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,e prediction of atmospheric particulate matter (APM) concentration is essential to reduce adverse effects on human health and
to enforce emission restrictions. ,e dynamics of APM are inherently nonlinear and chaotic. Phase space reconstruction (PSR) is
one of the widely used methods for chaotic time series analysis. ,e APM mass concentrations are an outcome of complex
anthropogenic contributors evolving with time, which may operate on multiple time scales. ,us, the traditional single-variable
PSR-based prediction algorithm in which data points of last embedding dimension are used as a target set may fail to account for
multiple time scales inherent in APM concentrations. To address this issue, we propose a novel PSR-based scientific solution that
accounts for the information contained at multiple time scales. Different machine learning algorithms are used to evaluate the
performance of the proposed and traditional PSR techniques for predicting mass concentrations of particulate matter up to
2.5micron (PM2.5), up to 10micron (PM10.0), and ratio of PM2.5/PM10.0. Hourly time series data of PM2.5 and PM10.0 mass
concentrations are collected from January 2014 to September 2015 at the Masfalah air quality monitoring station (couple of
kilometers from the Holy Mosque inMakkah, Saudi Arabia).,e performances of various learning algorithms are evaluated using
RMSE andMAE.,e results demonstrated that prediction error of all the machine learning techniques is smaller for the proposed
PSR approach compared to traditional approach. For PM2.5, FFNN leads to best results (both RMSE and MAE 0.04 μgm−3),
followed by SVR-L (RMSE 0.01 μgm−3 andMAE 0.09 μgm−3) and RF (RMSE 1.27 μgm−3 and MAE 0.86 μgm−3). For PM10.0, SVR-
L leads to best results (both RMSE and MAE 0.06 μgm−3), followed by FFNN (RMSE 0.13 μgm−3 and MAE 0.09 μgm−3) and RF
(RMSE 1.60 μgm−3 andMAE 1.16 μgm−3). For PM2.5/PM10.0, FFNN is the best and accurate method for prediction (0.001 for both
RMSE and MAE), followed by RF (0.02 for both RMSE and MAE) and SVR-L (RMSE 0.05 μgm−3 and MAE 0.04).

1. Introduction

Air pollution is one of the emerging environmental issues in
the developing as well as developed countries across the
globe [1]. A large amount of gaseous pollutants and other
atmospheric particulate matter (APM) are being produced
through immense pollution generating activities including
vehicles emitting smoke and fossil fuels used for energy

requirements, cooking, and different anthropogenic activi-
ties [2]. APM is reportedly one of themajor causes of adverse
health issues particularly which are related to human re-
spiratory and cardiovascular systems [3].

Depending upon aerodynamic diameter, atmospheric
particles can be classified into three types, namely, coarse
particle fraction (CPF), fine particle fraction (FPF), and
ultrafine particles (UFP). CPF comprises of diameter
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larger than 2.5micrometer (μm) and up to 10 μm (PM10.0),
while FPF has diameter up to 2.5 μm (PM2.5), and those
having less than 0.1 μm (PM1.0) diameter are UFP [4].
Crustal material, paved road dust, background sea salts,
and noncatalyst equipped gasoline engines are major
sources of CPF (PM10.0), while vapor nucleation/con-
densation mechanisms and anthropogenic sources are
responsible for FPF (PM2.5) [5]. ,e lifetime of atmo-
spheric particles, spanned from few seconds to several
months, is another aspect of such particles which de-
termines their harmfulness [4]. Beside emission sources,
levels of PM2.5 and PM10.0 depend on the geographic
characteristics and meteorological parameters including
wind, relative humidity temperature, atmospheric pres-
sure, and boundary layer height [6, 7].

