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Abstract: In this study, a piezoelectric active sensing-based time reversal method was investigated
for monitoring pipeline internal corrosion. An effective method that combines wavelet packet energy
with a Convolutional Neural Network (CNN) was proposed to identify the internal corrosion status of
pipelines. Two lead zirconate titanate (PZT) patches were pasted on the outer surface of the pipeline
as actuators and sensors to generate and receive ultrasonic signals propagating through the inner
wall of the pipeline. Then, the time reversal technique was employed to reverse the received response
signal in the time domain, and then to retransmit it as an excitation signal to obtain the focused signal.
Afterward, the wavelet packet transform was used to decompose the focused signal, and the wavelet
packet energy (WPE) with large components was extracted as the input of the CNN model to rapidly
identify the corrosion degree inside the pipeline. The corrosion experiments were conducted to verify
the correctness of the proposed method. The occurrence and development of corrosion in pipelines
were generated by electrochemical corrosion, and nine different depths of corrosion were imposed
on the sample pipeline. The experimental results indicated that the classification accuracy exceeded
99.01%. Therefore, this method can quantitatively monitor the corrosion status of pipelines and can
pinpoint the internal corrosion degree of pipelines promptly and accurately. The WPE-CNN model in
combination with the proposed time reversal method has high application potential for monitoring
pipeline internal corrosion.

Keywords: pipeline corrosion; time reversal; convolutional neural network; wavelet packet

1. Introduction

Pipelines are the main choice for long-distance transportation of a large number of
petroleum products and natural gas due to their high security, strong transmission capacity,
low operating costs, and other advantages [1]. However, pipelines are faced with various
threats, among which inner wall corrosion is one of the serious threats [2–4]. Rupture,
leakage, and other problems caused by pipeline inner wall corrosion will lead to property
loss and environmental pollution, and even endanger human life [5]. Therefore, it is of
great practical significance and economic value to investigate the internal corrosion of
pipelines through continuous and regular observations [6,7].

Traditional non-destructive testing methods (NDT) for pipeline corrosion include
visual inspection, magnetic flux leakage detection, eddy current detection, ultrasonic
tomography, and X-ray technology [8–12]. Visual inspection relies on the expertise of
inspectors, and thus, its reliability of results is not guaranteed. Magnetic flux leakage
detection requires magnetization of the pipeline, and far-field eddy current detection
depends on the formation of eddy currents in the pipeline, thus, they are only appropriate
for detecting ferromagnetic materials and conductive materials. These two detection
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methods have a limited detection range and are inappropriate for the remote detection of
oil and gas transportation pipelines. The radiation method is extremely harmful to human
health, and the operation is complex and costly [13]. The aforementioned NDT technologies
usually detect pipelines at regular intervals, which makes it difficult to achieve real-time
monitoring of pipelines. Instead of traditional inspection techniques, some sophisticated
and efficient methods have been proposed as well. For example, Tan et al. proposed a
method for monitoring pipeline corrosion using distributed fiber optic sensors, which can
efficiently monitor, locate, visualize, and quantify pipeline corrosion online [14]. However,
the detection process involves a lot of processing, such as additive averaging of signals,
scanning of frequencies, and tracking of phases, and hence, it requires a long measurement
time. Colvalkar et al. utilized a pipeline inspection robot to detect and identify various
pipeline anomalies on the inner surface of the pipeline using Image Processing (I.P) and
Machine Vision (M.V). The pipeline anomalies may include blockages, bores, cracks, and
corrosion [15]. The robot provides real-time monitoring of the environment as it moves
through the pipeline. Defect detection and identification are carried out through machine
vision technology. However, when there are many bends in the pipe, the friction between
the cable and the pipe wall becomes substantial, which can seriously affect the maximum
travel distance of the robot during operation, and also can pose a series of problems such
as reliability. Therefore, it is vital to find a reliable, real-time, simple, widely used, harmless
to the human body, and low-cost method for monitoring pipeline internal corrosion.

