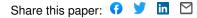


Open access • Posted Content • DOI:10.1101/2021.08.17.456653

A Novel Power-Amplified Jumping Behavior in Larval Beetles (Coleoptera: Laemophloeidae) — Source link


Bertone Ma, Gibson Jc, Seago Ae, Yoshida T ...+1 more authors

Institutions: North Carolina State University, University of Illinois at Urbana–Champaign, Carnegie Museum of Natural History, Tokyo Metropolitan University ...+1 more institutions

Published on: 17 Aug 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

• Effects of Abdominal Rotation on Jump Performance in the Ant Gigantiops destructor (Hymenoptera, Formicidae).

1 2 3	A Novel Power-Amplified Jumping Behavior in Larval Beetles (Coleoptera: Laemophloeidae)
3 4 5 6	Matthew A. Bertone*, Joshua C. Gibson*, Ainsley E. Seago, Takahiro Yoshida, and Adrian A. Smith
7	Affiliations:
8 9	MAB - Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA, <u>matt_bertone@ncsu.edu</u> , ORCID iD 0000-0001-7985-1913
10	
11 12 13	JCG - Department of Entomology, University of Illinois at Urbana-Champaign, Urbana- Champaign, IL, USA, jcgibso2@illinois.edu, ORCID iD 0000-0002-0138-3029
14 15 16	AES - Section of Invertebrate Zoology, Carnegie Museum of Natural History, Pittsburgh, PA, USA, <u>SeagoA@carnegiemnh.org</u> , ORCID iD 0000-0002-1911-9410
17 18 19 20	TY - Systematic Zoology Laboratory, Graduate School of Science, Tokyo Metropolitan University, Hachioji City, Tokyo, Japan, <u>yoshida_toritoma@yahoo.co.jp</u> , ORCID iD 0000-0002- 6589-3597
21 22 23 24	AAS - Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, NC USA & Biological Sciences, North Carolina State University, Raleigh, NC, USA, adrian.smith@naturalsciences.org, ORCID iD 0000-0002-4677-6475
25 26 27 28 29	Corresponding author: MAB *co-first authors
30	
31	
32	
33	
34	
35	
36	
37	

38 Abstract

39 Larval insects use many methods for locomotion. Here we describe a previously 40 unknown jumping behavior in a group of beetle larvae (Coleoptera: Laemophloeidae). We 41 analyze and describe this behavior in Laemophloeus biguttatus and provide information on similar observations for another laemophloeid species, Placonotus testaceus. Laemophloeus 42 43 biguttatus larvae prelude jumps by arching their body while gripping the substrate with their legs 44 over a period of 0.22 ± 0.17 s. This is followed by a rapid ventral curling of the body after the 45 larvae releases its grip that launches them into the air. Larvae reached takeoff velocities of 0.47 46 \pm 0.15 m s-1 and traveled 11.2 \pm 2.8 mm (1.98 \pm 0.8 body lengths) horizontally and 7.9 \pm 4.3 47 mm $(1.5 \pm 0.9 \text{ body lengths})$ vertically during their jumps. Conservative estimates of power 48 output revealed that not all jumps can be explained by direct muscle power alone, suggesting 49 Laemophloeus biguttatus uses a latch-mediated spring actuation mechanism (LaMSA) in which 50 interaction between the larvae's legs and the substrate serves as the latch. MicroCT scans and 51 SEM imaging of larvae did not reveal any notable modifications that would aid in jumping. 52 Although more in-depth experiments could not be performed to test hypotheses on the function 53 of these jumps, we posit that this behavior is used for rapid locomotion which is energetically 54 more efficient than crawling the same distance to disperse from their ephemeral habitat. We 55 also summarize and discuss jumping behaviors among insect larvae for additional context of 56 this behavior in laemophloeid beetles.

- 57
- 58
- 59
- 60
- 61
- 62
- 02
- 63

64 Introduction

65 The extraordinary evolutionary success of holometabolous insects can be partially 66 attributed to their partitioned life history: immatures (larvae) are often soft-bodied and minimally 67 mobile, adapted for feeding and growth, while adults are often highly mobile, enabling dispersal 68 and mate seeking. This generally sedentary lifestyle exhibited by many larvae makes them 69 highly attractive targets for predators and parasites. Holometabolous insects have evolved a 70 number of solutions to the problem of larval self-defense (e.g. concealed habitats, chemical 71 defense, parental care (Kim et al. 2016; Eisner 1970; Brandmayr 1992)), but few active means 72 of escaping predators. Rapid locomotion is inherently difficult during this life stage; terrestrial 73 larvae are typically plump and slow-moving, with short legs (e.g. Lepidoptera, most Coleoptera, 74 and many Hymenoptera) or no legs at all (Diptera, most Hymenoptera, and some Coleoptera). 75 Exceptions include a few groups containing active predators (e.g. Carabidae and Chrysopidae) 76 and triungulin or planidial larvae, in which the highly mobile first instar locates a host before 77 reverting to a largely immobile, parasitic form in subsequent instars (referred to as 78 hypermetamorphosis) (Pinto 2009).

79 Despite these limitations, several insect lineages have evolved distinctive methods of 80 rapid larval locomotion without using legs at all. The larvae of some dune-dwelling tiger beetles 81 (Coleoptera: Cicindelidae) use wind-propelled, wheel-like locomotion (Harvey and Zukoff 2011), 82 derived from an ancestral tendency to flip or somersault when attacked by parasitoid wasps 83 (Harvey and Acorn 2019). The jumping ability of some fly larvae has been informally recognized 84 for centuries, e.g. cheese skipper maggots (Piophilidae: Piophila casei (L.)), whose vigorous 85 activity has long marked the guality of a Sardinian cheese known as casu marzu (Swammerdam 86 1669; Gobbetti et al. 2018; Tunick 2014). Subsequent studies have found that larval jumping is 87 widespread in holometabolous insects, including Lepidoptera, Hymenoptera, and Diptera. 88 However, it was not until relatively recently that the actual physiological and kinematic 89 mechanisms underlying larval jumping have begun to be adequately investigated.

90 Maitland (1992) described "the only known example of jumping by a soft-bodied legless organism," in larvae of the Mediterranean fruit fly (Tephritidae: Ceratitis capitata (Wiedemann)) 91 92 (We note that, Swammerdam (1669) notwithstanding, the first detailed description of jumping 93 locomotion in a fly larva seems to be Camazine's 1986 study of Mycetophila cingulum Meigen). 94 Ceratitis larvae achieve jumps of up to 150 times their body length by curling into a loop and 95 pumping hemolymph into the abdominal segments until the resulting turgor pressure is sufficient 96 for bodily propulsion when the loop is released (Maitland 1992). This body loop is anchored by 97 attachment of the mandibles to the sclerotized anal plate, effectively forming a latch-mediated 98 spring (Longo et al. 2019). All other reported cases of jumping in maggots appear to work in a 99 similar way, albeit with varying attachment mechanisms: piophilids also form a ventral loop with 100 mandibular-anal attachment, but mycetophilid larvae bend dorsally rather than ventrally, 101 anchoring the thorax to the abdominal tergites with a velcro-like array of interlocking pegs 102 (Camazine 1986). Farley et al. (2019) demonstrated that jumping larvae of the gall midge 103 Asphondylia sp. anchor their body loop by connecting two regions of cuticle bearing velcro-like 104 microstructures.

105 Certain case-bearing or enclosed Lepidoptera larvae are capable of short, rapid hops, by 106 ventrally deflexing the body, increasing turgor pressure in selected body segments, then striking 107 the interior of their case (Thyrididae: Calindoea trifascialis (Moore)) or seedpod (Tortricidae: 108 Cydia deshaisana (Westwood); Pyralidae: Emporia melanobasis Balinsky) (Humphreys and 109 Darling 2013). Hymenopteran "jumping galls" (Cynipidae: Neuroterus saltatorius Edwards) use a 110 similar mechanism, although it is unclear whether the body loop is anchored or how the tightly-111 enclosed, conglobulated larva is able to displace enough hemolymph to store adequate energy 112 for powering jumps (Manier and Deamer 2014). All evidence from the above cited studies 113 indicates that these are not escape jumps meant to evade predators, but rather a means of 114 dispersal toward optimal pupation sites, e.g. away from direct sunlight.

115 Only a few of these larval jumping behaviors have been recorded using high-speed 116 videography, which allows for precise descriptions of takeoff sequences and measurements of 117 kinematic performance such as acceleration and power output (e.g. jumping larvae of the gall 118 midge Asphondylia sp. in Farley et al. (2019)). These kinematic measures can then be used as 119 a metric to determine if jumps can be explained as the result of direct muscle movement alone. 120 or if additional components, such as a latch-mediated spring actuation mechanism (abbreviated 121 "LaMSA"; Longo et al. 2019), are involved. Some LaMSA systems are known or thought to 122 utilize hydrostatic body deformations or deformations of a cuticular spring to amplify the power 123 output of direct muscle action (Brackenbury and Hunt 1993; Burrows et al. 2008; Patek et al. 124 2013; Tadayon et al. 2015; Farley et al. 2019). Typically, latches involving a mechanical 125 interaction of one or more body components are employed to mediate the storage and release 126 of this energy (Longo et al., 2019). However, our view of the diversity and functionality of 127 LaMSA systems in larval insects is limited, as most examples remain undescribed and 128 unresolved at the necessary level of mechanical detail.

Here we report and describe the mechanics of the first observation of latch-mediated escape jumping in a beetle larva (Coleoptera: Laemophloeidae: *Laemophloeus biguttatus* (Say)), using a novel mechanism that does not involve the looped body formation observed in many jumping insect larvae and appears to use attachment to the substrate as an anchor or latch. We also report observations of a similar behavior in another laemophloeid beetle larva, *Placonotus testaceus* (F.), and present a brief review of jumping behaviors in insect larvae.

135

136 Materials and Methods

137 Specimen collection

In October of 2019, beetle larvae were collected from under the bark of a standing, dead
Darlington oak (*Quercus hemisphaerica* W. Bartram ex Willd.) exhibiting abundant growth of the
fungus *Biscogniauxia atropunctata* (Schwein.) Pouzar (Figure 1). The tree was about twelve

141 (12) inches (30.5 cm) DBH and located on the South side of Governors Scott Courtvard on the main campus of North Carolina State University (35°47'15.0"N, 78°40'23.7"W). Numerous 142 143 beetle larvae and adults (Laemophloeidae, Monotomidae, Mycetophagidae, Latridiidae, and 144 others), flies and their larvae (Lonchaeidae, Ulidiidae), flat bugs (Aradidae), mites (Astigmatina), 145 termites (*Reticulitermes*), ants (Formicidae, including *Brachymyrmex* and *Solenopsis invicta* 146 Buren), and other arthropods were present. Various live insects were collected by MAB for 147 photos and to preserve specimens for the NC State University Insect Museum. The insects 148 were brought into the lab in small covered containers with some of the removed bark and kept 149 moist with a damp paper towel until photos could be taken. 150 The larva of another cucujoid beetle was collected by TY from under the bark of a dead. 151 broad-leaf tree with several conspecific adults and larvae on August 2nd, 2020. The tree had 152 been cut down and lying in a place with good sunlight near the parking of Narukawa Valley, 153 Kihokuchô Town, Ehime Pref., Japan (33°13'02.9"N 132°37'16.9"E). Several arthropods 154 including non-laemophloeid beetles were also found associated with the dead tree. 155 156 Larval identification 157 Larvae from the North Carolina site were presumed to be juveniles of one of the 158 abundant beetle species associated with the tree, providing an initial starting point for 159 identification. We used the Coleoptera keys in Stehr (1987) to initially identify larvae to family 160 level. For species ID we amplified a 591 bp section of the mitochondrial cytochrome c oxidase

subunit I (CO1), from a single larva, for comparison with published sequences. Primers used for

amplification of this gene were based on Hebert et al. (2004). Voucher specimens of larvae are

deposited in the NC State University Insect Museum (GBIF: <u>http://grbio.org/cool/ij62-iybb</u>).