Air quality can be predicted through time series analysis
which in turn may be used for issuing warnings to protect the
health of the public. ,e classical approaches which predict
air pollutant concentrations are generally based on functional
relationship of air quality, emissions, and metrological fac-
tors. Examples include regression and neural network tech-
niques, which have been used to predict APM in numerous
studies [8–11]. In the absence of emission data and/or
metrological factors, pollutant concentration time series data
are the only available information. ,erefore, in such cases,
linear correlation-based univariate analysis techniques in-
cluding autocorrelation function and spectral analysis [8, 12]
are generally used. ,ese techniques predict time series,
which have regular behavior. Contrary to linearity, the dy-
namics of atmospheric pollutants are complex in nature; thus,
nonlinearity is inherent in the atmospheric systems. ,e time
series data of atmospheric mass concentrations are chaotic
and very sensitive to initial conditions [13, 14].

Phase space reconstruction (PSR) is the foundation of
nonlinear time series analysis that allows the reconstruction
of complete system dynamics using a single time series [15].
,e most common approach for PSR time series is based on
Takens’ delay embedding theorem [16]. Using this theorem,
a single vector of observations representing a chaotic system
can be regenerated into multidimensional vectors series. ,e
regenerated vectors can thus display numerous essential
properties of its real time series provided that the embedding
dimension is considerably large [17]. Two parameters are
important for the computation of PSR, i.e., time delay (τ)
and embedding dimension (m).

Numerous studies used PSR-based techniques to
capture complex dynamics of particulate matter mass
concentration time series [13, 14, 18–25], which were then
used for prediction purpose. Li et al. [18] performed
nonlinear analysis of air quality data to identify the dy-
namics of the ozone concentrations and to determine
dimensionality of the system. Chen et al. [19] proposed a
novel procedure, based on dynamical systems theory, to
model and predict ozone levels by creating a multidi-
mensional phase space map from observed ozone con-
centrations. ,e proposed model was used to make one
hour to one day ahead predictions of ozone levels. Kocak
et al. [20] reconstructed the attractor in the multidi-
mensional space of the univariate ozone time series and

then used local approximation to predict the ozone
concentration at different stations. Chelani et al. [21]
examined the predictability of chaotic time series of air
pollutant (nitrogen dioxide) concentration using artificial
neural networks. Chelani and Devotta [22] predicted
PM10.0 using local polynomial approximation based on
the reconstructed phase space. In another study, Chelani
and Devotta [23] developed a hybrid model using the
combination of the autoregressive integrated moving
average model, which deals with linear patterns, and
nonlinear dynamical model. Using the nitrogen dioxide
concentration time series, they demonstrated that the
hybrid model outperforms the individual linear and
nonlinear models. Kumar et al. [13] employed a corre-
lation dimension method that uses PSR to identify
nonlinearity and chaos in nitrogen dioxide and carbon
mono-oxide time series. Yu et al. [24] employed PSR to air
pollution index time series during past 10 years and found
that PM10.0 time series behavior is chaotic in Lanzhou,
China. Saeed et al. [25] investigated chaotic behavior of
PM1.0 and PM2.5 concentrations using PSR, largest Lya-
punov exponent, and Hurst exponent and found strong
chaotic behavior in the time series.

,e previous studies [26–28] used last embedding
dimension data points of PSR time series as the target set.
Recently, the concept of multiple time scales has been
introduced to study dynamics of healthy and pathological
physiological systems such as regularity mechanism of
cardiovascular system [29, 30], postural control [31], and
gait dynamics [32]. ,e APM mass concentrations are an
outcome of complex natural and anthropogenic con-
tributors evolving with time, which may operate on
multiple time scales. ,us, the traditional single-variable
PSR algorithm [26–28] in which data points of last em-
bedding dimension are used as a target dataset may fail to
account for multiple time scales inherent in APM
concentrations.