The active sensing approach using surface-mounted or embedded transducers has
displayed great potential for the Structural Health Monitoring (SHM) of mechanical and
civil structures in real time [16–18]. The principle of this approach is based on measuring the
property changes of the propagating wave, occurring due to structural damage, by using a
pair of sensor transducers or a deployed sensor network. Lead zirconate titanate (PZT) is a
commonly used piezoelectric material with dual drive and sensing capabilities and a wide
bandwidth and is usually utilized for stress wave generation [19,20] and detection [21,22].
PZT is cheap, easy to produce, small, and light, which can be permanently arranged on
the structure to collect the feedback information of the structure in real time [23,24]. The
PZT-enabled active sensing approach provides a basis for real-time health monitoring of
pipeline structures [25–27]. Du et al. employed a stress-waves-based active sensing method
to detect real-time damage location for multi-crack pipes [28]. Zhu et al. utilized the
PZT probe for impact detection and for positioning submarine pipelines [29]. Zhang et al.
put forward a Gaussian Mixture Model–Hidden Markov Model (GMM-HMM) method
to detect pipeline leakage and crack depth by extracting the time-domain damage index
and frequency-domain damage index from signals collected by PZT sensors [30]. However,
most of the working environments of pipelines are exposed to harsh environments. In this
case, the method of real-time monitoring of pipeline structure damage based on PZT active
sensing is easily affected by noise.

In recent years, the time reversal technique has been extensively used in many fields
due to its self-adaptive focus on the solid and its high signal-to-noise ratio. In the time-
reversal approach, the sensor-received responding signal is first reversed in the time do-
main, and then the reversed signal is sent out as an excitation signal and the focused signal
is finally received [31]. Due to its strong anti-noise capability, the time reversal method has
been broadly used in the health monitoring of pipeline structures [32–34]. Zhao et al. [35]
explored the pipeline crack monitoring theory and the piezoelectric ultrasonic time reversal
method to locate the circumferential position of pipeline defects. Du et al. [36] examined
the feasibility of a pipeline corrosion pit monitoring experiment based on time reversal.
They utilized the peak amplitude of the focused signal to quantitatively evaluate pipeline
corrosion status. However, the damage information of the structure obtained only by
intuitively analyzing the waveform characteristics of the focused signal is very limited, and
it is impossible to accurately classify and assess the corrosion degree of the pipeline.

The manual feature extraction work depends on high expertise and costs too much
labor. Moreover, the final obtained features are not always effective when faced with
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unknown working conditions or application scenarios [37]. The Convolutional Neural
Network (CNN) is one of the representative algorithms of deep learning, which can auto-
matically extract waveform features and can learn inherent features of signals to perform
more accurate classification and identification of fault diagnosis [10]. In recent years, CNNs
have shown great potential in structural damage identification. Yang et al. proposed a
vision-based automated method for the identification of the surface condition of concrete
structures, which consisted of state-of-the-art pre-trained CNNs, transfer learning, and
decision-level image fusion [38]. The proposed method was capable of accurately pinpoint-
ing the crack profile with wrong predictions of limited areas. Yang et al. improved the
bird swarm algorithm to optimize the two-dimensional CNN, and the improved algorithm
exhibited great performance in predicting the torsional strength of reinforced concrete (RC)
beams [39]. Guo et al. developed a hierarchical CNN that extracted features automatically
from raw vibration data and diagnosed bearing faults plus severity at the same time [40].
Peng et al. put forward a deeper residual one-dimensional CNN for adaptively learning
fault features of the original vibration signal and obtained very high diagnostic accuracy
for the fault diagnosis of wheelset bearings in high-speed trains [41]. However, if a CNN is
used directly to classify original signals, the training of CNNs will become very challenging
as the size of the original signal dataset increases. This will also give rise to an increase in
training time and a higher requirement for model structure [42].

In this paper, a novel pipeline corrosion monitoring method based on wavelet packet
energy (WPE) and CNN is proposed, which is denoted as WPE-CNN. Compared with
other diagnostic methods, wavelet packet transform can continue to decompose the high-
frequency components that are not decomposed by wavelet transform and extract the
high-frequency features of the signal. Through this approach, the division of the signal
in the full frequency band range is realized, and a more refined analysis of the signal is
obtained [43]. The characteristic information of the original signal exists in each sub-band
signal, and the signal characteristics can be further extracted by analyzing and determining
the energy of each band. By using the sub-band energy obtained after wavelet packet
decomposition as the input of the CNN model, the size of the data samples will also
be diminished by a large proportion, thus reducing the complexity of the CNN model.
Therefore, the WPE-CNN can not only further extract features and improve the accuracy of
classification and recognition but also can greatly reduce the complexity of the CNN model
and improve the efficiency of model training.