164 Initially, the examined larva of the Japanese species was regarded as a laemophloeid 165 based on overall morphological features: the flattened body, the well sclerotized, large,

166 longitudinal abdominal segment VIII, and the small, well sclerotized, horn-like urogomphi

(Hayashi 1980; Thomas 1988). The species was identified based on the adult morphology after rearing the larva to the adult stage. The larva was transferred to a Petri dish (Becton Dickinson; diameter 50 mm, height 9 mm) for the rearing after transporting them into the laboratory. Some pieces of the bark of the dead tree, from which the larva was found, and a wet tissue squeezed tightly were placed in the dish to provide food for the larva and moisture. The dish was retained in the laboratory at room temperature until eclosion.

173

174 Jumping behavior

175 To capture the jumping behavior for analysis, L. biguttatus larvae were placed on a 176 60cm x 20cm acrylic platform affixed to a backing board with a 0.5cm² scale grid. Because 177 larvae first proved unable to perform jumps on the smooth bare acrylic (see results), a single 178 layer of standard 20 lb thickness copy paper was glued to the surface of the platform. Jumps 179 were filmed at a rate of 3,200 frames s⁻¹ at a pixel resolution of 1280 x 720 using a Phantom 180 Miro LC321s (Vision Research, Wayne, New Jersey, US), through a 60mm f/2.8 2X Ultra-Macro 181 lens (Venus Optics, Hefei, Anhui, China). Image exposure time was 0.156 ms. The platform and 182 insects were front-lit with an high-intensity LED light array (Visual Instrumentation Corporation, 183 Lancaster, CA, US). The videos were captured at a frame wide enough to include the entire 184 trajectory of the jumps. To confirm that 3,200 frames s⁻¹ was fast enough to resolve all jump-185 related rapid movements, an additional eight jumps from two individuals were filmed at 60,000 186 frames s⁻¹. To do so, we used a Photron FASTCAM SA-Z filming at a pixel resolution of 896 x 187 368 with an image exposure time of 1.05 µs under the same conditions as described above. 188 The larvae were placed on the platform, unrestrained and filmed continuously until they 189 performed a jump. Beyond being exposed to intense lighting, the larvae were not prodded or 190 stimulated to perform jumps in any way. For analysis we filmed 39 jumps across 12 individuals.

191 Of those jumps filmed, 29 jumps from 11 of the 12 individuals were performed at an angle 192 perpendicular to the camera, allowing us to perform the analyses described below. The 193 remaining 10 jumps were excluded from additional analyses. 194 After all jumps were filmed, 15 beetle larvae (including the 12 that were filmed for 195 analysis) were weighed using a balance sensitive to a tenth of a milligram (Denver Instruments) 196 PI-114N). Average mass was used for all jump calculations as due to the sensitivity of the 197 balance used, mass values could not be associated with individual beetles. 198 The larva of *P. testaceus* was placed on a Petri dish (Becton Dickinson: diameter 50) 199 mm, height 9 mm) covered with a piece of wet tissue paper at room temperature. The larval 200 jumping behavior was filmed at a rate of 30 frames s⁻¹ at a pixel resolution of 1920 x 1080 using 201 a digital camera (Canon EOS 7D) fitted with a macro-objective (MP-E 65 mm), while illuminating 202 the platform using an LED light (Hayashi-repic, HDA-TW3A). The larval locomotion was tracked 203 with the camera by hand until successfully capturing the jumping behavior.

204 Video analysis

205 Jumps of *L. biguttatus* were divided into four phases based on the movements, actions, 206 and body positioning of the larval beetles: 1) the load phase (Figure 3A), which is thought to 207 correspond to the contraction of muscles storing energy in the elastic components of the body, 208 starts when the larvae first begin to arch their body dorsally, and ends when the larvae's 209 prothoracic legs begin to lose contact with the ground; 2) the latch-decoupling phase (Figure 210 3B), which occurs as the larvae release their grip on the substrate, starts immediately after the 211 end of the loading phase and ends when the final proleg loses contact with the ground; 3) the 212 launch phase (Figure 3C), which corresponds to the transfer of stored elastic energy within the 213 bodies to kinetic energy of the jumps, begins during or after the end of the latch-decoupling 214 phase and ends when all contact between the larvae's bodies and the substrate has ceased;

and 4) the airborne phase (Figure 3D), which begins after the end of the launch phase and is
finished when the larvae land. The frames where phase transitions occurred were manually
recorded for each video and used for temporal calculations of the jumps' phases.

Tracking of the larvae's movement was completed in ImageJ ver 1.52a (Rasband et al. 2020). Videos were converted to 8-bit grayscale and thresholded to generate binary images. The movement of the larvae was then auto-tracked using the Multitracker plugin (Kuhn, 2001), which estimated the larvae's center of mass using the centroid of the converted images and traced movement of the centroid through each frame. The angles of the larvae's bodies at the end of the loading, latch-decoupling, and launch phases were measured using ImageJ's default angle tool.

The xy coordinates through time of each jump were imported into R ver 3.5.2 (R Core Team, 2020), where they were scaled using the 0.5cm² grid included in each video and reoriented so that each jump started at the origin of a cartesian grid and proceeded in the positive x and y directions. A parabola was fit to each trajectory using the *poly* function, and the maximum height (h) and horizontal distance (d) traveled over the course of the airborne phase of each jump were calculated as the y coordinate of the vertex and positive x-intercept, respectively, using the following equations:

$$h = \frac{-b}{2a} \tag{1}$$

233 $d = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (2)

234 Where a, b, and c correspond to the coefficients of the fitted parabolic equation in the form of y 235 = ax^2+bx+c . the takeoff angle (α) was calculated as:

$$\alpha = tan^{-1}(b) \tag{3}$$

237 Cumulative displacement at each time point was calculated, and the amount of displacement 238 occurring during each of the pre-airborne phases was estimated by dividing the cumulative 239 displacement between the four phases. Displacement occurring during the latch-decoupling and 240 launch phases were combined for later calculations, as the latch-decoupling phase varied 241 widely in its duration and sometimes encompassed the entirety of the launch phase, and a non-242 negligible elevation of the larvae's centers of mass occurred during the latch-decoupling phase 243 in these jumps. A spline function was fitted to the cumulative displacement data using the 244 smooth.pspline function from the pspline package in R with a smoothing spar value of 10⁻⁸ 245 (Ramsey and Ripley, 2017). This spar value was visually determined to fit the datasets 246 sufficiently while not resulting in exceptionally noisy derivative curves. Velocity and acceleration 247 curves were calculated by taking the first and second derivatives of the displacement splines, 248 respectively, and takeoff velocities and accelerations were estimated as the maximum values of 249 these curves. Jump energy (E) was calculated as:

250 $E = 0.5mv^2$ (4)

251 Where m is the body mass of the beetle and v is the takeoff velocity. Jump power (P) was 252 calculated as:

253 $P = mL^2 t^{-3}$ (5)

Where L is displacement of the center of mass attributable to the latch-decoupling and launch phases and t is the combined duration of the latch-decoupling and launch phases. Power output (O) during the latch-decoupling and launch phase was estimated by assuming that a certain proportion of the beetles' body mass was contributing to energy input during this phase:

258
$$O = Pm^{-1}c^{-1}$$
 (6)

259 Where c is the assumed proportion of the beetles' body mass powering jumps. As the exact 260 jumping mechanism (and the muscles powering it) is unknown, an upper bound for this value 261 was estimated by measuring the total volume of all muscle within the beetle's body via microCT 262 data (see below), and multiplying this by an assumed muscle density of 1060 kg m⁻³, a value 263 measured from mammalian muscle that has been previously used in calculations on insect 264 muscle power (Mendez and Keys, 1960; Ellington, 1985; Tu and Daniel, 2004). This calculation 265 revealed an estimated 9.78% of the beetles' total body mass to be composed of muscle. In 266 addition to this estimate of c, power output calculations were also performed assuming 100%, 267 75%, 50%, 32.31%, 19.60% and 4.89% of the beetles' body mass were powering jumps, to 268 account for potential errors in muscle measurements from the CT data due to shrinkage, the 269 likely possibility that not all of the beetles' muscles are powering jumps, and to calculate the 270 maximum percentage of the beetles' body mass that can be powering jumps and still not be 271 able to explain the power output of at least one of the measured jumps. For each set of power 272 output calculations the estimates were compared to the highest known value from muscle 273 (approximately 400 W kg⁻¹; Askew and Marsh 2002) to determine whether muscle contraction 274 without a spring-latch system could feasibly produce the performances measured.

To compare locomotory performance of jumping vs crawling in beetle larvae the energetic cost of transport (COT_{jump}) of jumps was calculated following the methods of Farley et al. (2019):

This assumes an energetic efficiency of 10% for the muscles powering the jumps and has units of J kg⁻¹ m⁻¹ (i.e. the amount of energy required to move one kilogram of the beetle's body mass one meter). COT for crawling was estimated by substituting the average beetle mass into the power regression equation determined for body mass vs crawling COT for legged arthropods by Full (1989):

$$COT_{crawl} = 10.8m^{-0.32}$$
 (8)

284 Where m is the average larval body mass in kilograms.

Uncertainty ratios for velocity, acceleration, energy and power were calculated using formulas provided in Longo et al. (2019). To reduce uncertainty attributable to length measurements, the 0.5cm² scale grid was measured more precisely using images of the grid taken with a Keyence VHX 5000 microscope and measured to a precision of 0.001mm. These calculations resulted in an average uncertainty of 8% for velocity, 16% for acceleration, 11% for kinetic energy, 26% for power, and 24% for mass-specific power.