In this study, we propose a novel PSR-based scientific
solution that accounts for the information contained at
multiple time scales to predict mass concentrations of
atmospheric particulates in air. ,e data used in this study
are collected from the Masfalah air quality monitoring
station, Makkah, Saudi Arabia [6]. Previously Munir et al.
[6] used these data to analyze the mass concentrations of
PM2.5 and its association with PM10.0 and meteorology.
,is site is important because throughout the year, huge
number of pilgrims visit Saudi Arabia to perform religious
obligations using this road. Makkah is surrounded by large
sandy deserts, receives little rain, and experiences high
temperature throughout the year [6]. ,e expansion of
Holy mosque, construction of railway train stations,
mountain digging and construction of multistoried
buildings, frequent sand and dust storms, frequent traffic
jams, and congestions during the busy hours constitute the
atmospheric pollution in the city [6, 7]. Millions of pilgrims
visiting for Umrah and Hajj every year put additional
burden on local resources and air quality. Moreover, due to
the geographical characteristics and climatic conditions,
PM2.5 and PM10.0 pollutants frequently exceed the national
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and international air quality standards, which is one of the
major concerns in this region [6, 33]. Hence, early pre-
diction is a managerial solution to avoid hazardous im-
plications of atmospheric particulates on the local
community as well as pilgrims.

Machine learning techniques have widely been used for
classification, clustering, and association that are applied in
numerous fields [34, 35]. Recently, a method of PSR of a
chaotic model and support vector machine (SVM) in the field
of artificial intelligence have been explored to realize the
prediction of time series [36]. We used different machine
learning techniques including support vector regression (SVR),
random forest (RF), and feedforward neural network (FFNN)
[37–39] for prediction of atmospheric particulates based on
proposed and traditional settings of the target set. Root-mean-
squared error (RMSE) and mean absolute error (MAE)
measures are used to evaluate the performance of various
learning algorithms for the prediction of atmospheric partic-
ulates by employing proposed and traditional PSR methods.

2. Materials and Methods

2.1. Datasets. ,e data used in this research work have been
collected from the Masfalah air quality monitoring station
(AQMS111) in the Holy city of Makkah, Saudi Arabia. ,e
data were previously used by Munir et al. [6] to characterize
the spatial and temporal variability of PM2.5, PM10.0, and
their ratio PM2.5/PM10.0 in the region.

,e concentrations of PM2.5 and PM10.0 were monitored
using Aeroqual AQM 60 air quality monitoring station [6].
,is device uses light scattering nephelometer and high-
precision sharp cut cyclone to monitor particles and has a
range of 0–2000 μgm−3 with an accuracy of ±2 for both
PM2.5 and PM10.0. Hourly data collected from January 2014
to September 2015 of PM2.5 (μgm−3), PM10.0 (μgm−3), and
ratio of PM2.5/PM10.0 have been used to evaluate the use-
fulness of the proposed modification in the PSR prediction
algorithm. ,e quality of data is ensured by taking strict
quality assurance and quality control (QA/QC) measures
[6]. QA measures include careful selection of monitoring
site, proper instrument installation, instrument selection,
sample system design, and proper training of operators. QC
is ensured by taking measures including careful selection of
monitoring site, instrument calibration and its response,
monitoring calibration gases, routine site visit, and data
review as well as data validation and ratification. Data
screening for missing values and outliers was done. Kline
[40] suggested that missing data can be handled by deletion,
imputation estimates or by modeling the data as a distri-
bution for its estimation. If missing data are <5%, then any
simple mechanism is acceptable for its identification and
correction [41]. Both PM2.5 and PM10.0 data contain less
than 2% missing values, and we used deletion approach for
handling missing data. ,e outliers in the data are replaced
by means of data for that specific month.

2.2. Methodology. Before describing the proposed PSR
methodology, traditional PSR technique and procedures for

selection of time delay τ and embedding dimension m are
detailed for clarity of methodology.

2.2.1. Phase Space Reconstruction (PSR). PSR [14] theory is
the base for chaotic time series. In a chaotic system, phase
space can be used for the reconstruction of univariate time
series. ,is is because in a dynamical system, whole in-
formation about the variable is present in the univariate time
series. Each point of phase space represents a state of the
system, while trajectory of the phase space represents the
time evolution of the system according to different initial
conditions.