The piezoelectric active sensing with time reversal is utilized in this paper to quan-
titatively monitor the internal corrosion of pipelines. The specific arrangement of the
experiment is as follows: First, the pipeline is corroded to different depths by electrochemi-
cal corrosion. After different corrosion depths on the PZT, the focused signal is collected
by the time reversal method and is decomposed into sub-band energy by the wavelet
packet. Then, a CNN is employed to convolve the wavelet packet energy, and the pipelines
with different corrosion degrees are identified according to the output matrix. The rest
of this paper is organized as follows: Section 2 explains the monitoring principle of the
time reversal method and the classification principle of pipeline internal corrosion degree
based on wavelet packet energy and the CNN model. Section 3 describes the experimen-
tal equipment, procedures, and results. Section 4 discusses the experimental results and
compares them with other identification models. Section 5 summarizes and assesses the
proposed method.

2. Materials and Methods
2.1. Time Reversal Technology

In applications, pipes usually work in a high-noise environment. Therefore, how to
eliminate noise is the focus of pipeline corrosion monitoring. Time reversal can form a
focus in a specific space and effectively improve the signal-to-noise ratio [44]. Therefore,
the piezoelectric combined with the time reversal method can be used to monitor pipeline
corrosion well. In this paper, two piezoelectric ceramic patches, labeled PZT1 and PZT2,
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installed on the surface of the pipeline, are used as actuators and sensors, as shown in
Figure 1.
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In the first step, the excitation signal generated by PZT1 is expressed as x(t) = Bδ(t).
The corresponding pulse response function from PZT1 to PZT2 is expressed as h (t). Then
the response signal of PZT2 is

y1(t) = x(t)× h(t) = Bh(t) (1)

where B is the coefficient of the amplitude of the excitation pulse signal. Then, in the second
step, the response signal is reversed in the time domain:

y1(−t) = Bh(−t) (2)

Then, the reversed signal y1(−t) is applied to PZT1 as excitation again, and the focused
signal y2(t) of PZT2 is

y2(t) = Bh(−t)× h(t) = BRh(t) (3)

where Rh(t) is the autocorrelation function of h(t).
According to the property of the autocorrelation function, when t = 0, the autocorrela-

tion function Rh(t) has the maximum value:

y2(0) = B
∫ ∞

−∞
h2(τ)dτ =

1
B

∫ ∞

−∞
y2

1(t)dt (4)

According to the above derivation and analysis, the spectrum of the autocorrelation
function is the square of the spectrum of the original function. That is, after time inversion,
the difference between the signal spectrum will be amplified, and the signal features will
be easier to extract.

2.2. WPE-CNN Operating Principle

The method combining WPE and CNN proposed for pipeline corrosion identification
mainly includes signal energy feature extraction and CNN classification. The structure of
the method is shown in Figure 2.

First, the focused signals acquired by PZT2 after time reversal are decomposed into
wavelet packets to obtain the energy characteristics of different frequency bands. Then, the
data are divided into the training set, the validation set, and the testing set. The training
data are input to CNN for training to obtain the classification model. Finally, the test data
are input to the trained model for classification to obtain the final classification result.
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2.3. WPE Operating Principle

Wavelet packet decomposition (WPD), a complete level-by-level decomposition of the
original signal, aims to split the signal into successive low- and high-frequency components
using a recursive filter-decimation operation, which has been proven to be a useful tool
for non-stationary signal analysis [37]. The binary tree up to the third level wavelet packet
decomposition of the original signal is shown in Figure 3.
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After each WPD, the characteristic information of the original signal is also present in
each sub-band signal. Therefore, the distribution characteristics of the energy distributed
in different sub-bands can be used as an important basis for signal identification.

Suppose the length of the original signal is N, then the data length of the discrete
signal in the decomposed signal is reduced to 2−k N, and the energy of the sub-band signal
after the wavelet packet decomposition can be expressed as

E
(

xk,m(i)
)
=

1
2−k N − 1

2−k N

∑
i=1

(
xk,m(i)

)2
(5)

where k is the number of decomposition; m = 0, 1, 2, . . . , 2 k − 1 represents the position
number of the decomposition frequency band.

The energy of the sub-band signals after wavelet packet decomposition is obtained
and normalized.

Em =
E
(

x(t)k,m
)
− E

(
x(t)k,m

)
min

E
(

x(t)k,m
)

max
− E

(
x(t)k,m

)
min

(6)

E(x(t)k,m)max is the maximum value of the energy signal in the decomposed band. E(x(t)k,m)min
is the minimum value of the energy signal in the decomposed band. Em is the energy value
after normalization.