291

292 MicroCT

293 To estimate muscle mass for power output calculations, as well as examine internal 294 morphology to uncover the mechanism powering the jumps, one L. biguttatus larva was 295 scanned using microCT at the Imaging Technology Group, Beckman Institute for Advanced 296 Science and Technology, University of Illinois at Urbana-Champaign. This specimen was killed 297 by being placed directly into Brasil fixative (Electron Microscope Company, Hatfield, PA) and left 298 for 24 hours. The larva was then washed several times with 70% ethanol to remove excess 299 fixative and taken through an ethanol series to 100% ethanol (1 hour each at 80%, 90%, 95% 300 and 100%). To improve contrast between the cuticle and muscle tissue the larva was stained 301 overnight in I2E immediately prior to scanning (1% iodine in 100% ethanol) and then washed 302 several times in 100% ethanol the following morning. The specimen was dried using an 303 AutoSamdri-931.GL Supercritical Point Dryer (Tousimis Research Corporation, Rockville, MD) 304 and scanned using an Xradia MicroXCT-400 scanner (Carl Zeiss, Oberkochen, Germany) with 305 power settings of 25kV voltage and 5W power. 1441 images were taken at an exposure time of 6 sec spanning a 360° view of the larva. A 4x lens was used and source and detector distances 306 307 from the specimen were 59.1 mm and 15 mm, respectively. All reconstructions and

segmentations were done in Amira ver 5.4.5 (FEI, Hillsboro, OR). In this program the
MaterialStatistics function was used to calculate total volume of the segmented muscle.

310

311 SEM

312 Three L. biguttatus larvae that were observed jumping were preserved and prepared for 313 imaging through the following sequence. First, the live larvae were killed by a one-minute soak 314 in boiling water. Next, they were transferred into 70% ethanol and stored for two weeks. 315 Following this, the larvae were taken to the point of complete dehydration with 24-hour changes 316 of room temperature 95% ethanol and three 100% ethanol changes. The larvae were then 317 critical point dried in liquid CO₂ for 15 minutes at equilibrium using a Tousimis Samdri-795 318 critical point dryer (Tousimis Research Corporation, Rockville MD) and then mounted on stubs 319 with double-stick tape and careful application of silver paint to help prevent charging in the 320 microscope. Larvae were sputter coated with approximately 50Å of gold-palladium in a Hummer 321 6.2 sputtering system (Anatech USA, Hayward CA). Larvae were imaged using a JEOL JSM-322 5900LV at 10kV. Close inspection was done on parts of the body observed to make contact with 323 the ground during the loading, latch, and launch phases of the jumps (specifically the ventral 324 side of the head, the tarsi, and the ventral aspects of the terminal sections of the abdomen) to 325 look for any potential morphological adaptations such as modified tarsal claws, friction patches, 326 or modified setae that might aid the larvae in adhering to the ground during the loading and 327 latch phases of jumps.

328

329 Results

330 Identity of larvae

The larvae collected in North Carolina, USA (Figure 2A), were initially identified as
Laemophloeidae based on morphology and the abundance of adults (*Laemophloeus biguttatus*)

(Sav): Figure 2B) associated with the fungus. Identification was furthered by comparison to 333 images from Bugguide.net (e.g. https://bugguide.net/node/view/241687/bgimage). A closer 334 335 examination of morphology (including mouthpart dissection) and keys in Stehr (1987) confirmed 336 that the larvae belonged to Laemophloeidae (as Cucujidae: Laemophloeinae in that reference). 337 Comparison of the larval CO1 sequence to published sequences (NCBI Blast) resulted in a 338 closest match (99.5%) with L. biguttatus (GenBank: XXXXXXX). 339 The larva of the Japanese laemophloeid (Figure 2C) was successfully reared to 340 adulthood (Figure 2D). The larva pupated on September 14th, 2020, and emerged on 341 September 20th, 2020. The adult was conspecific with the laemophloeid adults collected with

342 the larva and identified as *Placonotus testaceus* with reference to the taxonomic literatures

343 (Lefkovitch 1958; Yablokov-Khnzoryan 1977; Hirano 2010).

344

345 Initial observations of jumps

346 After collecting larvae from their habitat, L. biguttatus specimens were brought into the 347 lab to photograph under fluorescent lighting and room temperature conditions. Placing larvae on 348 bark collected from the larval site, MAB noticed that they would rapidly crawl a short distance 349 before jumping a short distance (Supplemental video 1). Jumps were not instantaneous; 350 instead, prior to jumping, the larvae stopped running or walking and flattened their head (the 351 mouthparts in particular) and pygidial region against the substrate. Abdominal segments 1-6 352 were then arched up off the substrate while keeping the distal portion of the abdomen and the 353 urogomphi in contact with the ground. From that posture, they rapidly curled their bodies 354 ventrally into a jump (Figure 3, Supplemental video 2). The larvae remain curled, in a complete 355 circle, for the entirety of their jumps. After making impact with the ground in the curled posture, 356 larvae bounced and rolled (if they didn't land on their side) before uncurling and resuming leg-357 powered movement. The initial observations of these behaviors, across several individuals, was 358 the motivation for pursuing slow motion video capture of the larvae.

On the observation of the larva of *P. testaceus*, four jumps were filmed. As in the jumping behavior of *L. biguttatus*, the larva also crawled a short distance and took a posture flattening the head and distal abdominal segments against the substrate before each jump. In addition, at least three of the filmed jumping behaviors were observed just after the larva was dropped from a thin brush used for placing the larva on the platform. Although distances of all *Placonotus* jumps were not measured in detail, the longest jumping distance was about 5 cm, horizontally.

366 In preparation for slow motion video capture, *L. biguttatus* larvae were placed on smooth 367 glass and acrylic platforms to test the suitability of each type as filming sets. On those 368 substrates the larvae appeared to be unable to perform their jumps. Instead of jumping, larvae 369 would struggle to grip the ground and attempts to arch their abdomen or ventrally-curl their 370 bodies into the jumping posture would result in toppling onto their side and back. Successful 371 jumps off of these smooth surfaces were never observed.

372

373 Jump performance

374

375 A summary of our analysis of high-speed video recordings of L. biguttatus jumps (n=11 376 larvae, 29 jumps total) is included in Table 1. Jump sequences began when the larvae stopped 377 walking and arched their abdominal segments off the substrate (as described above) in a 378 'loading phase' which averaged 0.22 ± 0.17 s (mean \pm standard deviation), and resulted in a 379 change in body angle (head-to-posterior) from near horizontal to 149.5 ± 16.7 degrees. From 380 this arched stance, the rapid ventral curling of their body was initiated when their tarsal claws 381 slipped or were released and lost grip with the substrate (Supplemental video 2). In all jumps 382 where there was a clear view of the legs, the legs did not lose contact with the ground all at once; instead there was a 'latch-decoupling phase' between the first leg movement and the 383 384 point at which the last legs left the ground averaging $5.5 \pm 14.4 \times 10^{-3}$ s in duration. In 26 of the

385 29 analyzed jumps, the larva was angled so that the front, middle, and hind legs were visible 386 during this period. In 23 of those jumps the front legs were the last to lose contact with the 387 ground, two sequences had a combination of middle and front legs leaving the ground last, and 388 one had middle legs losing contact last. In addition to the 29 jumps we filmed at 3,200 frames 389 per second, we captured eight jumps at 60,000 frames per second in order to verify that there 390 were no other rapid movements that set the latch release phase in motion, preceding the legs 391 losing contact. These sequences confirmed that tarsal claws losing grip with the ground is the 392 first observable motion in the latch-decoupling phase (Supplemental video 2). During the latch-393 decoupling phase the body of the larvae continues to arch further to 124.1 ± 29.6 degrees.

Table 1. Jump kinematics based on high-speed imaging from several larvae of *Laemophloeus biguttatus*. Each row corresponds to jumps of individual larvae, with averages and ranges for all jumps from all larvae included in the final two rows.

No. of jumps	Body Length (x 10 ⁻³ m)	Est. body Mass (x 10⁻⁵ kg)	Loading phase (sec)	Latch release phase (x 10 ⁻³ sec)	Launch phase (x 10 ⁻³ sec)	Launch phase distance (x 10 ⁻³ m)	Avg. mass- specific power of launch (W kg ⁻¹)	Max takeoff speed (m s ^{.1})	Kinetic energy at takeoff (x 10 ⁻⁷ J)	Takeoff angle (deg)	Total jump pitch (+/- %)	Total jump roll (+/- %)	Total jump yaw (+/- %)	Jump horizontal distance* (x 10 ⁻³ m)	Max jump height (x 10 ⁻³ m)
4	6.22	1.3	0.12 (0.05-0.16)	3.6 (1.9-5.9)	1.48 (0.31- 3.44)	1 (0.8-1.4)	118 (44-258)	0.39 (0.33-0.48)	1.03 (0.73-1.51)	106.4 (65.8- 146.4)	50 (0-100)	15.6 (-37.5-125)	28.3 (-25-138)	11.8 (6.5-17.5)	5.9 (2.3-13)
4	5.94	1.3	0.33 (0.26-0.41)	21.1 (1.3-79.7)	1.09 (0.94- 1.25)	1.2 (0.6-2.4)	334 (0.11-693)	0.51 (0.44-0.54)	1.7 (1.25-1.91)	83.7 (49.9-104)	-37.5 (-150-0)	-93.75 (-200-0)	-37.5 (-150-0)	14 (5.9-19.7)	13.2 (11.5- 14.8)
2	5.46	1.3	0.27 (0.25-0.3)	2 (1.9-2.2)	1.72 (1.56- 1.88)	1.1 (1-1.2)	229 (202-257)	0.39 (0.36-0.42)	0.99 (0.84-1.15)	95 (93.9-96.2)	-50 (-100-0)	-12.5 (-50-25)	0 (0-0)	7.5 (5.6-9.4)	8.5 (7.1-9.9)
2	6.32	1.3	0.14 (0.11-0.17)	3.9 (2.8-5)	1.56 (0.63-2.5)	1.3 (1.3-1.3)	104 (99-108)	0.29 (0.28-0.29)	0.53 (0.51-0.55)	77.5 (64.1-90.9)	n/a**	n/a	n/a	7.9 (7.3-8.5)	3.9 (3.1-4.8)
4	5.53	1.3	0.51 (0.23-0.68)	3.2 (2.2-4.7)	0.86 (0.31- 1.88)	0.9 (0.3-1.2)	159 (34-411)	0.32 (0.14-0.51)	0.78 (0.12-1.69)	56 (14.3-87.2)	25 (0-100)	-18.75 (-50-0)	70.75 (0-183)	10.3 (2.3-23.7)	4.6 (1.9-7.4)
3	5.86	1.3	0.1 (0.03-0.16)	1.1 (0.9-1.3)	1.46 (1.25- 1.56)	1.3 (0.9-1.6)	913 (545- 1206)	0.59 (0.5-0.63)	2.26 (1.64-2.62)	88.9 (68.7- 100.4)	-33.33 (-50-0)	-12.5 (-37.5-0)	-8.33 (-25-0)	13.6 (12.6-14.3)	7.3 (3.1-9.8)
1	4.24	1.3	0.3	8.8	0.63	1.4	24	0.54	1.90	62.1	0	-75	-50	11.8	7.6
1	4.88	1.3	0.15	0.6	1.56	0.9	767	0.55	1.99	73.3	-50	37.5	0	8.7	8.5
3	5.22	1.3	0.1 (0.05-0.14)	3.2 (2.2-4.1)	1.77 (1.25- 2.19)	1.2 (1-1.5)	121 (74-157)	0.46 (0.4-0.52)	1.38 (1.07-1.75)	74.5 (65-81.8)	0 (0-0)	16.67 (-50-50)	-50 (-100-0)	11.1 (9.4-14)	11.1 (8.6-14.2)
3	5.82	1.3	0.11 (0.06-0.17)	2.9 (1.9-4.7)	1.77 (0.31- 2.81)	2.5 (1.3-4)	642 (259- 1319)	0.72 (0.47-0.87)	3.62 (1.42-4.89)	95.6 (74.3- 109.6)	16.67 (-100-100)	0 (-25-25)	-41.67 (-100-0)	14 (12.1- 15.5)	3.6 (1.5- 7.7)
2	5.58	1.3	0.13 (0.09-0.17)	3 (1.3-4.7)	2.19 (1.56- 2.81)	2.1 (1.1-4)	213 (119-307)	0.63 (0.5-0.87)	2.74 (1.66-4.89)	58.9 (27.9- 109.6)	-112.5 (-125100)	0 (0-0)	0 (0-0)	9.8 (4-15.5)	11.2 (7.7-13.2)
Avg±SD	5.55±0.6	1.3	0.22±0.17	5.5±14.4	1.4±0.8	1.3±0.7	323±353	0.47±0.15	1.59±1.05	79.6±28.2	-10.2±66.6	-16.2±63.4	-3.9±65.5	11.2±4.8	7.9±4.3
Range			(0.03-0.68)	(0.63- 79.69)	(0.31- 3.44)	(0.32- 4.02)	(0.11- 1319)	(0.14-0.87)	(0.12-4.89)	(14.3- 146.4)	(-150-100)	(-200-125)	(-150-183)	(2.33- 23.75)	(1.51- 14.83)