Using Takens’ time-delay embedding theorem, a phase
space can be created from a one-dimensional time series
[14]. ,is theorem is actually a way for analyzing chaotic
time series. According to the theorem, if a scalar time
series Tt � N1, N2, N3, . . . , Nn􏼈 􏼉 from a chaotic system is
given, then reconstruction is possible in terms of the phase
space vectors X(t) expressed as: X(t) � [x(t),
x(t + τ), . . . , x(t + (m − 1)τ)] where t � 1, 2, . . . ,M;

M � N − (m− 1) τ. Here, τ is the time delay, m is the
embedding dimension of PSR, andM is the number of phase
points of reconstructed phase space. Computation of τ and
m values are very essential in PSR.

,e selection of τ has centered around two commonly
used methods, i.e., autocorrelation function (ACF) and
average mutual information (AMI) [42]. ,e ACF is used
for estimating τ of linear time series, whereas AMI is used
for estimating τ for nonlinear time series. Since mass
concentration time series data of atmosphere is nonlinear
in nature, we used the AMI function, which accounts for
the nonlinear correlation in a specific time series to
evaluate ‘τ’ for that time series [42]. ,e equation to cal-
culate AMI is as follows:

I(τ) � 􏽘N−τ
t�1

P Xt, Xt+τ( 􏼁 · log P Xt, Xt+τ( 􏼁
P Xt( 􏼁 · P Xt+τ( 􏼁􏼠 􏼡, (1)

where P(Xt) is the probability density of Xt. P(Xt, Xt+τ) is
the joint probability density of Xt and Xt+τ . I(τ) is a
measure of the statistical dependence of the re-
construction variables. For nonmonotonous decrease of
I(τ), the location of first local minimum is considered as
the suitable value of τ [43]. For monotonous decrease of
I(τ), either the decrease of MI to I(t)/I(0) � 1/e or
I(t)/I(0) � 0.2 can be used as the criterion for estimating
time delay [43].

,e false nearest neighbor (FNN) approach introduced
by Kennel et al. [43] is used for computing optimal m. ,e
FNN algorithm takes each point in the m-dimensional
portrait and finds the distance D(m) to its nearest neighbor
and the distance D(m + 1) between the two points in m + 1
dimensions. Neighbors are said to be false if the following
two criteria are met [43]:

δn >Rtol,

D(m + 1)

RA
>Rtol, Atol,

(2)
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where δn is the relative increase in the Euclidean distance
when the dimension of PSR is increased from m to m + 1,
and it is computed as

δn �

��������������������
D2
n(m + 1, τ)−D2

n(m, τ)

D2
n(m, τ)

􏽳
,

�
xn+τm − xrn+τm
􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌
Dn(m, τ)

.

(3)

,e parameters Rtol andAtol are constant thresholds, and
RA is the standard deviation of a time series. ,e process is
repeated for dimensions and is stopped when the proportion
of FNN becomes zero or necessarily small and will remain so
from then onwards.

2.2.2. Proposed Methodology. ,e whole procedure of PSR-
based prediction is illustrated in Figure 1.

Step 1 (PSR). One-dimensional time series have been
projected to higher dimensions using the PSR method to
generate high-dimensional series:

X(t) �[x(t), x(t + τ), . . . , x(t + (m− 1)τ)], (4)

where t � 1, 2, . . . ,M and M � N− (m− 1)τ.
,e parameters τ andm have been determined by using

AMI and FNNmethods, respectively. ,e input and output
(target) samples can be represented by the matrixes fol-
lowing X and Y, respectively, in the following forms:

X �

x(1) x(1 + τ) . . . x(1 +(m− 1)τ)
x(2) x(2 + τ) . . . x(2 +(m− 1)τ)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

x(M) x(M + τ) . . . x(M +(m− 1)τ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y �

x(2 +(m− 1)τ)
x(3 +(m− 1)τ)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

x(M + 1 +(m− 1)τ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5)
,e last embedding dimension data points