Remarkably, there are two crucial issues for achieving the best performance in the
wavelet packet transformation: determining the optimal mother wavelet function, which
is the first wavelet, and choosing the proper decomposition level of the signal. The value
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of the norm entropy lp calculated by the cost function in Equation (7) acts as the selection
criteria to tackle the two issues mentioned above.

lp = ∑
i
|E
(

x(t)k,m
)
|p1 ≤ p ≤ 2 (7)

2.4. CNN Operating Principle

The structure of CNN in this paper is composed of an input layer, two convolution
layers, two pooling layers, a full connection layer, a dropout layer, and an output layer.
Among them, the function of the convolution layer is to adaptively extract the energy of
sub-band signals after wavelet packet decomposition [45]. Adding a pooling layer after the
convolution layer can reduce the sampling of the input features, extract significant features,
and reduce the parameters that need training while retaining the dominant features [46].
Then, the dropout layer is used to prevent overfitting. Finally, the features extracted from
the convolution layer and pooling layer are synthesized by connecting the neurons of the
full connected layer in pairs.

The super parameters of the Convolutional Neural Network directly affect the effi-
ciency and accuracy of the model, which needs to be adjusted by experience and repeated
experiments. After many tests, the Convolution Neural Network model in this paper is
shown in Table 1. The prediction results are output through the softmax classifier. In the
CNN model proposed in this paper, the iterations are 200, the learning rate is 0.001, the
dropout rate is 0.1, the activation function is Relu, and the loss function is categorical
cross-entropy.

Table 1. WPE-CNN structure parameter setting.

Network Layer Data Length @
Number of Channels

Kernel Length @
Number of Kernels

Length of
Pooling

Input 16 @ 1
Convolution layer 16 @ 32 3 @ 32

Pooling layer 8 @ 32 2
Convolution layer 8 @ 32 3 @ 32

Pooling layer 4 @ 32 2
Fully connected layer 128

Softmax 9

The performance of the final trained CNN model needed to be evaluated by corre-
sponding metrics [47]. Common evaluation metrics for classification tasks are true positive
rate (TPR) and false positive rate (FPR) [48,49], which have the following equations:

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + TN
(9)

where TP indicates that a positive sample is correctly identified as a positive sample, TN
indicates that a negative sample is correctly identified as a negative sample, FP indicates
a false positive sample (which means that a negative sample is incorrectly identified as a
positive sample), and FN indicates a false negative sample (which means that a positive
sample is incorrectly identified as a negative sample).

3. Experimental Setup and Procedures

To verify the effectiveness of the proposed method, an experimental study was carried
out. The experimental setup consists of a sample pipeline with two PZT patches mounted
on the surface as actuator and sensor, respectively, a multifunctional data acquisition device
(NIUSB-6361), and a laptop computer. The PZT patch was pasted on both sides of the outer
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surface of the pipeline sample using a quick-curing epoxy resin (brand name J-B WELD) to
protect the pipeline from water corrosion.

To simulate the occurrence and evolution of pipeline internal corrosion, Figure 4
shows the electrochemical corrosion settings designed in this paper. The main parameters
of experimental materials and devices are shown in Table 2. The graphite rod and sample
pipeline were connected to the anode and cathode of an external DC power supply (China
Delixi Electric). In addition, the output voltage of the electrochemical DC power supply
was 12 V, and the output current was set to a constant value of 3 A. A 10%NaCl solution
was used as the electrolytic solution.
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Table 2. Sample pipeline and experimental device-related parameters.

Components Parameters Values Unit

PZT transducers

Density 7500 Kg/m3

Young’s modulus 6.67 × 1010 N/m2

Piezoelectric strain
coefficients −280/620/860 10−12 m/V

Dielectric constants 3200 -
Dimensions 10 × 4 × 1 (±0.1) mm3

Q235 Steel pipeline

Outer diameter 88 mm
Inner diameter 82 mm

Length 200 mm
Density 7850 kg/m3

Elastic modulus 205,000 Mpa
Poisson ratio 0.30 -

Graphite rod Diameter 6 mm
Length 100 mm

NaCl Solution Volume 400 mL

The corrosion monitoring test was performed every 5 h after the pipeline corrosion.
The total corrosion time was 40 h. Therefore, 9 corrosion states were obtained, including no
corrosion (0 h). The corrosion states are shown in Table 3.

Table 3. Testing operating conditions.

