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A Novel Point-of-Care Smartphone 
Based System for Monitoring the 
Cardiac and Respiratory Systems
Kwanghyun Sohn1, Faisal M. Merchant2, Omid Sayadi1, Dheeraj Puppala1, 

Rajiv Doddamani1, Ashish Sahani1, Jagmeet P. Singh3, E. Kevin Heist3, Eric M. Isselbacher4 & 

Antonis A. Armoundas1,5

Cardio-respiratory monitoring is one of the most demanding areas in the rapidly growing, mobile-

device, based health care delivery. We developed a 12-lead smartphone-based electrocardiogram 
(ECG) acquisition and monitoring system (called “cvrPhone”), and an application to assess 

underlying ischemia, and estimate the respiration rate (RR) and tidal volume (TV) from analysis of 

electrocardiographic (ECG) signals only. During in-vivo swine studies (n = 6), 12-lead ECG signals were 
recorded at baseline and following coronary artery occlusion. Ischemic indices calculated from each 

lead showed statistically significant (p < 0.05) increase within 2 min of occlusion compared to baseline. 
Following myocardial infarction, spontaneous ventricular tachycardia episodes (n = 3) were preceded 
by significant (p < 0.05) increase of the ischemic index ~1–4 min prior to the onset of the tachy-
arrhythmias. In order to assess the respiratory status during apnea, the mechanical ventilator was 

paused for up to 2 min during normal breathing. We observed that the RR and TV estimation algorithms 
detected apnea within 7.9 ± 1.1 sec and 5.5 ± 2.2 sec, respectively, while the estimated RR and TV 
values were 0 breaths/min and less than 100 ml, respectively. In conclusion, the cvrPhone can be used to 
detect myocardial ischemia and periods of respiratory apnea using a readily available mobile platform.

Given the increasing prevalence of chronic disease in the United States, together with the pressure to curtail 
health care costs, more e�cient and cost e�ective methods of evaluating and monitoring patients will be essential. 
At the same time, there is an increased availability of new technologies and an ever-improving health information 
technology infrastructure. To this end, mobile-health technologies are expected to function not only as moni-
toring devices, but as essential components in the healthcare delivery1, especially among patients with chronic 
conditions2–5. Indeed, given that almost two-thirds of US adults now have a smartphone6, wireless devices have 
the potential to usher in a new era in medicine and a transition from population-level health care to personalized 
medicine.

Among the chronic diseases that a�ect the US population, cardiovascular conditions are among the most 
prevalent and costly to manage. For example, in the US alone, HF a�ects nearly 6 million people, that results in an 
estimated 1 million admissions per year, and costs more than $30 billion per year7. Recently, home telemonitoring 
interventions for patients with HF have led to a reduction in the relative risk of all-cause mortality and HF-related 
hospitalizations, compared to usual care5.

A pattern of Cheyne-Stokes respiration (CSR) has been identi�ed in up to 40% of patients with chronic HF 
and its presence has been associated with cardiac dysrhythmias8,9. Additionally, among HF patients CSR is a 
marker of worse prognosis and increased mortality, whereas a reduction in CSR is marker of a positive response 
to HF medical therapy10. Assessments of respiratory rate (RR) and tidal volume (TV) are important to deter-
mining the frequency of CSR in HF10, so real-time access to such data could be of great value in clinical practice.

Coronary heart disease is another common and chronic cardiovascular condition that a�ects more than 15 
million Americans7. It has been recognized that when managing patients with coronary heart disease, relying 
on symptoms of angina leads to a signi�cant underestimation of the true frequency of myocardial ischemia, as 
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ischemia is o�en silent. �erefore ambulatory monitoring of electrocardiographic ST-segment changes has the 
potential to detect ischemia earlier and, in turn, prompt appropriate interventions sooner, than would be other-
wise be possible11. Moreover, silent ambulatory ST-segment depression is associated with an increased incidence 
of coronary events in asymptomatic men, so routine assessment of such ST-segement depression could be used 
to better stratify populations are risk12.