[Y(t) � (t + 1 + (m− 1)τ)] as the target set have been used
in numerous studies [24–26]. ,e concept of multiple time
scales has been used in various studies [26–29]; therefore,
in this study, it is proposed to use the concept of multiple
time scales for the computation of the target set in order to
get a better prediction of PSR series. ,us, the target values
can be represented as

Y �

1

m
[Sum(x(1), x(1 + τ), . . . , x(1 +(m− 1)τ))]

1

m
[Sum(x(2), x(2 + τ), . . . , x(2 +(m− 1)τ))]

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

1

m
[Sum(x(M), x(M + τ), . . . , x(M +(m− 1)τ))]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)
Both of input (X) and target (Y) of reconstructed series

are divided into two sets, namely, the training set and the test

τ and m calculation

Estimating target values (using equation 7)

Original time series data

Test set

Phase space reconstruction (PSR)

Models

PSR series with target values (Ti)

Predictions

Testing

Training set

Error
calculation 

Learning
(SVR, RF,
kNN, etc.)

X =

X
^
 =

x(1)
x(2)

x(M)

x(1 + τ)
x(2 + τ)

x(M + τ)

x(1 + (m –1)τ)
x(2 + (m – 1)τ)

x(M + (m – 1)τ)

x(1) x(1 + τ) x(1 + (m – 1)τ)

x(M) x(M + τ) x(M + (m – 1)τ)

x(2) x(2 + τ) x(2 + (m – 1)τ)

T1

T2

TN

Figure 1: Proposed methodology for PSR-based prediction.
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set. ,e training set consists of the reconstructed series from
January 2014 to August 2015, while the test set comprises
September 2015 reconstructed series.

Step 2 (prediction). ,e regression model was built for the
settings mentioned in step 1 using different learning algo-
rithms (linear and radial SVRs, RF, and FFNN).

Step 3 (results). For the evaluation of prediction models,
RMSE and MAE were computed.

In traditional PSR prediction, last embedding dimension
of reconstructed time series is used as the target set, whereas
in the proposed approach, target set data values Ti are
computed using the following equation:

Ti �
1

m
􏽘M+(m−1)τ

i�1

xi, (7)

where i � 1, 2, . . . , M andM � N− (m− 1)τ, m is the
embedding dimension and τ is the time delay. Equation (7)
is used in numerous studies [26–29] for constructing coarse
grained series at multiple time series. In these studies,
original time series has been divided in to nonoverlapping
windows and then each window is averaged for constructing
multiscale time series. ,erefore, in this study, we used the
same approach (equation (7)) after transforming the original
time series into higher dimension instead of original time
series (i.e., each row of PSR series is averaged for compu-
tation of the target set at various m).

2.2.3. Support Vector Regression (SVR). Consider a set of
training data (x1, y1), . . . , (xl, yl)􏼈 􏼉, where each xiεRn
represents the input samples with corresponding target value
yiεR for i � 1, . . . , l (l represents training data size) [34]. ,e
generic SVR estimating function takes the following form:

f (x) � (w ·Φ(x)) + b, (8)
where wεRn, bεR, and Φ represent a nonlinear trans-
formation from Rn to high-dimensional space. ,e objective
is to find the values of w and b such that values of x can be
determined by minimizing the regression risk:

Rreg (f) � C􏽘l
i�0

Γ f xi( 􏼁−yi( 􏼁 + 1

2
‖w‖2, (9)

where C is a constant, Γ represents a cost function, and
vector w can be written (in terms of data points) as

w �􏽘l
i�1

αi − α∗i( 􏼁Φ xi( 􏼁. (10)

Using equations (10) and (8), the generic equation can be
rewritten as

f(x) �􏽘l
i�1

αi − α∗i( 􏼁 Φ xi( 􏼁 ·Φ(x)( 􏼁 + b,
�􏽘l
i�1

αi − α∗i( 􏼁k xi, x( 􏼁 + b,
(11)

where k(xi, x) indicates the kernel function.