* jumps were filmed from a single angle, so not all jumps were perfectly parallel to the plane of view and horizontal distance estimates may, therefore, be underestimated.

** rotational data unavailable as beetle collided with the wall on descent, altering normal body rotation.

394 The launch phase, or the time from when all legs have released to when all contact between 395 the body of the larvae and the substrate is gone, averaged $1.4 \pm 0.8 \times 10^{-3}$ s. This phase 396 corresponded to the elastic energy stored within the body being transferred to kinetic energy of 397 the body jumping off of the substrate. The launch phase often began during the latch-decoupling 398 phase when only some of the legs had lost contact with the substrate, and in at least one 399 instance completely overlapped with the latch release phase such that the last point of contact 400 with the ground was one of the larva's legs. During this phase larvae rapidly arched their body 401 even further to 79.6 \pm 28.2 degrees prior to takeoff, reached a maximum acceleration of 89.5 \pm 402 34.5 m s⁻² and achieved a takeoff velocity of 0.47 \pm 0.15 m s⁻¹ with the fastest takeoff velocity 403 reaching 0.87 m s⁻¹, leaving the ground at an angle of 79.6 \pm 28.2 degrees. Over the course of 404 the jump larvae were airborne for $1.3 \pm 0.7 \times 10^{-3}$ s and covered distances of 11.2 ± 2.8 mm 405 horizontally and 7.9 ± 4.3 mm vertically, equivalent to 1.98 ± 0.8 and 1.5 ± 0.9 body lengths, 406 respectively, though jump trajectories were variable with the farthest horizontal jumper traveling 407 23.75 mm (Figure 4). A cumulative displacement, velocity, and acceleration vs time plot for a 408 representative jump is shown in Figure 5.

409 Results from the microCT scan revealed a total muscle volume of 0.12 mm³ in the 410 specimen examined (Figure 6A-C). This volume had an estimated muscle mass of 0.12 mg, 411 9.78% of the average total mass of the beetle larvae filmed. Assuming that all of this muscle 412 mass is used to power jumps (likely an overestimate), the average power density during the 413 launch phase of jumps was 323 ± 353 W/kg muscle, with a maximum of 1319 W/kg muscle 414 (Figure 6D). Five of the 11 larvae filmed had at least one jump with an estimated power density 415 exceeding the maximum recorded power density for any muscle (400 W/kg), and three of those 416 five had average power densities exceeding this value (Table 1). If only half of the total muscle 417 mass (4.89% total body mass) was powering jumps, then eight of the 11 larvae had at least one 418 jump with a power density that exceeded the 400W/kg threshold (Figure 6D). It is possible that 419 total percent muscle mass may be underestimated due to shrinkage occurring during the

394 fixation process, so additional calculations of power density were done assuming 50% shrinkage of muscle (19.6% body mass composed of muscle). This still resulted in three jumps 395 396 from two larvae having power densities exceeding the 400 W/kg threshold (Figure 6D). Only 397 when the estimated muscle mass exceeded 32.31% of total body mass were power densities 398 estimates of all jumps below the 400 W/kg threshold (Figure 6D). 399 The average energetic cost of transport for jumping (COT_{jump}) across all jumps was 110 400 ± 74 J kg⁻¹ m⁻¹, compared to an estimated cost of transport for crawling (COT_{crawl}) of 825 J kg⁻¹ 401 m⁻¹ based on the power regression function for crawling arthropods calculated by Full (1989). 402 403 External and internal morphology (SEM/MicroCT) 404 SEM imaging of all body parts that were in direct contact with the substrate immediately 405 prior to a jump did not reveal evidence of any micro- or nano-scale anatomical features which 406 might be helping the larvae attach to the substrate during the loading phase of a jump (Figure 407 7). Likewise, the microCT scan revealed muscle arrangements similar to those of other insect 408 larvae (Snodgrass 1935), with the musculature of the abdominal segments consisting of a 409 series of dorso-ventral, dorsal longitudinal, and ventral longitudinal fibers (Figure 6A-C). There 410 did not appear to be any noticeable differences between abdominal segments in this 411 arrangement.

412

413 Review of jumping behavior in insect larvae

An extensive review of the literature was conducted in order to determine how common jumping behavior is within insect larvae; the results of this review are summarized in Table 2. Most authors provided a qualitative description of the jumping behavior without quantitative measurements of jump performance, but it is clear that some form of larval jumping is widespread in insects. This type of locomotion appears to have evolved in at least five orders of insects (as well as nematodes, not summarized), and is documented from at least 28 families,

- 394 including the Laemophloeidae documented herein. Given the phylogenetic distribution of
- 395 jumping across unrelated orders and families, this behavior no doubt evolved repeatedly within
- 396 holometabolous insects.

Table 2. Taxonomic distribution of jumping behavior among insect larvae.

Order	Family	Species	Life Stage	Maximum Distance	Speed	Mechanism	Host or substrate	Citation
Diptera	Acroceridae	Ogcodes pallipes Latreille	first instar/planidium			substrate-anchored cercal spring	active among host habitats; endoparasite of spider	Clausen 1940
		Ogcodes rufoabdominalis Cole	first instar/planidium			substrate-anchored cercal spring	active among host habitats; endoparasite of spider	Capelle 1966
		Pterodontia sp.	first instar/planidium			substrate-anchored cercal spring	active among host habitats; endoparasite of spider	Clausen 1940
	Cecidomyidae	Asphondylia sp.	third instar	121 mm	0.85 m/s	self-anchored loop, ventral	galls	Camazine 1986, Farley et al 2019
		Contarinia inouyei Mani	third instar			various self-anchored loops	bud galls	Tokuhisa et al 1979
		Contarinia tritici Kirby	third instar			various self-anchored loops	bud galls	Barnes 1956
		Tricholaba trifolii Rübsaamen	third instar			various self-anchored loops	inquilines in galls of <i>Dasineura</i> (Cecidomyiidae)	Milne 1961
	Chloropidae	Cadrema pallida (de Meijere)	unknown			self-anchored loop, ventral*	decaying organic matter	Bohart and Gressitt 1951
	Clusiidae	Unknown	unknown			self-anchored loop, ventral*	saproxylic	Curran 1934
	Drosophiidae	Drosophila cancellata Mather	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015, Mather 1955a, b
		Drosophila coracina Kikkawa	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015, Kikkawa & Peng 1938
		Drosophila enigma Malloch	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015, Mather 1955a, b
		Drosophila immigrans Sturtevant	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015
		Drosophila lativittata Malloch	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015, Mather 1955a, b
		Drosophila levis Mather	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015, Mather 1955a, b
		Drosophila maculosa Mather	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015, Mather 1955a, b
		Drosophila opaca Mather	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015, Mather 1955a, b
		<i>Drosophila subtilis</i> Kikkawa & Peng	late instar			self-anchored loop, ventral	decaying fruit	Marinov et al. 2015, Kikkawa & Peng 1938
		Scaptodrosophila kirki (Harrison)	late instar			self-anchored loop, ventral	decaying fruit, fungus	Marinov et al. 2015
	Lonchaeidae	Dasiops caustonae Norrbom and McAlpine	late instar	100 mm		self-anchored loop, ventral*	fresh fruit of Passiflora mollissima	Causton & Rangel 2002
		Dasiops vibrissata (Malloch)	late instar			self-anchored loop, ventral	fungus under bark of dead tree	observations during this study
		Lonchaea filifera Bezzi	late instar			self-anchored loop, ventral*	decaying organic matter	Bohart and Gressitt 1951
	Mycetophilidae	Mycetophila cingulum Meigen	last instar	150 mm	~1.0 m/s	self-anchored loop, dorsal	polypore, Polyporus squamosus	Camazine 1986
	Phoridae	Chonocephalus depressus De Meijere	last instar			self-anchored loop, ventral*	decaying organic matter	Rao 1961
	Piophilidae	Piophila casei (Linnaeus)	unknown			self-anchored loop, ventral	cheese	Swammerdam 1669
		Prochyliza xanthostoma Walker	late instar	500 mm		self-anchored loop, ventral	carrion	Bonduriansky 2002
		Stearibia nigriceps (Meigen)	late instar			self-anchored loop, ventral*	carrion	Bonduriansky 2002
		Liopiophila varipes (Meigen)	late instar			self-anchored loop, ventral*	carrion	Bonduriansky 2002
		Protopiophila latipes (Meigen)	late instar			self-anchored loop, ventral*	carrion	Bonduriansky 2002
		Parapiophila spp.	late instar			self-anchored loop, ventral*	carrion	Bonduriansky 2002
	Pipunculidae	<i>Pipunculus annulifemur</i> Brunetti**	last instar			unknown	endoparasite of Auchennorhyncha	Subramaniam 1922, Clausen 1940