Such clinical observations highlight the potential value of portable home-based devices to monitor respiratory 
and cardiovascular parameters in ambulatory populations with heart failure and coronary heart disease13–20. We 
therefore developed a wireless cardiorespiratory monitoring system based upon just a smartphone and an elec-
trocardiographic (ECG) device that was built using three commercially available components: an ECG module, 
a microcontroller board, and a Bluetooth module. �e smartphone, named “cvrPhone,” estimates the ischemic 
state of a subject in real-time based upon 12-lead ECG signals that are transmitted from the ECG device. It also 
estimates the RR and TV based on the respiration-induced periodic �uctuations of ECG signals. In this study, 
we examine the hypothesis that we can assess coronary ischemia and apneic events using only body surface ECG 
signals that are recorded and analyzed by the smartphone.

Methods
Hardware Architecture. �e ECG device is composed of an analog-to-digital (A/D) converter (ADS1298, 
Texas Instruments, Dallas, TX), a microcontroller board (Arduino Due AT91SAM3 ×  8E, Atmel, San Jose, CA), 
and a Bluetooth module (HC-05, Guangzhou HC Information Technology Co., Ltd., Guangzhou, China). �e 
AD converter ampli�es and digitizes the analog ECG signal from electrodes (Fig. 1A), and the microcontroller 
transmits the digitized ECG signal to the smartphone (Fig. 1B). Uninterrupted Bluetooth communication could 
be achieved up to 10 meters away from the smartphone.

Microcontroller Software. �e microcontroller receives digitized ECG signals from the AD converter and 
transmits them to the smartphone through Bluetooth at the user’s request. We used the open-source integrated 
development environment (IDE) Arduino 1.5.4 for the microcontroller programming. �ere are two main steps 
in the function of the embedded so�ware: �rst, initialize the AD converter and the Bluetooth module; and second, 
transmit the ECG signals upon user’s request (see Supplement Figures S1,S2).

�e settings of sampling rate, gain and reference voltage of the AD converter are 500 samples per second 
(SPS), 12 and 24 V respectively. �e Wilson Central Terminal (WCT, (RA +  LA +  LL)/3) is used as the reference 
voltage for the precordial leads. �e signal from the AD converter has 24 bit resolution, but it is reduced to 16 bit 
by dropping the upper and lower 4 bits to reduce the transmission load via Bluetooth. �e ECG signal cov-
ers ±  12.5 mV with resolution of ~0.38 µ V. �e baud rate of the Bluetooth module is 115200.

A�er the initialization, the microcontroller repeats sending ECG signals according to the user’s “actions.” 
�ere are three di�erent actions: “save,” “display.” and “stop”: (i) At “save” action, the smartphone displays ECG 
data on the screen, saves the ECG data, and calculates the ischemic index, RR and TV in real-time. �e microcon-
troller transmits the ECG signals at 500 SPS to the smartphone for the “save” action. (ii) At “display” action, the 
smartphone just displays the ECG signals on the screen, and the microcontroller transmits every 5th sample of the 
ECG signals in order to reduce the transmission load. �is 100 SPS is enough for the display on the smartphone 
screen. (iii) At “stop” action, there is no signal transmission.

Figure 1. �e smartphone-based ECG acquisition system, or “cvrPhone”. �e Bluetooth-enabled ECG 
acquisition system is composed of three commercially available parts: An analog-to-digital (AD) converter, a 
microcontroller board and, and a Bluetooth module. (A) Flow-diagram of the 12-lead ECG signals from the 
torso to smartphone. Ten electrodes are placed on the torso for the recording of 8 ECG leads (Leads I and II and 
six precordial leads). �e AD converter ampli�es and digitizes the 8 ECG leads. �en the signals are transmitted 
to the smartphone through the HC-05 Bluetooth module, and the remaining leads (Leads III, aVR, aVL and 
aVF) are calculated. (B) Real-time display of selected three ECG signals on the smartphone screen.
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Android Smartphone Application. �ere are three threads in the application (see Supplement Figure S2): 
User interface (UI), Bluetooth, and real-time calculation (RTC) threads. �e UI thread provides diverse options 
for the user, and displays the ECG signals and the estimation results. �e RTC thread estimates the ischemic 
index, RR and TV in real-time. Finally, the Bluetooth thread communicates with the microcontroller, and receives 
the ECG signals.

Animal Preparation and Data Recording. �e animal studies were approved by the institutional review 
board and the subcommittee on research animal care at Massachusetts General Hospital. All experiments were 
performed in accordance with relevant guidelines and regulations.