2.2.4. Random Forest (RF). RF [38] is an ensemble approach
that relies on classification and regression trees (CART)
models. ,e purpose of CART is to learn the relationship
between a dependent (Y) and a set of predictor variables (P).
,e learning algorithm employs recursive partitioning which
splits P variables to create homogenous grouping of Y. ,e
recursive partitioning continues until the subset of Y (at each
node) has the same value. RF differs from the CARTprocedure
by (a) employing bootstrap resampling [44], and (b) random
variable selection. Consider a regression tree which is made up
of splits and nodes. In RF, a random subset of P is used to
determine the split for each node. For continuous variables,
the ensemble estimate is the mean of the predicted values
across trees mean (Ý) and the variance across trees is var (Ý).

2.2.5. Feedforward Neural Network (FFNN). Neural net-
works are computing models used for recognition of pattern
or relation among data [38]. Neural networks comprise of
twomain components: set of nodes and links between nodes.

,e FFNN possesses a massive number of processing
elements called neurons. ,ese neurons are interlinked
through weights. Neurons have input, output, and hidden
layer(s).,e summation of weighted values at the input layer
is applied to each of hidden layer neurons. Similarly sum
weighted values at the hidden layer is applied to the output
layers.,e output Y obtained (at the output layer) is given as

Y � ω β0 +􏽘j
i�1

βiΦ αi0 +􏽘l
k�1

αikAk⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭, (12)

where (β0, β1, . . . , βj, α10, . . . , αjl) are the bias and weight
parameters. Φ and ω are the activation functions applied at
hidden and output layer, respectively. Ak indicates the input
value at the input neuron k.

2.2.6. Performance Evaluation Measures. ,e root-mean-
squared error (RMSE) and mean absolute error (MAE) have
widely been used to measure the performance of predicted
models.,e range of bothmeasures is from 0 to∞, and their
lowest values show that the performance of the predicted
model is better. RMSE can be calculated by taking square
root of mean squared error (MSE). It can provide the
complete scenario of the error distribution. MAE can be
calculated by taking average of absolute differences between
the actual and predicted values. Mathematically, RMSE and
MAE can be calculated using equations (13) and (14),
respectively:

RMSE �

�������������
1

T
􏽘T
t�1

Xt −Pt( 􏼁2
􏽶􏽴

, (13)

MAE �
1

T
􏽘T
t�1

Xt −Pt
􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌􏼐 􏼑, (14)

whereXt represents the target (expected) values and Pt is the
model’s predicted values.
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Figure 2: Hourly data of PM2.5 (μgm−3), PM10.0 (μgm
−3), and PM2.5/PM10.0 ratio from January 2014 to September 2015 in Makkah.
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Figure 4: Continued.
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Figure 3: Optimal τ, for particulates (a) PM2.5, (b) PM10.0, and (c) PM2.5/PM10.0 ratio using the AMI method.
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Figure 4: FNN curves with various thresholds for determining the m of particulates (a) PM2.5, (b) PM10.0, and (c) PM2.5/PM10.0 ratio.
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3. Results and Discussion

,e original time series of PM2.5, PM10.0, and ratio of PM2.5/
PM10.0 are shown in Figure 2.

First of all, phase space is reconstructed using equation
(4). ,e selection of two parameters τ and m are important
for PSR. AMI has been used for the computation of τ. In
Figure 3, the AMI is plotted against varying τ, for getting the
optimal value of τ for PM2.5, PM10.0, and PM2.5/PM10.0 ratio.
,e presence of chaos in atmospheric particulates reveals
that time series of mass concentrations PM2.5 and PM10.0 can
be described and predicted even if the source information is
univariate time series.

Figure 3 depicts that the value of I(τ) decreases non-
monotonically with increasing τ for PM2.5, PM10.0, and
PM2.5/PM10.0 ratio. Hence, the value of τ at which first
minimum of I(τ) occurred is taken as the optimal τ. ,e
optimal τ for PM2.5 is 13, for PM10.0 is 12, and for PM2.5/
PM10.0 ratio is 10.