	Platystomatidae	Scholastes aitapensis Malloch	unknown			self-anchored loop, ventral*	decaying plant matter, dung	Bohart and Gressitt 1951
	Sepsidae	Unknown	unknown			self-anchored loop, ventral*	dung and decaying materials	Pont 1979
	Tephritidae	Ceratitis capitata (Wiedemann)	last instar	120 mm	0.5 m/s	self-anchored loop, ventral*	fruit	Maitland, 1992
	Ulidiidae	Euxesta notata Wiedemann	last instar			self-anchored loop, ventral*	decaying plant matter	Hutchison 1916
		Notogramma cimiciforme Loew (as N. stigma)	last instar			self-anchored loop, ventral*	decaying plant matter	Bohart and Gressitt 1951
Lepidoptera	Pyralidae	<i>Emporia melanobasis</i> Balinsky	last instar			unknown	hollowed fruit	Krueger 1997
	Thyrididae	Calindoea trifascialis (Moore)	last instar			substrate-anchored loop	dipterocarp leaf	Humphreys and Darling 2013
	Tortricidae	Cydia saltitans (Westwood)	last instar			substrate-anchored loop	hollowed seed	Westwood 1857, Gilligan et al 2020
Hymenoptera	Cynipidae	<i>Neuroterus saltatorius</i> Edwards	last instar larva	30 mm		unknown	hollowed gall	Kinsey 1923, Manier and Damie 2014
	Eucharitidae	Dicoelothorax platycerus Ashmead	first instar/planidium			substrate-anchored cercal spring	active among host habitats; feed on ant larvae	Torrens 2013
		<i>Galearia latreillei</i> (Guérin- Méneville)	first instar/planidium			substrate-anchored cercal spring	active among host habitats; feed on ant larvae	Torrens 2013
		Latina rugosa (Torréns,	first			substrate-anchored cercal	active among host habitats; feed on	Torrens 2013
		Heraty, and Fidalgo)	instar/planidium first			spring substrate-anchored cercal	ant larvae active among host habitats; feed on	
		Neolirata alta (Walker)	instar/planidium			spring	ant larvae	Torrens 2013
		Neolirata daguerrei (Gemignani)	first instar/planidium			substrate-anchored cercal spring	active among host habitats; feed on ant larvae	Torrens 2013
	Ichneumonidae	<i>Bathyplectes anurus</i> (Thomson)	last instar	50 mm (vertically)		substrate-anchored spring (?)	rigid cocoon; parasitoid of alfalfa weevil	Day 1970, Saeki et al 2016
	Perilampidae	Monacon robertsi Boucek	first instar/planidium			substrate-anchored cercal spring	active among host habitat; feed on beetle pupa	Darling and Roberts 1999
	Tenthredinidae	Heterarthrus spp.	last instar			unknown	flexible cocoon of leaf tissue	Liston et al 2019
Coleoptera	Brentidae	Nanophyes sp.	late instar			unknown	Tamarix seed capsules	Crowson 1981
	Carabidae	<i>Cicindela duodecimguttata</i> Dejean	third instar			unanchored loop, dorsal flexion followed by ventral flexion	sand, soil	Harvey and Acorn 2019
		Cicindela lengi Horn	third instar			unanchored loop, dorsal flexion followed by ventral flexion	sand, soil	Harvey and Acorn 2019
		<i>Cicindela tranquebarica</i> Herbst	third instar			unanchored loop, dorsal flexion followed by ventral flexion	sand, soil	Harvey and Acorn 2019
		Habroscelimorpha dorsalis Say	third instar			unanchored loop	sand	Harvey and Zukoff 2011
		<i>Omus dejeani</i> Reiche	third instar			unanchored loop, dorsal flexion followed by ventral flexion	sand, soil	Harvey and Acorn 2019
		Tetracha carolina (Linnaeus)	third instar			unanchored loop, dorsal flexion followed by ventral flexion	sand, soil	Harvey and Acorn 2019
	Curculionidae	Conotrachelus anaglypticus (Say)	unknown	89 mm		self-anchored loop, ventral	under bark of wounded trees	Brooks and Cotton 1924
	Laemophloeidae	Laemophlous biguttatus (Say)	late instars	11.2 mm	0.47 m/s	substrate-anchored loop	fungus under bark of dead tree	this study
		Placonotus testaceus (F.)	unknown			substrate-anchored loop	fungus under bark of dead tree	this study
			first			substrate-anchored spring	endoparasite of Hemiptera	Clausen 1940
Strepsipstera	Corioxenidae	Corioxenos sp.	instar/planidium			(?)	· ·	
Strepsipstera	Corioxenidae Mengenillidae	Corioxenos sp. Eoxenos laboulbeni de Peverimhoff				(?) substrate-anchored spring (?)	endoparasite of Lepismatidae	Clausen 1940

*presumed based on other related taxa; **Skevington and Marshall (1998) note that Subramaniam's observation of jumping *P. annulifemur* must have been another genus, as *Pipunculus* only parasitizes deltocephaline cicadellids.

397 Discussion

398 Likelihood of power amplification and latch-mediated spring actuation

399 The results of our power density calculations for jumps provide a reasonable case for 400 direct muscle action alone being insufficient to explain jump power for these larvae. Although 401 the majority of jumps fall beneath our established 400 W/kg cutoff point for power amplification 402 in all scenarios examined, this cutoff point is based on measurements from muscles that have 403 been naturally selected for extraordinarily high sustained power output (bird flight muscle; 404 Askew and Marsh 2002), and it is unlikely that actual power output of the larvae's muscles are 405 that high. Additionally, combining the latch-decoupling and launch phases for power calculations 406 conservatively biased our estimates towards lower power densities, since the latch-decoupling 407 phase did not always heavily overlap with the launch phase for all jumps examined. Finally, as 408 the exact spring mechanism and the associated muscles that power the jump are currently 409 unknown, our estimations of muscle mass for power density calculations are certainly 410 overestimates, further biasing our power density towards conservatively low values. Even with 411 these conservative estimates, the fact that a non-negligible number (24%) of observed jumps 412 had power densities exceeding the 400 W/kg threshold strongly suggest that direct muscle 413 action alone is not responsible for powering jumps.

414 This study is one of very few to describe jumping behavior of beetle larvae in the 415 Polyphaga (a group of Coleoptera containing over 340,000 described species; McKenna et al. 416 2015; Table 2) and, to the best of the authors' knowledge, is a unique example of a LaMSA 417 mechanism in which the latching component requires interaction with the substrate to function 418 properly. Furthermore, it is notable that we were unable to identify any morphological 419 adaptations for latching or jumping from the SEM or microCT data, suggesting that adaptations 420 for jumping in this species may be primarily behavioral (gripping the substrate prior to 421 contracting abdominal muscles, and then releasing grip once enough energy has been 422 elastically stored) rather than morphological. This may partially explain the low estimates of

397 power density for this species compared to other LaMSA systems, including other jumping 398 larvae with highly derived jumping behaviors and morphologies (Patek et al. 2004; Burrows 399 2006, 2009; Larabee et al. 2017; Gibson et al. 2018; Farley et al. 2019; Booher et al. 2021). 400 Comparisons with closely related species that have conclusively been shown incapable of 401 jumping to see what morphological characteristics, if any, are derived and may assist in jump 402 performance in this species, as well as identifying and guantifying the characteristics of the 403 spring mechanism, are important next steps in determining whether specific morphological 404 adaptations for jumping are present that we did not detect in our current study. 405 406 Jumping Behavior in Insect Larvae 407 Larvae that exhibit jumping behavior are found in dozens of species in a variety of 408 ecological contexts (see Table 2 and references within), but there are three distinct 409 circumstances under which the evolution of jumping larvae appears to be favored: 410 1. Triungulin/planidial larvae, i.e. the active, host-seeking first instar of parasitoid 411 species. This includes those strepsipteran, dipteran, and hymenopteran larvae whose 412 first instars appear to use their cercal bristles as a spring to launch themselves onto the 413 host. This seems to be a particularly important strategy for the Acroceridae (Diptera) and 414 Eucharitidae (Hymenoptera), both of which are larval parasites of well-defended 415 predatory arthropods (spiders and ants, respectively). The ability to leap onto a host 416 undetected may be a means of avoiding detection and attack during the larva's dispersal 417 phase. 418 2. Encapsulated larvae, typically insects whose third instar or prepupal stage must seek 419 an appropriate environment for pupation without leaving the seed or leaf envelope in 420 which they have developed. This includes the "Mexican jumping bean" moth Cydia 421 saltitans, as well as several other small moth species, sawflies in the genus 422 Heterarthrus, cynipid gall wasps, and one species of ichneumonid wasp which

397 parasitizes encapsulated weevil larvae. In this type of legless leaping, the larva braces 398 itself and strikes the inner wall of its gall, seed pod, or leaf envelope hard enough to 399 move the entire capsule. Saeki et al. (2016) demonstrated that Bathyplectes larvae are 400 able to direct this seemingly random jumping movement, increasing their activity in sun 401 or heat and coming to rest in shady areas. Similar activity has been documented in other 402 encapsulated species when exposed to light or heat; thus, this type of jumping is very 403 likely a means of moving to a safe pupation habitat without exposing the larva itself to 404 predators.

405 3. Larvae at risk of [sudden] exposure, including those who feed in concealed habitats 406 that are at risk of being disturbed by predators or larger animals. This includes many 407 mycophagous species, fruit and vinegar flies, and fungus gnats. Both the cheese 408 skippers associated with casu marzu and their piophilid relatives feeding on vertebrate 409 carcasses display this behavior as well. The common thread among these taxa is that 410 their habitats – fermenting fruit, fungus, and carrion – are ephemeral and also likely to 411 attract other scavengers and predators, particularly vertebrates. Jumping may represent 412 a rapid means of escape from sudden exposure when the food source is disturbed (as 413 described in Brooks and Cotton 1924 for larvae of Conotrachelus anaglypticus). It was 414 also demonstrated by Bonduriansky (2002) that only later stage piophilid larvae jump, in 415 an attempt to move from the food source to suitable pupation sites, thus reducing 416 exposure time. Harvey and Acorn (2019) demonstrated that tiger beetle larvae, 417 unearthed from their burrows in loose, sandy soil, react violently to a simulated 418 parasitoid attack by performing "leaping somersaults."

419

420 Function of jumping behavior in Laemophloeidae

421 Due to the cryptic nature of insect larvae living under the bark of decaying plants, their 422 patchy distribution due to ephemeral or sporadic food resources, and few researchers studying

their natural history, the behaviors of many subcortical insect larvae are not well known. In fact,
while observing the fauna associated with the same tree in which *L. biguttatus* larvae were
collected, we collected a number of maggots that also were observed to jump in a species that
had not been recorded to do so (pers. obs. by MAB and AAS of *Dasiops vibrissata* Malloch,
Lonchaeidae; Table 2).