Six male Yorkshire swine were anesthetized and instrumented in the Animal Electrophysiology Laboratory 
at Massachusetts General Hospital, as previously described21–23. Each animal was intubated and placed on a 
mechanical ventilator, and anesthesia was maintained with iso�urane. An Ohmeda anesthesia system with an 
Ohmeda 7800 ventilator (GE, Madison, WI) was used to control TV. A respiratory monitor (Surgivet V9004, 
Smiths Medical, Dublin, OH) was used as the gold standard to measure and con�rm the RR throughout each 
respiratory intervention. �is monitor has an accuracy of ±  1 breath/min. Electrodes were placed at the standard 
12-lead ECG placement locations.

For the myocardial ischemia (MI) testing, percutaneous access to the femoral arteries and veins was achieved 
using Seldinger techniques, as previously described21,24. Regional MI was induced by balloon occlusion of the le� 
circum�ex coronary artery or the le� anterior descending artery, using standard percutaneous cardiac catheter-
ization techniques. Ischemia was validated and con�rmed by hand injections of contrast into the coronary, in 
which case no-�ow as well as electrocardiographic changes were indications of full occlusion21,24,25.

For the RR testing, the RR was changed from 6 to 14 breaths/min. For the apnea testing, the ventilator was 
suspended for up to 2 min following a few minutes of normal respiration. �e ventilator remained steady for 
~2 min at each new setting.

ECG-Processing Algorithms. A software-based QRS detection algorithm was applied, to a predeter-
mined lead, to obtain preliminary R-wave annotations. The preliminary QRS detections were refined, and 
abnormal beats, e.g., premature ventricular complexes and aberrantly conducted beats, were identi�ed using 
a template-matching QRS alignment algorithm21–24. Brie�y, for each new beat an 80 msec window centered at 
the peak of the QRS complex was formed from the preliminary beat detection; an isoelectric PR segment was 
automatically subtracted as a zero amplitude reference point (by estimating the mean voltage in a 10 msec win-
dow preceding the start of each QRS complex). A median QRS template was generated from all normal QRS 
complexes across the previous 31 beats and the beat was aligned to the QRS template using cross-correlation. 
Cross-correlation was repeated twice for each new QRS complex to ensure proper QRS alignment. A beat was 
considered abnormal if its correlation coe�cient was less than a threshold value of 0.90, or if the preceding R-to-R 
interval was at least 10% shorter than the mean R-to-R interval of the previous 7 beats.

In order to estimate the ischemic index, due to variability in the ECG morphology, ECG annotations were 
independently determined for each body surface lead. Brie�y, for each beat, initial T-wave boundaries were estab-
lished using a rate-based T-wave window formula, in which the window begins 100 msec a�er the R-wave if the 
previous R-to-R interval was greater than 770 msec, 7.8% of the R-to-R interval plus 40 msec if the R-to-R interval 
was between 320 and 770 msec, and 65 msec if the R-to-R interval was less than 320 msec. �e T-wave window 
ends 500 msec a�er the R-wave if the previous R-to-R interval was greater than 770 msec, or ends at 65% of the 
R-to-R interval if the previous R-to-R interval was shorter than 770 msec.

For the estimation of the ischemic index, T-wave boundaries were detected lead-by-lead by performing linear 
baseline adjustment across the T-wave window (using the approximate T-wave boundaries described above), 
squaring the T-wave, integrating the T-wave power, and determining new and more accurate T-wave boundaries 
at timings corresponding to 1% and 99% of the signal power respectively.

QRS boundaries were also detected employing the above method, using an initial window extending from 50 
msec prior to the QRS detection point to either 80 msec a�er the QRS detection point or to the beginning of the 
T-wave, whichever was shorter.

Respiration Rate & Tidal Volume Estimation. �e apex of the heart is stretched towards the abdomen during 
inspiration, and compressed towards the breast during expiration. In addition, �lling and emptying of lungs 
changes distribution of the thoracic impedance. �erefore, respiration generates movement of the heart and 
change of the thoracic impedance, which cause periodic amplitude modulation of the ECG signals. We used the 
root mean square (RMS) values of the ECG signals to extract this periodic modulation. �at is, we calculated the 
RMS value of each beat in an 80 msec window centered at the peak of the QRS complex; the derived RMS enve-
lope exhibited periodic oscillation22,23.