FNN approach is used to find the optimal minimum
embedding (m). For any given m, the proportion of the

identified FNN for all the neighbors was computed for the
given τ. ,e percentages of the FNN are plotted as a
function of the m. A zero FNN percentage indicates the
minimum m.

,e results of FNN approach for determining the op-
timum m of PM2.5, PM10.0, and PM2.5/PM10.0 ratio using
various values for the threshold parameters Rtol and Atol are
shown in Figure 4. ,e value of the parameter Rtol is varied
from 130 to 190 with a step size of 30, andAtol � 0.2 × Rtol is
used. m obtained for PM2.5 is 5 and for PM10.0 and PM2.5/
PM10.0 ratio is 6. ,e higher values of m show that the mass
concentration time series of PM2.5 and PM10.0 have domi-
nant degrees of freedom, which indicates that atmospheric
particulate dynamics are complex in nature.

Based on the values of parameters τ andm, phase space
is reconstructed for PM2.5, PM10.0, and PM2.5/PM10.0 ratio
and prediction models (using different machine learning
algorithms including RF, linear, and radial SVRs and
FFNN) are built using traditional and proposed settings.
,e predicted values for the next 1month (i.e., September
2015) are obtained by using different learning models (RF,
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Figure 6: Actual and predicted values using proposed setting of the target set (A1 to A4) and traditional setting of the target set (B1 to B4) for
PM10.0 (μgm

−3) PSR series.
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linear, and radial SVRs and FFNN). For both training and
testing data, traditional and proposed settings of the target
set from PSR series have been used. Target and predicted
values of PM2.5 are shown in Figure 5. It is clear from the
figure that results of the proposed PSR technique are robust
compared to the traditional PSR method for all learning
algorithms. Learning algorithms FFNN, SVR-L, and RF
show perfect overlap of the predicted and actual values for
proposed settings. Figure 6 shows the prediction results of
PM10.0 for different learning algorithms using proposed
and traditional settings.�e results revealed that like PM2.5,
learning algorithms FFNN, SVR-L, and RF for PM10.0 also
showed perfect overlap between predicted and actual
values. In case of both PM10.0 and PM2.5, prediction results
of SVR-R are modest for both proposed and traditional
settings. It can be observed from Figure 6 that SVR-L shows
model underestimation and SVR-R shows model over-
estimation for traditional PSR settings. �is may be due to
that fact that in the case of traditional PSR, the target set is
the last embedding PSR, whereas in the case of the pro-
posed PSR method, the target set is the row average of the

reconstructed phase space data point. �e averaging pro-
cess yielded better prediction and avoided model over and
underestimation. Figure 7 shows the prediction results for
the joined dataset (i.e., the ratio PM2.5/PM10.0). �e pro-
posed PSR showed a better prediction result, with FFNN
and RF showing almost perfect overlap.�e SVR-R showed
model overestimation for both traditional and proposed
settings.

Prediction errors between actual and predicted values in
terms of RMSE and MAE are presented in Table 1. �e table
compares the performances of different machine learning
algorithms using the proposed and traditional settings. �e
results depict that prediction error of all the machine
learning techniques is smaller for the proposed PSR ap-
proach compared to traditional approach.

For PM2.5, FFNN leads to best results (both RMSE and
MAE 0.04 μgm−3), followed by SVR-L (RMSE 0.01 μgm−3

and MAE 0.09 μgm−3) and RF (RMSE 1.27 μgm−3). For
PM10.0, SVR-L leads to best results (both RMSE and MAE
0.06 μgm−3), followed by FFNN (RMSE 0.13 μgm−3 and
MAE 0.09 μgm−3). For PM2.5/PM10.0, FFNN is the best and
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Figure 7: Actual and predicted values using proposed setting of the target set (A1 to A4) and traditional setting of the target set (B1 to B4) for
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accurate predictor (0.001 for both RMSE and MAE), fol-
lowed by RF (0.02 for both RMSE and MAE) and SVR_L
(RMSE 0.05 μgm−3 and MAE 0.04).