Operating
Conditions OC1 OC2 OC3 OC4 OC5 OC6 OC7 OC8 OC9

Corrosion time (h) 0 h 5 h 10 h 15 h 20 h 25 h 30 h 35 h 40 h

After the corrosion every 5 h, the pipeline was cleaned and the inner diameter of the
pipe wall was measured with a gauge caliper 323-134-95 mm (Three quantities, China) with
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a precision of 0.01 mm. The inner diameter difference between adjacent corrosion periods
is the corroded wall thickness per unit of time.

The Control and Data Acquisition (DAQ) program in LabVIEW was run on the
computer to generate the pulse signal. The parameters of the pulse signal are shown
in Table 4. The NIUSB-6361 converts the pulse signal into an analog signal to drive the
PZT1. Subsequently, the signal propagates along the pipeline wall, and PZT2 acquires
the response signal, which is reversed in the time domain. Then, the reversed signal is
re-emitted, and the focused signal detected by PZT2 is acquired by the data acquisition
(DAQ) program. The focused signals under different corrosion degrees are automatically
stored by LabVIEW programming software.

Table 4. Parameters of the pulse waveform.

Parameter Value Unit

Amplitude 10 V
Center frequency 150 kHz
Sample frequency 1 MHz

Normalized bandwidth 0.8 -

4. Experimental Results
4.1. Data Acquisition

The corrosion process of the sample pipeline from 0 to 40 h is shown in Figure 5. The
relationship between the pipeline corrosion time and the corrosion wall thickness is shown
in Figure 6. With the increase in corrosion time, the corrosion depth gradually increases.
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The focused signals with nine corrosion degrees received by PZT2 are shown in
Figure 7. However, the nine focused signals with different degrees of corrosion are
slightly different in the time domain. It is impossible to classify the corrosion degree
of the pipeline intuitively.
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4.2. Wavelet Packet Energy Feature Extraction

The foremost task in the wavelet packet analysis is to make a choice of the most
appropriate mother wavelet function, since the results of signals from different functions
could be varied [50]. The Daubechies family (dbN), exhibiting the properties of asymmetric,
orthogonal, and biorthogonal, was adopted as the candidate mother wavelet function in
this case. The norm entropy lp calculated from Equation (7) helps to determine the most
appropriate order N of the Daubechies family. The smaller the value of the norm entropy lp

is, the better the order is. Moreover, the smaller norm entropy lp will lead to less calculation
time. Table 5 lists the norm entropy lp of the candidate Daubechies families dbN, where the
order N is from 1 to 9. As shown clearly in Table 5, db5 results in the minimum of the cost
function, which can be regarded as the best option for the mother wavelet function in this
case [51,52].

Table 5. Norm entropy lp in different order N of the Daubechies wavelet family.

Order N 1 2 3 4 5 6 7 8 9

Norm entropy lp 395.33 377.38 362.70 354.61 334.61 382.80 400.80 395.61 406.59

Table 6 lists the value of the norm entropy lp after the wavelet packet decomposition
at various decomposition levels from 1 to 9. As seen in Table 6, the db5 under five levels of
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decomposition obtains the smallest lp compared to the others. In other words, the modeling
performance under five levels of decomposition is better than others. Consequently, the
Daubechies with order N = 5 was applied as the mother wavelet packet, which was
decomposed up to five levels in this case.

Table 6. Norm entropy lp in different decomposition with db5 wavelet.

Level j 1 2 3 4 5 6 7 8 9

Norm entropy lp 580.54 497.03 426.16 365.51 313.99 380.38 367.33 352.6352 431.26

The energy of sub-band signals of 32 bands in the fifth layer was extracted from the
low-frequency sub-band to high-frequency sub-band to obtain a set of 32-dimensional
vectors. Through the feature extraction of wavelet packet energy, the differentiations of
nine signals with different corrosion degrees were improved. However, the difference is
still not obvious and difficult to distinguish intuitively, as shown in Figure 8.
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The signal energy is mostly concentrated between 10–25 segments, and there is almost
no energy distribution between 0–10 and 25–32 signals. Since wavelet packet components
with small energy are easily interfered by signal noise, these components can be ignored. It
is also reasonable to take only 10–25 segments of wavelet packet components with large
energy to approximate the original signal. Therefore, this paper intercepted 16 segments
of the signal sub-band energy between 10 and 25 as the input vector of the CNN model,
which can further improve the training efficiency and classification accuracy.