However, in this study there are a few notable improvements in the RR and TV estimation methods: (i) a rate 
corresponding to a frequency of the FFT spectrum that is <  0.03 cycles/beat was considered to be an apneic event; 
(ii) in a prior study23, the RMS value of an abnormal beat was obtained using cubic spline interpolation of normal 
beat RMS values. In this study, we modi�ed the RR estimation algorithm so that provided that the RR remains 
relatively constant (quasi-static), if there are more than 10% abnormal beats in the 32-beat window, then the cor-
responding RR is interpolated using the cubic spline method (please, see Supplement Figure S8).

Ischemia Detection. ST-segment deviation (elevation and depression) has been well established as a strong 
marker of myocardial ischemia26. �e ischemic index, which has been introduced in a previous study21, is de�ned 
as the absolute value of the ratio of ST height to the QR amplitude. �e ST height is de�ned as the mean amplitude 
calculated over the whole ST-segment above or below the isoelectric baseline, when the polarity at both ends 
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of the ST-segment is the same. If the polarity is opposite, then the longer segment is selected for the ST height 
calculation.

Statistics. Our results are presented as mean ±  standard deviation of normally distributed variables, unless 
otherwise noted.

�e Kruskal-Wallis test was used to test changes in the ischemic index from baseline to subsequent meas-
urements, at each time bin (1 min). A statistically signi�cant change is manifested by a p value less than 0.05. 
Statistical analysis was performed using MATLAB (MathWorks Inc, Natick, MA).

Results
Comparison of ECG Signals between the Smartphone and Prucka Cardiolab. In prior studies, 
we have used the Prucka Cardiolab electrophysiology system (General Electric), to record body surface ECG 
signals22,23. In this study, we developed a simple connector that allows the simultaneous recording of ECG signals 
from both Prucka Cardiolab and the Smart-Phone, from each electrode. We compared the 12 lead ECG signals 
acquired simultaneously from Prucka Cardiolab and the Smart-Phone. We have observed that the two signals 
show the same ECG morphologies in all leads (please see Supplement Figure S3).

To evaluate the noise level of cvrPhone, the noise level of every beat across all leads was calculated as the 
standard deviation of ECG values for 20 ms in a �at period between the T-wave end and the beginning of the 
following P-wave or in the middle of PR interval (see Supplement Figure S4). �e noise level of cvrPhone is sta-
tistically signi�cantly lower than the Prucka Cardiolab (Wilcoxon rank sum test, p <   =  0.001), most likely due to 
the DC power supply of cvrPhone.

Thereafter, we used previously developed algorithms for the estimation of the RR23, TV22 and ischemic 
index21, which were modi�ed for the cvrPhone described above, and for which we �rst con�rmed that their 
JAVA implementation for the Android was equivalent to the previously developed one in MATLAB (see 
Supplement, Figures S5–7).

Respiration Rate and Tidal Volume Estimation. We �rst sought to examine the ability of cvrPhone to 
track RR and TV changes using the reading in the mechanical ventilator’s display as the gold-standard. In Fig. 2A 
we present an example in which the RR was step changed randomly in the range of 6–14 breaths/min. �e esti-
mated RR values mostly show excellent agreement with the real ones (R2 =  0.97912). In Fig. 2B, the tidal volume 
was changed randomly from 0–820 ml. �e estimated TV values mostly show very good agreement with the real 
ones (R2 =  0.8517).

Apnea Evaluation. To assess the ability of cvrPhone to determine an apneic event, we suspended the ven-
tilator for a period of ~90 sec between two normal breathing periods. Figure 3A shows the estimated RR values 

Figure 2. Estimation of the respiration rate (RR) and tidal volume (TV). Di�erent RRs and TVs were 
obtained by adjusting the mechanical ventilator and using the reading in its display as the gold-standard.  
(A) �e respiration rate was randomly changed from 14 to 10 to 12 to 8 to 13 to 6 to 11 to 7 to 9 breaths/min, 
while the TV was 500 ml and the heart rate was ~122 bpm. (B) �e TV was changed from 250 to 0 to 820 to 0 to 
540 to 0 to 760 ml (marked by the thick red lines), while the RR was 14 breaths/min.
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during an apnea test; the true RR values before and a�er apnea are 9 and 14 breaths/min respectively, while the 
estimated ones exhibit a less than one breath per min error.

