.m.
(G) Induction of ecto-CRT by phox-ER stress is reduced by LRP1 shRNA. CO-shRNA CT26 cells and CT26 expressing LRP1 shRNA 1 were
treated with medium PDT dose and recovered 1 h post PDT followed by surface biotinylation as detailed in (A).
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For induction of immunogenic apoptosis, the cells were cultured
in the presence of MTX (1mM) or DOXO (25mM). Phox-ER stress
was induced by Hypericin-based PDT (Hyp-PDT). For Hyp-PDT
(unless otherwise mentioned), T24 and CT26 cells were incubated
with 150nM Hypericin (for 16 h in normal culture medium), HeLa

cells were incubated with 125 nM Hypericin (for 16 h in normal
culture medium), CHO cells were incubated with 200nM Hypericin
(for 16 h in normal culture medium), while MEF cells were
incubated with 200nM Hypericin (for 2 h in serum-free culture
medium). Irradiation was performed as described previously
(Vantieghem et al, 1998). Four Hyp-PDT doses, based on the light
fluence, were defined as low PDT dose (fluence¼ 0.54 J/cm2),
medium PDT dose (1.35 J/cm2), high PDT dose (2.16 J/cm2), and
the highest PDT dose (2.70 J/cm2). For, Photofrin-based PDT (PF-
PDT), the T24 cells were incubated with 10 mg/ml Photofrin (for
24 h in normal culture medium) and irradiated at a fluence of
0.48 J/cm2. Cells loaded with Hypericin or Photofrin were handled
in either dark or subdued light (o1 mW/cm2). All the untreated or
control (CNTR) sample conditions had Hypericin in absence of
irradiation (i.e., absence of PDT treatment).

Generation of shRNA stable clones of CT26 cells
All the TRC1 shRNA clones were in lentiviral pLKO.1-puro vector
(Sigma-Aldrich, St. Louis, MO, USA) and were obtained from the
BCCM/LMBP Plasmid collection, Department of Biomedical Mole-
cular Biology, Ghent University, Belgium (http://bccm.belspo.be/
about/lmbp.php). An empty pLKO.1-puro control vector was used
as a control (CO-shRNA) (BCCM/LMBP Plasmid collection). Three
shRNAs targeted against each of the four murine mRNA types
coding for proteins like LRP1, PI3K p110a, PERK, and caspase-8,
respectively, were used. Sequences of these shRNAs are mentioned
in Supplementary Table S1. To generate lentivirus particles, HEK
293T cells were seeded in 25 cm2 flasks at 1.3�106 cells per 4ml
and transfected the following day by the calcium phosphate method
with 4mg of pLKO.1-puro carrying the respective shRNAs or with
empty pLKO.1-puro. Each transfection also included 1.2 mg of a
plasmid encoding VSV-G (pMD2-VSV-G, Tronolab) and 2.6mg of a
plasmid encoding packaging proteins (pCMVdR8.9, Tronolab).
After 6 h, the cells are washed with prewarmed PBS and 4ml of
fresh media was added. Twenty-four hours after transfection, the
cells were placed at 321C for another 24 h. VSV-G pseudotyped virus
was collected 48h after transfection, passed through 0.45mm filters
and then added to the exponentially growing CT26 cell cultures in
the presence of 8mg/ml of polybrene. Seven hours later a second
infection was done. The cells were expanded and selected by
puromycin treatment (9 mg/ml) for 3 days. Knockdown of LRP1,
PI3K p110a, PERK, and caspase-8 was confirmed by immuno-
blotting.

In-vivo analysis of immune system priming in mice
All mice were maintained in pathogen-free conditions and the
experiments were performed according to the guidelines of the local
Ethics Committee of Ghent University-VIB and KU Leuven. CT26
cells were incubated with MTX (1mM), tunicamycin (TUN, 65 mM;
Sigma-Aldrich) or exposed to the highest PDT dose of Hyp-PDT.
After a 24-h recovery, 3�106 of these cells were injected
subcutaneously (s.c.) in 200ml of PBS into the left flank of 7-
week-old female BALB/c mice from Janvier (Bio Services BV, The
Netherlands). Immunization was done twice with a 10-day interval.
Control mice were injected with 200 ml PBS. Mice were then
rechallenged with 5�105 live untreated CT26 cells in the other
(right) flank 7 days after the second immunization. The ‘commu-
nication’ of the tumour antigenic memory to the adaptive immune
system was studied by analysing the incidence of tumours at the
rechallenge site (i.e., in the right flank of the mice). Hence,
following the rechallenge, the mice were monitored every 5–6 days
for the presence of tumours at the rechallenge site and the
experiment was stopped as soon as the tumours in control mice
became unmanageable, that is, either necrotic or capable of causing
movement problems (about 20–30 days). Absence of tumours at the
rechallenge site was taken as a sign of ‘priming’ of the adaptive
immune system for the antigens derived from the treated/dying/
dead CT26 cells.