4.3. Evaluation of WPE-CNN Model for Different Corrosion Degrees

The 16 segments of sub-band energy after wavelet packet decomposition were used as
input vectors in the WPE-CNN model proposed in this paper for classifying nine kinds
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of pipeline corrosion degrees. There are 100 datasets for each corrosion degree, 60% of
which were randomly selected as the training set, 20% as the verification set, and 20% as
the testing set.

The training process of the WPE-CNN model for the pipeline corrosion degree is
shown in Figure 9. After about 46 iterations, accuracy and loss values of the training and
validation datasets were very stable, and the model started to converge. The accuracy rate
reached 99.4% and the value of the loss function finally stabilized at around 0.056.
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Figure 9. The WPE-CNN model training process: (a) accuracy (%); (b) loss.

Under different corrosion degrees, Figure 10 shows the prediction results of the WPE-
CNN model. The accuracy of each sample is 100%, 100%, 100%, 100%, 94.7%, 100%, 100%,
100%, and 90.9%. The total accuracy of the nine states is 98.30%. The method proposed in
this paper has high accuracy in classifying the internal corrosion degree of pipelines.
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4.4. Model Comparison

For comparison, the data after feature extraction were input to other commonly used
models for classification, such as the SVM model and KNN model. The SVM process was
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performed with Python, with RBF as the kernel function; the parameter coefficient g of the
kernel function was 0.625 and the penalty factor coefficient c was 0.6. K was 12 in the KNN
process. In addition, the original data without feature extraction were input into the CNN
model for classification.

To reduce experimental errors and improve the accuracy of experimental conclusions,
the WPE-CNN, CNN, the WPE-SVM, and the WPE-KNN were trained 20 times to verify the
accuracy of test samples, as shown in Figure 11. The final results show that the recognition
accuracy of the WPE-CNN is between 98.12% and 99.40%, and the training time is 4.78 s.
The recognition accuracy of the CNN is between 90.33% and 93.38%. The recognition
accuracy of the WPE-SVM is between 88.13% and 91.30%. The recognition accuracy of the
WPE-KNN is between 87.43% and 90.05%. The standard deviation of the accuracy of the
WPE-CNN is 0.4533 in 20 repetitional trainings, which is the smallest between four methods.
This fully indicates that the method proposed in this paper can effectively improve the
identification accuracy of pipeline corrosion degree and has better stability than the CNN,
WPE-SVM, and WPE-KNN.
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The training times of the four models are shown in the Table 7. Compared with the
CNN, the training efficiency of the WPE-CNN model was improved hundreds of times.
Compared with the WPE-SVM and WPE-KNN, the WPE-CNN effectively improved the
classification accuracy while consuming limited training time.

Table 7. Comparison of training time and accuracy of three models.

Method Name Training Time (s)
Accuracy (%)

Max Min Mean Std

WPE-CNN 4.78 99.40 98.12 99.01 0.4533
CNN 415.14 93.38 90.33 92.10 0.7612

WPE-SVM 2.64 91.30 88.13 89.85 0.7644
WPE-KNN 2.36 90.05 87.43 88.64 0.7592

5. Conclusions

In this paper, a new method based on time reversal combining WPE and CNN is
proposed to quantitatively identify pipeline internal corrosion. The proposed method has
low cost, simple structure, short time consumption, and high accuracy. The major findings
of the proposed approach can be summarized as follows:

1. The way of quantitatively monitoring the internal corrosion of pipelines by piezoelectric
active sensing with time reversal can be considered as a novel and cost-effective approach.
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2. The actual output of the WPE-CNN is basically consistent with the theoretical output
during the proposed approach. The proposed method can effectively shorten the
training time and greatly improve the recognition accuracy.

3. The recognition average accuracy of the WPE-CNN reaches 99.01%, which can be
effectively used for pipeline internal corrosion monitoring.

4. The recognition accuracy of the WPE-CNN is 98.12~99.40%, and the training time
of the WPE-CNN is 4.78 s. Compared with other methods based on classical deep
learning models, this method has higher diagnosis accuracy, faster training speed,
and more stable performance.

The experimental results show that it is feasible and effective to use the WPE-CNN
recognition model, based on the time reversal method, to classify the internal corrosion de-
gree of the pipeline. To further develop this new method, different lengths and diameters of
pipelines will be selected for comparative experiments. The types of corrosion of pipelines,
such as pitting and regional corrosion, will also be addressed in the following studies.
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