We then ventured to assess the time our RR estimation algorithm needed to detect apnea (zero breaths per 
min), from normal breathing. We observed that, for an initial RR of 10.2 ±  3.6 bpm (n =  5), the time our algo-
rithm needed to detect apnea was 7.9 ±  1.1 sec.

Figure 3B shows the estimated TV values during another apnea test. While RR was estimated at each 
heart beat, TV estimation was performed at each breathing cycle. During apnea, the estimated TV values 
re�ect non-ventilation �uctuations of the RMS envelope, which are very small (< 100 ml) compared to TV of 
normal breathing. �e real TV values before and a�er the apnea are 250 and 690 ml, respectively. In this par-
ticular example, the TV estimation errors before, during, and a�er apnea were 114.1 ±  80.7 ml, 0 ±  0 ml, and 
150.5 ±  168.1 ml, respectively. Overall, the error in tidal volume estimation (n =  5) before, during, and a�er apnea 
was −47.4 ±  259.7 ml, 20.9 ±  52.2 ml, and − 86.1 ±  177.4 ml, respectively.

We again sought to assess the time our TV estimation algorithm needed to detect apnea from normal breath-
ing. Given that we have previously reported22 an error in estimating the TV of ~73 ml during apnea, we used this 
number as a threshold to detect transition to apnea. We observed that for an initial TV 517.7 ±  222.0 ml (n =  5), 
the time our algorithm needed to detect apnea was 5.5 ±  2.2 sec.

Ischemia Evaluation. Figure 4A shows beat-to-beat estimation results of the ischemic index from lead V6 
following an ischemic event (time 0 min). One observes that the ischemic index starts increasing abruptly about 
75 sec a�er the occlusion. In Fig. 4B we present a 1 min running median of the ischemic index values, which as 
expected displays a smooth curve that exhibits an ~30 sec delay with respect to the timing of the beat-by-beat 
ischemic index values.

Figures 4C,D show summary results of temporal changes of the ischemic index following coronary artery 
occlusion (time > 0 min). Figure 4C includes results from 6 animals, three of which resulted in spontaneous 
ventricular tachycardia episodes during acute ischemia (these results are presented separately in Fig. 4D). Within 
two minutes from occlusion we observe (Fig. 4C) that the ischemic index, in the majority of body-surface leads, 
becomes signi�cantly (p <  0.05) higher compared to baseline. With respect to the ability of each the 12 ECG leads 
in detecting underlying ischemia, we sought to estimate the time needed the ischemic index following coronary 
artery occlusion to exceed the median + 3 stdev, of its baseline value. As expected, each lead exhibited a di�eren-
tial ability to detect the onset of ischemia, with V5 showing close to the shortest time (0.98 ±  0.87 sec) due to its 
proximity to the circum�ex coronary artery.

In 3 MI cases (an example is shown in Fig. 4D), tachycardia developed 294 ±  166 sec a�er the coronary artery 
occlusion, which was preceded by signi�cant increases of the ischemic index for about 1, 4 and 1 min, respectively.

Figure 3. Assessment of apnea. (A) Estimation of the respiration rate (RR) during an apneic event. �e RR was 
changed from 9 breaths/min to 0 breaths/min (ventilator-o�) to 14 breaths/min, and the tidal volume (TV) was 
changed from 760 ml to 0 ml (ventilator-o�) to 300 ml. (B) Estimation of the TV during an apneic event. �e 
TV was 250 and 690 ml, and the RR was 14 and 6 breaths/min, before and a�er the apneic event, respectively. 
�e apnea period occurs from 2 min and 53 sec to 4 min and 43 sec.
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In Fig. 5 we present ECG signals (leads II, AVF, V6) during the transition from sinus rhythm to ventricular 
tachycardia a�er coronary artery occlusion. Such information could alert both a physician and a patient and 
result in timely delivery of therapy and perhaps prevention of sudden cardiac death.

Discussion
We have developed a smartphone-based cardio-respiratory monitoring system (Fig. 6), called the cvrPhone, in 
which we adopted and modi�ed algorithms to estimate the respiration rate and tidal volume and to detect under-
lying ischemia that we have developed and validated in prior studies21–23.