Analysis of human DC maturation, NO, and cytokines
Human immature DCs (hu-iDCs) were isolated and cultured as
described (Ferreira et al, 2009). T24 cells exposed to high Hyp-PDT
treatment and AN (induced by one cycle of freeze thawing) were co-
incubated with hu-iDCs at a ratio of 1:20 (hu-iDCs:T24) for 24 h.
Hu-iDCs stimulated with 100 ng/ml of Escherichia coli-derived LPS
for 24 h (Sigma) were used as positive controls for DC maturation.
After detachment and washing, the cells were stained with the
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Figure 8 Depletion of PERK, PI3K p110a, and LRP1 but not cas-
pase-8 reduces phox-ER stress-induced immunogenicity.
(A) Hypothetical representation of main molecular players in
phox-ER stress-induced ecto-CRT and ATP secretion pathways. In-
vitro data suggested that while caspase-8 was dispensable for ecto-
CRT induction after phox-ER stress; PERK and PI3K p110a were
indispensable. In fact, both of these latter molecules were also
required for ATP secretion. Moreover, LRP1 was observed to be
crucial for surface tethering of ecto-CRT. (B) The mice were
immunized either with PBS (CNTR) or with highest PDT dose
treated CO-shRNACT26 cells or with different CT26 cells expressing
casp-8 shRNA 1, PERK shRNA 3, PI3K p110a shRNA 3, or LRP1
shRNA 1, also treated with the highest PDT dose. These ‘immu-
nized’ mice were then rechallenged with live CT26 tumour cells.
Subsequently, the percentage of mice with tumour-free rechallenge
site was determined (n represents the number of mice).
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following antibodies: FITC-conjugated anti-HLA-DR (MHC II)
(Invitrogen, Merelbeke, Belgium) and APC-conjugated anti-CD86
(Invitrogen, Merelbeke, Belgium) or FITC-conjugated anti-CD80
(Beckton & Dickinson, Mountain View, CA, USA) and APC-
conjugated anti-CD83 (Invitrogen, Merelbeke, Belgium) according
to manufacturer’s instructions. Anti-human IgG1 (Beckton &
Dickinson) and anti-human IgG2b (Invitrogen, Merelbeke, Belgium)
antibodies were used as isotype controls. After the antibody
staining, the cells were washed and analysed with a FACSCalibur
flow cytometer (Beckton & Dickinson). The conditioned co-culture
media (CCM) derived from these hu-iDC and T24 cell co-incubation
experiments were collected and stored for further analysis. NO in
CCM was quantified by Griess assay (Becker et al, 2000).
Immunoreactive levels of human IL-1b (MPXHCYTO-60K-04) and
IL-10 (MPXHCYTO-60K-04) were measured in the CCM by using
Milliplex human cytokines (Merck Millipore, Billerica, MA, USA). The
samples were prepared according to manufacturers’ instructions and
analysed on Bio-Plex 200 Systems (Bio-Rad, Hercules, CA, USA).

ATP assays
The cells were treated as indicated. Extracellular ATP was measured
in the conditioned (serum-free) media and intracellular ATP was
determined after saponin-based lysis. We used an ATP Biolumines-
cent assay kit (Sigma) based on luciferin-luciferase conversion,
following manufacturer’s instructions. Bioluminescence was as-
sessed by optical top reading via FlexStation 3 microplate reader
(Molecular Devices Inc., Sunnyvale, CA, USA).

Bioinformatics and statistical analysis
Protein–protein binding interaction networks were generated using
the STRING database (http://string-db.org/). Both predicted inter-
actions and interactions supported by biochemical evidence or
databases (including Reactome and Kyoto Encyclopedia of Genes
and Genomes) were considered.

Data are presented in fold changes, absolute concentrations or
percentages with mean±s.d. or mean±s.e.m. indicated in figure
legends. All statistical analyses were performed using either Prism
software (GraphPad Software, USA) or GraphPad QuickCalcs online
software (http://www.graphpad.com/quickcalcs/index.cfm). Stu-
dent’s t-test was used for statistical analysis with significance level
set at Po0.05.

Supplementary data
Supplementary data are available at The EMBO Journal Online (http://
www.embojournal.org).
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