Due to the geographical characteristics and climatic
conditions, PM2.5 and PM10.0 pollutants frequently exceed the
national and international air quality standards in Makkah
region [5, 32].,ese particles are very tiny, and their exposure
is associated with adverse health effects. According to World
Health Organization (WHO), reduction in annual PM10.0

concentration from 70 μgm−3 to 20 μgm−3 is associated with
15% reduction in deaths [3]. Exposure of these pollutants not
only affects health of local community but also affects millions
of pilgrims visiting Makkah annually. ,e current study can
have implications to predict these pollutants to provide
managerial solutions for the prevention and/or mitigating
adverse health implications.

4. Conclusion

,e traditional PSR prediction method generally uses the
data points of last embedding dimensions of PSR series
(single scale) as the target set. APM mass concentrations are
an outcome of complex natural and anthropogenic con-
tributors evolving with time that may operate on multiple
time scales. ,is study has proposed a novel PSR-based
scientific solution that accounts for the information con-
tained at multiple time scales. ,e optimal embedding di-
mension of PM2.5 is 5; for PM10.0 and PM2.5/PM10.0 ratio, it is
6. ,e higher values of embedding dimensions reveal the
chaotic behavior of both atmospheric particulates. Different
machine learning algorithms are used to realize the pre-
diction of APM mass concentrations using proposed and
traditional PSR techniques. Performance of various learning
algorithms is evaluated using RMSE and MAE. ,e results
demonstrated that the proposed modification in PSR ap-
proach provided better prediction of APMs compared to
traditional approach. ,e robust prediction is obtained
using the FFNN learning model using the proposed mod-
ification in the PSR algorithm. ,e good prediction results
indicate the usefulness of the proposed PSR approach and
the suitability of the various machine learning approaches in
combination for predicting atmospheric particulates mass
concentrations. ,e proposed technique can be used for
analyzing and prediction of interbeat interval time series,
EEG time series, human gait dynamics, and financial time
series data.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work was partly funded by the King Abdulaziz City for
Science and Technology (KACST) (grant no. 13-ENES2373-
10)

References

[1] J. Colls, Air Pollution, Taylor and Francis, London, UK, 2nd
edition, 2002.

[2] A. M. F. Mohammed, O. A. Attala, and T. M. Habeebullah,
“PM10 and their bio-contamination in Makkah Saudi Arabia-
case study,” International Journal of Biosensors & Bio-
electronics, vol. 2, no. 1, pp. 1–6, 2017.

[3] WHO, Ambient (Outdoor) Air Quality and Health, 2018,
https://www.who.int/news-room/fact-sheets/detail/ambient-
(outdoor)-air-quality-and-health.

[4] T. M. Habeebullah, “Health impacts of PM10 using AirQ2. 2.3
model in Makkah,” Journal of Basic and Applied Sciences,
vol. 8, pp. 259–268, 2013.

[5] S. K. M. Hassan, “Atmospheric polycyclic aromatic hydro-
carbons and some heavy metals in suspended particulate
matter in urban, industrial and residential areas in Greater
Cairo”, Ph.D. dissertation, Cairo University, Egypt, 2006.

[6] S. Munir, T. M. Habeebullah, A. M. F. Mohammed,
E. A. Morsy, M. Rehan, and K. Ali, “Analysing PM2.5 and its
association with PM10 and meteorology in the arid climate of
Makkah, Saudi Arabia,” Aerosol and Air Quality Research,
vol. 17, no. 2, pp. 453–464, Feb 2017.

[7] S. Munir, T. M. Habeebullah, A. R. Seroji, S. S. Gabr,
A. M. F. Mohammed, and E. A.Morsy, “Quantifying temporal
trends of atmospheric pollutants in Makkah (1997–2012),”
Atmospheric Environment, vol. 77, pp. 647–655, 2013.

[8] E. Harnandez, F. Martin, and F. Valero, “Statistical forecast
models for daily air particulate iron and lead concentrations
for Madrid, Spain,” Atmos. Environ, vol. 26, no. 1, pp. 107–
116, 1992.
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