Chronic medical conditions are becoming increasingly prevalent in the U.S., leading to increasing morbidity 
and mortality, as well as to increased healthcare expenditures. Developing novel methods of more e�ciently 
diagnosing and monitoring such chronic conditions outside the hospital or clinic setting could very likely have a 
signi�cant and favorable impact on both health and cost. Among patients with coronary heart disease, the abil-
ity to detect asymptomatic ischemic ECG changes could alert the patient and providers about the possibility of 
disease progression and impact decision making about therapeutic strategies that could potentially reduce both 
morbidity and mortality from ischemic heart disease. Moreover, when patients with coronary heart disease do 
have symptoms of chest pain, they o�en don’t know whether the symptoms are angina or not, and therefore are 
uncertain about the need to seek prompt medical attention. Indeed, for patients su�ering an acute myocardial 
infarction, a major contributor to delays in reperfusion therapy is the interval between symptom-onset and the 
decision to seek care, which re�ects patients lack of con�dence in their own ability to recognize the symptoms of 
acute myocardial infarction27. �erefore, reliable ambulatory monitoring systems that can accurately detect the 
presence of myocardial ischemia and prompt patients in real time to seek appropriate medical attention could 
potentially improve clinical outcomes in acute coronary syndromes.

Figure 4. Temporal changes of the ischemic index a�er coronary artery occlusion. (A) Beat-by-beat 
ischemic index estimation before and a�er coronary artery occlusion (t >  0 min), of lead V6. (B) One-minute, 
running median ischemic index estimation. (C) Summary results of beat-by-beat, ischemic index estimation 
(n =  9 records from 6 animals). �ere is a statistically signi�cant (p <  0.018) increase of the ischemic index a�er 
coronary artery occlusion. Each bar graph represents 5, 25, 50, 75 and 95 percentiles of ischemic indices beat-
by-beat estimated for all animals for 1 minute time span. (D) Summary results of beat-by-beat, ischemic index 
estimation preceding ventricular tachycardia (n =  3). �e ischemic index distributions that are signi�cantly 
increased a�er occlusion compared to baseline, are indicated by an asterisk (p <  0.028).
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�e ability of the cvrPhone to detect changes in respiratory physiology has the potential to improve the diag-
nosis and monitoring of CSR in patients with HF, which could, in turn, lead to better risk strati�cation or more 
timely intervention. Moreover, accurate respiratory monitoring could be used to diagnose and monitor other 
forms of sleep disordered breathing (SDB), such as obstructive sleep apnea, which is associated with a signi�cant 
increase in cardiac morbidity and mortality28,29; importantly, that risk can be reduced through the appropri-
ate use of continuous positive airway pressure28,29. In this study, we have shown that cvrPhone can successfully 
detect apneic events using the implemented RR and TV algorithms independently, with the estimated RR values 
being 0 breaths/min and the estimated TV values being less than 100 ml, during apnea (Fig. 3). However, even 
though many studies support the concept that sleep apnea in HF patients is associated with higher incidence of 
life-threatening nocturnal arrhythmias, the relationship between HF, sleep apnea and arrhythmias remains poorly 
understood. Investigation has been hampered by limited clinical data that includes both cardiac electrical activity 
and the respiratory status of the patient. In this regard, the extraction of the respiratory parameters from ECG sig-
nals, may be a potentially useful tool in understanding the pathophysiology of sleep apnea-induced arrhythmias.

Since RR/TV estimation and detection of underlying ischemia rely on processing ECG signals the amplitude 
of which depends on the orientation of the heart and the size of the torso, it is rather di�cult a priori to know 
which leads are more likely to contribute to the accurate estimation of RR/TV or the highest sensitivity in detect-
ing ischemia, in a random human.

Motion can produce signi�cant artifact that may complicate the analysis of the signals. However, under condi-
tions such that signi�cant artifact is generated every method to estimate the respiration rate/tidal volume or assess 
ischemia would be signi�cantly impacted, as well. However, we should note, that, (i) because the system is battery 
powered, as we have shown in the Online Supplement, the random noise level is smaller than a power-supplied 
commercial system; (ii) because cvrPhone communicates with the Android through Bluetooth, there are no wires 
that connect the ECG electrodes with the Android (as is currently performed in cardiac stress-testing), therefore 
motion artifact is expected to be smaller in an ambulatory patient.