402 Although we describe the mechanics of jumping laemophloeid larvae here, one 403 important question remains: why do these larvae jump? It seems very unlikely that the jumping 404 behavior of laemophloeids is used to routinely avoid or repel predators and parasitoids, because 405 of the spatial constraints associated with living under bark or fungal structures. Another piece of 406 evidence against predator/parasite avoidance is the fact that the larvae we observed did not 407 jump when stimulated with forceps or other tools (simulating a predator attack, cf. Harvey and 408 Acorn 2019), though they did flail and direct their sharp urogomphi towards the simulated 409 attacker. This was also seen in the *Placonotus* larvae (Supplemental video1). The larvae 410 instead stopped and jumped after crawling around, without any direct stimulus. The behavior of 411 jumping laemophloeid larvae is most similar to that of mycophagous and saprophagous fly 412 larvae associated with decaying wood and carcasses (Table 2) - a response to sudden 413 exposure, intended to quickly move the insect to a safer microhabitat. Thus we speculate that 414 the function of laemophloeid jumping behavior is to aid in rapid movement to suitable habitats 415 as needed, avoiding predation or parasitism indirectly. We can envision cases where the bark of 416 rotting trees sloughs off easily, exposing the larvae to the elements and attackers. Based on our 417 COT calculations for crawling vs jumping in this species, jumping would result in a more rapid 418 and energetically less costly locomotion compared to crawling (approximately 13% COT for 419 jumping compared to crawling), and could also produce unpredictable trajectories by which the 420 larvae can escape to new sites.

421 It is also possible that larval jumping is an artifact or exaptation of another behavior.
422 During our (TY) observations of *Placonotus*, the larvae frequently exhibited a vertical prying

action in tight spaces, including subcortical habitats. This behavior appears to facilitate
movement under bark or between fungal masses, similar to the "wedge-pushing" of carabid
beetles (Evans 1977), and may use the same musculature as the jumping behavior documented
in this study.

Unfortunately, due to the paucity of live specimens for our studies and inability to
replicate more natural conditions for them to behave, we cannot fully address this point through
experimentation. We encourage future research on this question by collecting larvae of these
beetles and performing more experiments.

405

406 Acknowledgements

407 We thank Alexander Krings (NCSU) for verifying the identification of the oak species, 408 Charles Hodges and Shawn Butler (NCSU Plant Disease and Insect Clinic) for identifying the 409 fungus and amplifying the CO1 gene from the *Laemophloeus* larva, respectively. Valerie K. 410 Lapham and the Center for Electron Microscopy (NCSU) for assistance in SEM imaging. We 411 thank Prof. Andrew Suarez for providing funds to pay for the microCT scan. We thank Prof. 412 Shelia Patek and Justin Jorge for access to and assistance with high-speed camera imaging 413 equipment. TY was partly supported by Research Fellowships of the Japan Society for the 414 Promotion of Science for Young Scientists (JSPS Research Fellowships for Young Scientists, 415 PD: JP19J00167).

416

417 Author Contributions

Investigation: MAB, JCG, AAS; Methodology: MAB, JCG, AAS; Conceptualization: MAB, JCG,
AES, TY, AAS; Formal Analysis: JCG, AAS; Writing – Original Draft Preparation: MAB, JCG,

420 AES, TY, AAS; Writing – Review & Editing: MAB, JCG, AES, TY, AAS

- 421
- 422

397 References:

- Askew, G. N. and Marsh, R. L. (2002). Muscle designed for maximum short-term power
 output: quail flight muscle. J. Exp. Biol. 205, 2153-2160.
- 400 2. Barnes, H. F. (1956). Gall Midges of economic Importance. Yol. VII. Gall Midges of
- 401 Cereal Crops. Gall Midges of economic Importance. Yol. VII. Gall Midges of Cereal402 Crops.
- 3. Bohart, G. E., & Gressitt, J. L. (1951). Filth-inhabiting Flies of Guam. Bernice P. Bishop
 Museum, Bulletin 204.
- 405
 4. Bonduriansky, R. (2002). Leaping behaviour and responses to moisture and sound in
 406
 407-656.
- 407 5. Booher, D. B., Gibson, J. C., Liu, C., Longino, J. T., Fisher, B. L., Janda, M., Narula, N.,
- 408 Toulkeridou, E., Mikheyev, A. S., Suarez, A. V. and Economo, E. P. (2021). Functional
- 409 innovation promotes diversification of form in the evolution of an ultrafast trap-jaw
- 410 mechanism in ants. *PLoS Biology*, 19(3), e3001031.
- 411 6. Brackenbury, J. and Hunt, H. (1993). Jumping in springtails: mechanism and dynamics.
 412 *Journal of Zoology, London*, 229, 217-236.
- 413 7. Brandmayr, P. (1992). Short review of the presocial evolution in Coleoptera. *Ethology*414 *Ecology & Evolution*, 4(sup1), pp.7-16.
- 8. Brooks, F. E., & Cotton, R. T. (1924). The cambium curculio, Conotrachelus
 anaglypticus Say. Journal of Agricultural Research. 28: 377-386.
- 417 9. Burrows, M. (2006). Jumping performance of froghopper insects. *Journal of*
- 418 *Experimental Biology*, 209, 4607-4621.
- 419 10. Burrows, M. (2009). Jumping performance of planthoppers (Hemiptera: Issidae). *Journal*420 *of Experimental Biology*, 212, 2844-2855.

397	11.	Burrows, M., Shaw, S. R. and Sutton, G. P. (2008). Resilin and chitinous cuticle form a
398		composite structure for energy storage in jumping by froghopper insects. BMC Biology,
399		6, 41. doi:10.1186/1741-7007-6-41.
400	12.	Camazine, S. (1986). Leaping locomotion in Mycetophila cingulum (Diptera:
401		Mycetophilidae): prepupation dispersal mechanism. Annals of the Entomological Society
402		of America, 79(1), 140-145.
403	13.	Capelle, K. J. (1966). Observations on the life history of Ogcodes rufoabdominalis in
404		Northern Utah (Diptera: Acroceridae). Journal of the Kansas Entomological Society, 641-
405		649.
406	14.	Causton, C. E., & Rangel, A. P. (2002). Field observations on the biology and behaviour
407		of Dasiops caustonae Norrbom and McAlpine (Dipt., Lonchaeidae), as a candidate
408		biocontrol agent of Passiflora mollissima in Hawaii. Journal of Applied Entomology,
409		126(4), 169-174.
410	15.	Clausen, C. P. (1940). Entomophagous insects. McGraw-Hill book Company,
411		Incorporated.
412	16.	Cook, J. L. (2014). Review of the biology of parasitic insects in the order Strepsiptera.
413		Comparative Parasitology, 81(2), 134-151.
414	17.	Crowson, R. A. 1981. The biology of the Coleoptera. Academic Press, London, pp. 802
415	18.	Curran, C. H., (1934) The families and genera of North American Diptera, New York.
416	19.	Darling, D. C., & Roberts, H. (1999). Life history and larval morphology of Monacon
417		(Hymenoptera: Perilampidae), parasitoids of ambrosia beetles (Coleoptera:
418		Platypodidae). Canadian Journal of Zoology, 77(11), 1768-1782.
419	20.	Day, W. H. (1970). The survival value of its jumping cocoons to Bathyplectes anurus, a
420		parasite of the alfalfa weevil. Journal of Economic Entomology, 63(2), 586-589.
421	21.	Eisner, T. (1970). Chemical defense against predation in arthropods. In Chemical
422		ecology (pp. 157-217). Academic Press.

- 22. Ellington, C. P. (1985). Power and efficiency of insect flight muscle. J. Exp. Biol. 115,
 293-304.
- 399 23. Evans, M. E. G. (1977). Locomotion in the coleoptera adephaga, especially carabidae.
 400 Journal of Zoology, 181(2), 189-226.
- 401 24. Farley, G. M., Wise, M. J., Harrison, J. S., Sutton, G. P., Kuo, C., & Patek, S. N. (2019).
 402 Adhesive latching and legless leaping in small, worm-like insect larvae. Journal of
- 403 Experimental Biology, 222(15), jeb201129.
- 404 25. Full, R. J. (1989). Mechanics and energetics of terrestrial locomotion: bipeds to
- 405 polypeds. In *Energy Transformations in Cells and Animals* (ed. W. Wieser and E.
- 406 Gnaiger), pp. 175-182. Stuttgart" Thieme Press.
- 407 26. Gibson, J. C., Larabee, F. J., Touchard, A., Orivel, J. and Suarez, A. V. (2018). Mandible
 408 strike kinematics of the trap-jaw ant genus *Anochetus* Mayr (Hymenoptera: Formicidae).
 409 *Journal of Zoology*, 306, 119-128.
- 410 27. Gilligan, T. M., Brown, J. W., & Baixeras, J. (2020). Immigrant Tortricidae: Holarctic
 411 versus Introduced Species in North America. Insects, 11(9), 594.
- 412 28. Gobbetti, M., Neviani, E., & Fox, P. (2018). The History and Culture of Italian Cheeses in
- 413 the Middle Ages. In The Cheeses of Italy: Science and Technology (pp. 13-37).
- 414 Springer, Cham.
- 415 29. Harvey, A. W., & Acorn, J. H. (2019). Leaping somersaults by larvae are
- 416 phylogenetically widespread and likely primitive for tiger beetles (Coleoptera: Carabidae:
- 417 Cicindelinae). The Coleopterists Bulletin, 73(2), 451-457.
- 418 30. Harvey, A. W., and S. Zukoff. 2011. Wind-powered wheel locomotion, initiated by
- 419 leaping somersaults, in larvae of the southeastern beach tiger beetle (Cicindela dorsalis
- 420 media). PLOS One 6(3):e17746. DOI: 10.1371/journal.pone.0017746.
- 421 31. Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten
- 422 species in one: DNA barcoding reveals cryptic species in the neotropical skipper

- 397 butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences,
- 398 101(41), 14812-14817.
- 399 32. Hirano, Y. 2010. Cucujoidea of Japan, vol. 2 Silvanidae, Byturidae, Biphyllidae. Roppon400 Ashi Entomological Books, Tokyo, Japan.
- 401 33. Humphreys, K., & Darling, D. C. (2013). Not looking where you are leaping: a novel
- 402 method of oriented travel in the caterpillar Calindoea trifascialis (Moore)(Lepidoptera:
- 403 Thyrididae). Biology letters, 9(5), 20130397.
- 404 34. Hutchison, R.H., 1916. Notes on the larvae of *Euxesta notata* Wied. Proc. Ent. Soc.
- 405 Wash. 18:171-177
- 406 35. Jan Swammerdam, Historia generalis ofte algemeene verhandeling der bloedeloose
 407 dierkens, (Utrecht: Van Dreunen, 1669)
- 408 36. Kikkawa H, Peng F. 1938: Drosophila species of Japan and adjacent localities.
- 409 Japanese Journal of Zoology, 7: 507-552.
- 410 37. Kim, S., Kaila, L., & Lee, S. (2016). Evolution of larval life mode of Oecophoridae
- 411 (Lepidoptera: Gelechioidea) inferred from molecular phylogeny. *Molecular Phylogenetics*412 *and Evolution*, *101*, 314-335.
- 413 38. Kinsey, A. C. (1923). The gall wasp genus Neuroterus (Hymenoptera) (Vol. 10).
- 414 Bloomington, Ind.: sn.
- 415 39. Krueger, M. (1997). On the correct authorship of Emporia melanobasis, the jumping
- 416 bean moth (Lepidoptera: Pyralidae: Phycitinae). African entomology, 5(2), 364-365.
- 40. Kuhn, J. (2001). Multitracker plugin. ImageJ website. Available:
- 418 http://rsbweb.nih.gov/ij/plugins/multitracker.html. Accessed 2021 April 12.
- 419 41. Larabee, F. J., Gronenberg, W. and Suarez, A. V. (2017). Performance, morphology and
- 420 control of power-amplified mandibles in the trap-jaw ant *Myrmoteras* (Hymenoptera:
- 421 Formicidae). Journal of Experimental Biology, 220, 3062-3071.