Figure 5. ECG signals displaying spontaneous transition to ventricular tachycardia a�er coronary artery 
occlusion, which occurred 298 sec a�er the occlusion. 
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Relevance to existing technologies. In a hospital setting, measurement of RR/TV can be accom-
plished either directly or indirectly13–20,30–34, using specialized hardware with features that are neither practical 
nor convenient for the free-moving, ambulatory subjects, especially those with chronic conditions that live in 
under-served areas. Similarly, ECG changes manifesting underlying ischemia are measured through dedicated 
equipment that the patient is constantly connected with.

24- or 48-hour Holter monitoring has been the standard approach used in clinical practice to detect, charac-
terize and document cardiac arrhythmias, but not ischemia. However, there are some inherent limitations asso-
ciated with this technology: the observation period is too short to allow capturing of an infrequent arrhythmia. 
As a result, Holter monitors detect the arrhythmias that are responsible for symptoms, only ~10% of the time. 
Although the period of observation could be extended, serial Holter monitor recordings are impractical and 
expensive. �ese observations highlight the need for tools to monitor the respiratory and cardiac state of ambu-
latory patients with chronic conditions.

A new FDA-approved ECG patch monitor (Zio Patch), which can be worn for up to 14 days has shown 
improved clinical event detection compared with the conventional 24-hour Holter monitor35. �e fact that it 
o�ers only one lead may explain its signi�cantly lower sensitivity compared to the conventional Holter monitor. 
�e NUVANT, a wireless arrhythmia event monitor36 consists of a wearable (patch) monitoring device and a 
portable data transmission device. Unlike the Zio Patch, which records and stores all ECG data for retrospective 
arrhythmia detection, the NUVANT performs real-time analysis and transmission36. A device aimed for individ-
ual home use is the Scanadu Scout (a hockey puck–shaped device that is held between two �ngers)37, which is 
designed to generate a complete set of vital signs, including heart rate and respiratory rate and to transmit the data 
wirelessly to the patient’s Smart-Phone where it can be analyzed, and then transmitted to a provider.

However, the aforementioned devices35,36,37 cannot provide an assessment of the patient’s respiratory state, 
such as sleep disordered breathing. Furthermore, none of these devices is designed to determine heart rate and 
rhythm, by providing providing a medical grade 12-lead ECG. At the same time, since one cannot diagnose myo-
cardial infarction associated ST-elevation without a 12-lead ECG, the US National Heart Attack Alert Program 
recommends that Emergency Medical Systems provide out-of hospital 12-lead ECGs to facilitate early identi-
�cation of acute MI and that all advanced life-saving vehicles should be able to transmit 12-lead ECGs to the 

Figure 6. Real-time display of the respiration rate, tidal volume and ischemic index. Each red dot represents 
a 1 min running median estimated value obtained every 30 sec.
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hospital38. �us, it becomes imperative that the Smart-Phone based diagnostic device of the future should be 
capable of recording and transmitting 12-lead ECGs to the treating medical team.

Conclusions
In summary, we have developed a smartphone-based ECG monitoring system to detect ischemia-induced 
ST-segment deviation and to measure the RR and TV in real-time. Our in-vivo swine studies have con�rmed 
the cvrPhone’s ability to identify ST-segment changes following acute coronary artery occlusion and to detect 
apneic events from analysis of ECG signals only. Further clinical studies in humans will be needed to determine 
the accuracy and utility of such smartphone-based monitoring in the management of chronic cardiorespiratory 
conditions.

In the long-term, the innovation of cvrPhone involves the development and deployment of the first 
medical-grade 12-lead electrocardiographic (ECG) system that can stream ECG data in real-time to a person-
alized ambulatory monitoring device (such as the Smart-Phone), and for estimation of the RR/TV and minute 
ventilation (MV) from ECG signals without the need of specialized equipment and underlying ischemia. �e 
end-user (both the patient and patient-care-team) bene�ts from this technology are: (i) it will extend continuous 
respiratory monitoring to the non-ventilated patient in a way never before possible; (ii) it will provide the ability 
to quickly see the association between all three respiratory metrics (RR, TV and MV) as well as heart-rate (HR) 
in trend graphs, assisting patients and clinicians in the immediate evaluation of the patient’s respiratory system 
and changes in respiratory state that can precede respiratory depression and death; (iii) it will provide the ability 
to quickly assess an underlying ischemic episode in a trend graph and assist patients and clinicians in determin-
ing whether immediate therapy is needed in order to prevent life threatening arrhythmias and death; (iv) it will 
permit the care-team to better monitor complex outpatients under their care.
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