397	42. Lefkovitch, L. P. (1959). A revision of the European Laemophloeinae (Coleoptera:
398	Cucujidae). Transactions of the Royal entomological Society of London, 111(5), 95-118.
399	43. Liston, A., Mutanen, M., & Viitasaari, M. (2019). On the taxonomy of Heterarthrus
400	(Hymenoptera, Tenthredinidae), with a review of the West Palaearctic species. Journal
401	of Hymenoptera Research, 72, 83.
402	44. Longo, S. J., Cox, S. M., Azizi, E., Ilton, M., Olberding, J. P., St Pierre, R. and Patek, S.
403	N. (2019). Beyond power amplification: latch-mediated spring actuation is an emerging
404	framework for the study of diverse elastic systems. Journal of Experimental Biology, 222:
405	jeb197889 doi: 10.1242/jeb.197889.
406	45. Maitland D. 1992: Locomotion by jumping in the Mediterranean fruitfly larva Ceratitis
407	capitata. Nature, Lond., 355: 159-161.
408	46. Manier, S., & Deamer, D. (2014). Jumping galls: a novel mechanism for motility. Journal
409	of insect behavior, 27(6), 716-721.
410	47. Manier, S., & Deamer, D. (2014). Jumping galls: a novel mechanism for motility. Journal
411	of insect behavior, 27(6), 716-721.
412	48. Marinov, M., Li, D., & Bennett, S. (2015). An observation of leaping behaviour in larvae
413	of Drosophilidae (Diptera). The Wētā, 50, 30-37.
414	49. Mather W. 1955a: The genus Drosophila (Diptera) in eastern Queensland. I. Taxonomy.
415	Australian Journal of Zoology, 3(4): 545-582.
416	50. Mather W. 1955b: The genus Drosophila (Diptera) in eastern Queensland. II. Seasonal
417	changes in a natural population 1952-1953. Australian Journal of Zoology, 4(1): 65-75.
418	51. Mckenna, D. D., Wild, A. L., Kanda, K., Bellamy, C. L., Beutel, R. G., Caterino, M. S.,
419	& Farrell, B. D. (2015). The beetle tree of life reveals that Coleoptera survived
420	end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution.
421	Systematic Entomology, 40(4), 835-880.

- 397 52. Mendez, J. and Keys, A. (1960). Density and composition of mammalian muscle.
- 398 Metabolism, 9, 184-188.
- 399 53. Milne, D. L. (1961) The function of the sternal spatula in gall midges 1. Proceedings of
- 400 the Royal Entomological Society of London. Series A, General Entomology. Vol. 36. No.
- 401 7-9. Oxford, UK: Blackwell Publishing Ltd, 1961.
- 402 54. Patek, S. N., Korff, W. L. and Caldwell, R. L. (2004). Deadly strike mechanism of a
- 403 mantis shrimp. *Nature*, 428, 819-820.
- 404 55. Patek, S. N., Rosario, M. V. and Taylor, J. R. A. (2013). Comparative spring mechanics
- 405 of mantis shrimp. *Journal of Experimental Biology*, 216(7), 1317-1329.
- 406 56. Pinto, John D. "Hypermetamorphosis." *Encyclopedia of Insects*. Academic Press, 2009.
 407 484-486.
- 408 57. Pont, A. C. (1979). Sepsidae Diptera Cyclorrhapha, Acalyptrata. Handbooks for the
 409 Identification of British insects 10 (5c): 35 pp.
- 410 58. R Core Team. (2020). R: A language and environment for statistical computing. R
- 411 Foundation for Statistical Computing, Vienna, Austria. Available: <u>https://www.R-</u>
- 412 project.org/. Accessed 2021 April 12.
- 413 59. Ramsey, J. and Ripley, B. (2017). Pspline: Penalized smoothing splines. R package
- 414 version 1.0-18. Cran.R-project website. Available: <u>https://CRAN.R-</u>
- 415 project.org/package=pspline. Accessed 2021 April 12.
- 416 60. Rao, Y. R. (1961). Notes On The Life-History and Habits of Chonocephalus depressus
- 417 De Meijere (Diptera: Phoridae) In South India. In Proceedings of the Royal
- 418 Entomological Society of London. Series A, General Entomology (Vol. 36, No. 10-12, pp.
- 419 163-167). Oxford, UK: Blackwell Publishing Ltd.
- 420 61. Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
 421 https://imagej.nih.gov/ij/, 1997-2020.

- 397 62. Saeki, Y., Tani, S., Fukuda, K., Iwase, S. I., Sugawara, Y., Tuda, M., & Takagi, M.
- 398 (2016). Costs and benefits of larval jumping behaviour of Bathyplectes anurus. The
- 399 Science of Nature, 103(1-2), 1.
- 400 63. Skevington, J., & Marshall, S. A. (1998). Systematics of New World Pipunculus (Diptera,
 401 Pipunculicidae). Entomological Society of America.
- 402 64. Snodgrass, R. E. (1935). Principles of Insect Morphology. McGraw Hill, London and New
 403 York
- 404 65. Stehr, F. W. (1987) Immature insects, Vol. 2. Kendall/Hunt, Dubuque, IA.
- 405 66. Subramaniam, T. V. (1922). Some natural enemies of mango leaf-hoppers (Idiocerus
 406 spp.) in India. Bulletin of Entomological Research, 12(4), 465-467.
- 407 67. Tadayon, M., Amini, S., Masic, A. and Miserez, A. (2015). The mantis shrimp saddle: A
- 408 biological spring combining stiffness and flexibility. Advanced Functional Materials,
- 409 25(41), 6437-6447.
- 410 68. Tokuhisa, E., Nagai, S., & Yukawa, J. (1979). Jumping behaviour of the larvae of the
- Japanese cedar gall midge, Contarinia inouyei Mani (Diptera: Cecidomyiidae). Konchu.=
 Kontyu.
- 413 69. Torréns, J. (2013). A review of the biology of Eucharitidae (Hymenoptera: Chalcidoidea)
 414 from Argentina. Psyche, 2013.
- 415 70. Tu, M. S. and Daniel, T. L. (2004). Cardiac-like behavior of an insect flight muscle. J.
 416 Exp. Biol. 207, 2455-2464.
- 417 71. Tunick, M. H. (2014). The Science of Cheese. Oxford University Press.
- 418 72. Westwood, J.O. Meeting minutes from Monday, 18 May. Proc. Ashmolean Soc. Oxf.
 419 1857, 35, 137–138.
- 420 73. Yablokov-Khnzoryan, S. M. 1977. Beetles of the tribe Laemophloeini (Coleoptera,
- 421 Cucujidae) in the fauna of the USSR. I. *Russkoe Entomologischeskoe Obozrenie* 56:
- 422 610–624. [In Russian]

397 74. Young, G. R. (1987). Notes on the life history of Stichotrema dallatorreanum Hofeneder 398 (Strepsiptera: Myrmecolacidae) a parasite of Segestes decoratus Redtenbacher 399 (Orthoptera: Tettigoniidae) from Papua New Guinea. General and Applied Entomology: 400 The Journal of the Entomological Society of New South Wales, 19, 57-64. 401 402 Figure 1. A: Location of the Darlington oak (Quercus hemisphaerica W. Bartram ex Willd.) 403 exhibiting abundant growth of the fungus Biscogniauxia atropunctata (Schwein.) Pouzar where 404 the beetles and larvae of *Laemophloeus biguttatus* were collected; B&C: Images showing the 405 growth of the fungus and peeling bark (October of 2019; photos by MAB) 406 407 Figure 2. Habitus images of known Laemophloeidae with jumping larvae: A: larva of 408 Laemophloeus biguttatus; B: same, adult; C: larva of Placonotus testaceus, D: same, adult. 409 (A&B: taken by MAB; D&C: taken by TY) 410 411 Figure 3: Laemophloeus biguttatus jump sequences (A-C and D are separate jumps) taken 412 from videos filmed at 3,200 frames per second. A-C: loading, release, and launch phases of a 413 jump, times listed for the first and last pictured body position; D: complete jump trajectory. A: 414 loading phase, 0.119 seconds elapse between top and bottom body postures. Bottom image is 415 the frame directly preceding the top larval image in B. B: jump release sequence when legs lose 416 grip on substrate, each larval image is a single sequential frame and only 0.625 ms separate the 417 top and bottom image. C: launch phase capturing the moment the larva leaves the ground and a 418 mid-air posture. 5.31 ms separate the bottom image from the top. The bottom image in panel C 419 is 1.8 ms after the bottom image in panel B. D: the entire sequence spans 0.081 seconds, noted 420 times pertain to the first, top, and last of the sequential images, and the scale bar pertains only 421 to this panel. 422

Figure 4: trajectories of all observed jumps of *L. biguttatus*. Trajectories that share colors
correspond to different jumps of the same larva.

399

Figure 5: Kinematic measurements of the jump of a beetle pictured in Figure 3D. Loading phase is shown in grey, latch-decoupling phase shown in light blue, and launch phase ending when the beetle loses all contact with the ground is shown in purple. Dark blue on the displacement graph denotes actual data points while the black line represents the fitted spline function.

405

406 **Figure 6:** Estimate of the contribution of muscle power in *L. biguttatus* jumps and evidence of a 407 power amplification system. Panel A-C: MicroCT whole-body imaging and isolation of muscles 408 throughout the body cavity used to calculate total muscle mass. Scale bars denote 1mm. Panel 409 D: power density (W/kg muscle) of jumps assuming differing proportions of the beetles' total 410 body mass is being used to power jumps. Total body muscle mass was estimated to be 9.78% 411 of the beetle's total body mass based on microCT data. At that mass estimate, using an 412 overestimate that all of beetles muscles are involved in powering a jump, the power density for 7 413 of the 29 jumps we analyzed are beyond what can be explained by direct muscle contraction 414 alone (those that are above the red dashed line), indicating the involvement of a power 415 amplification mechanism. The red dashed line is reference to the 400 W kg⁻¹ high-power 416 capability of vertebrate flight muscle (Askew & Marsh, 2002). If the muscles powering the jumps 417 constitute more than 32.31% of the total body weight (left of the grey dashed line), then all 418 analyzed jumps can be explained by direct muscle contraction alone.

419

Figure 7. Representative SEM images of *Laemophloeus biguttatus* body parts in direct contact
with the substrate immediately prior to a jump. A: ventral surface of the head; B: detail of
mouthparts; C: Ventral surface of the last abdominal segment and urogomphi; D: detail of last

abdominal segment and urogomphi; E: Ventral view of front and middle legs slightly bent
inwards; F: Detail of front right tarsal claw. Body surface debris and fungal spores evident on all
images.

400

401 **Supplemental Video 1:** Real-time (30 frames per second image capture and playback) of

402 jumping behavior observed in *Laemophloeus biguttatus* and *Placonotus testaceus*. In order of

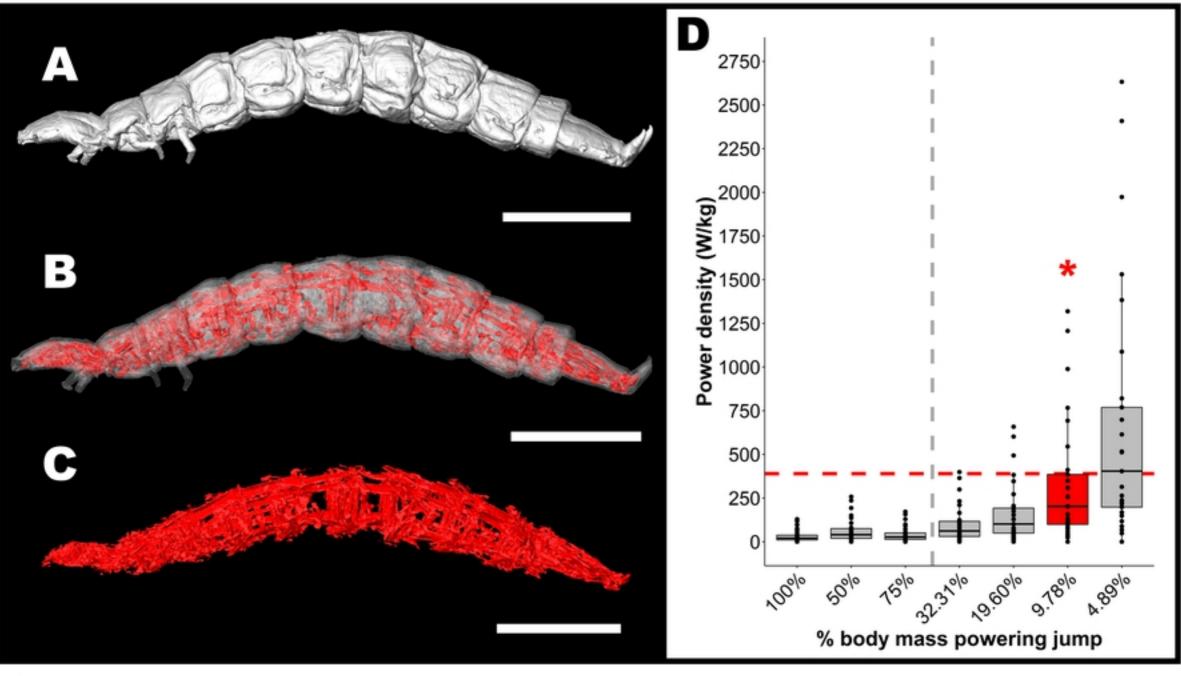
403 appearance: 1: initial observation of *L. biguttatus* jumping on natural substrate; 2: full *L*.

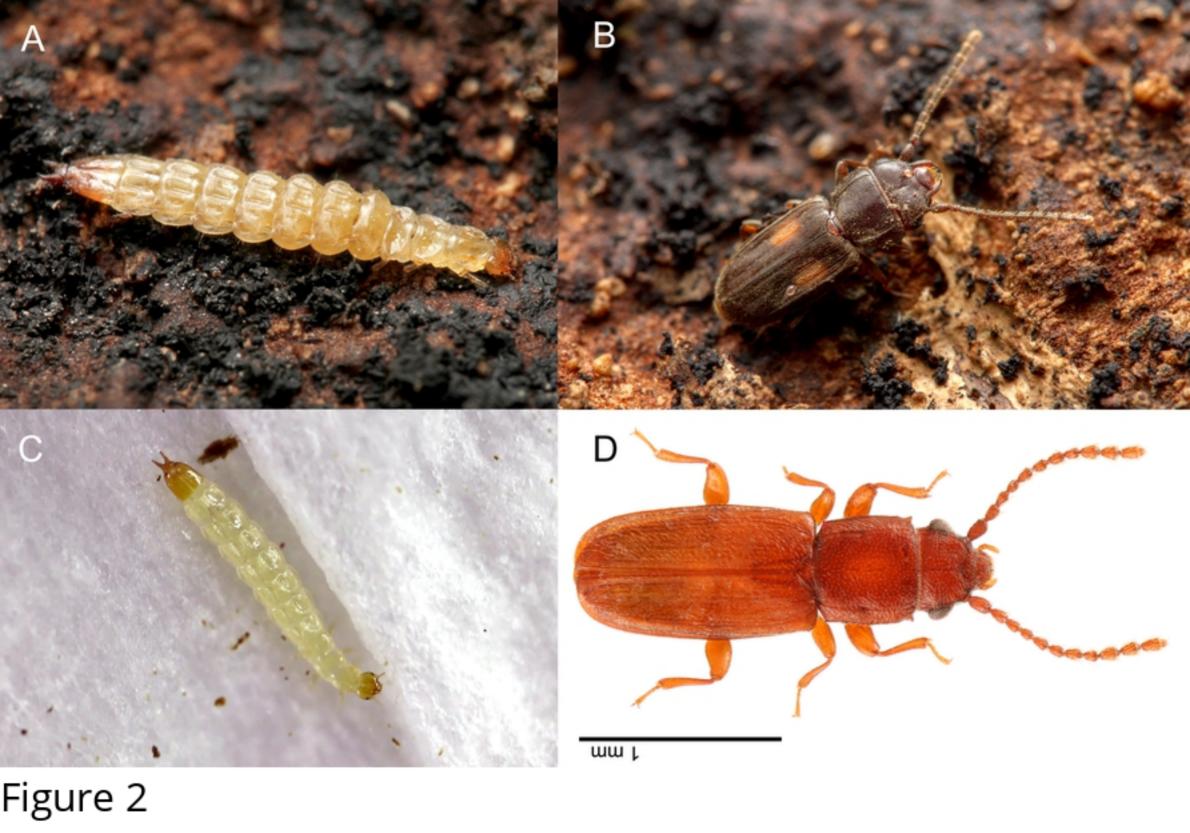
404 *biguttatus* jump sequence; 3: additional full *L. biguttatus* jump sequence; 4: closer view of an *L.*

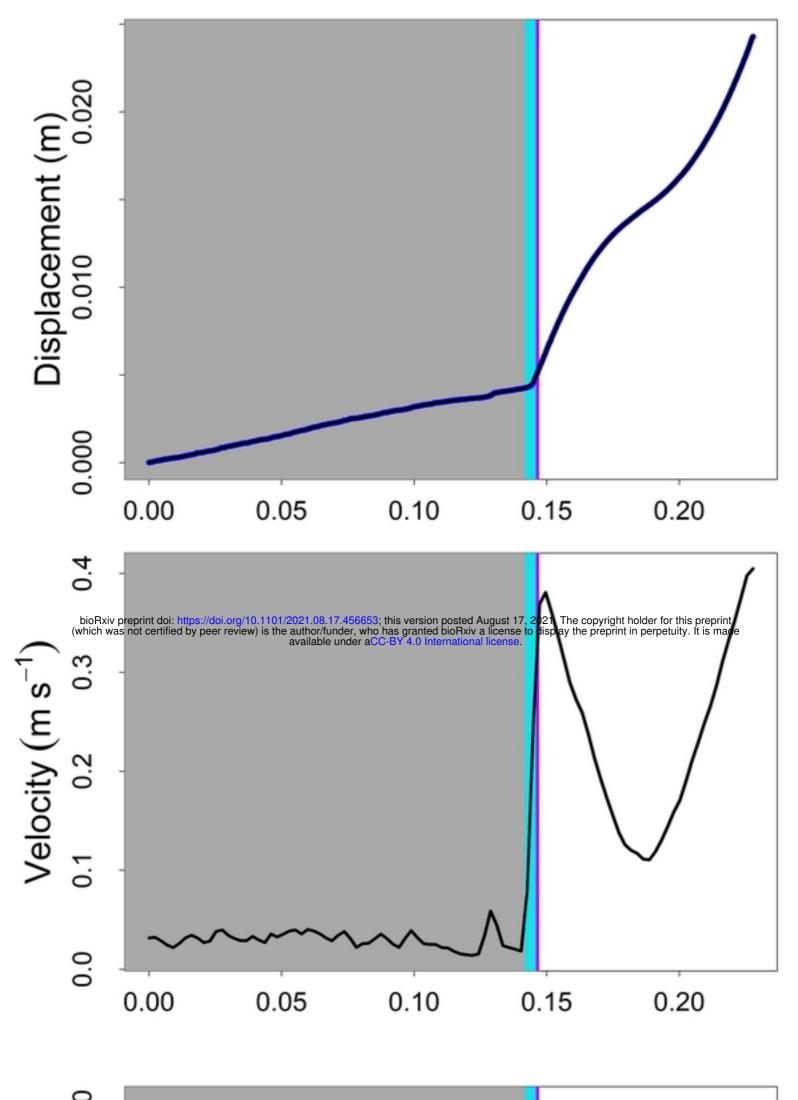
405 *biguttatus* jump; 5: series of *P. testaceus* jumps off of a tissue paper substrate, filmed from

406 above.

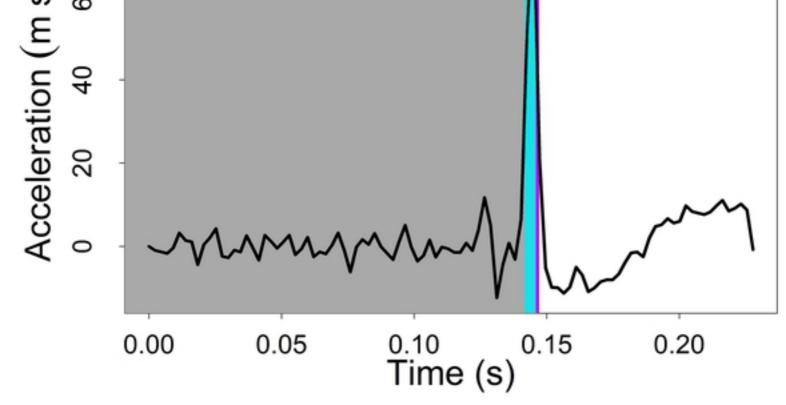
407

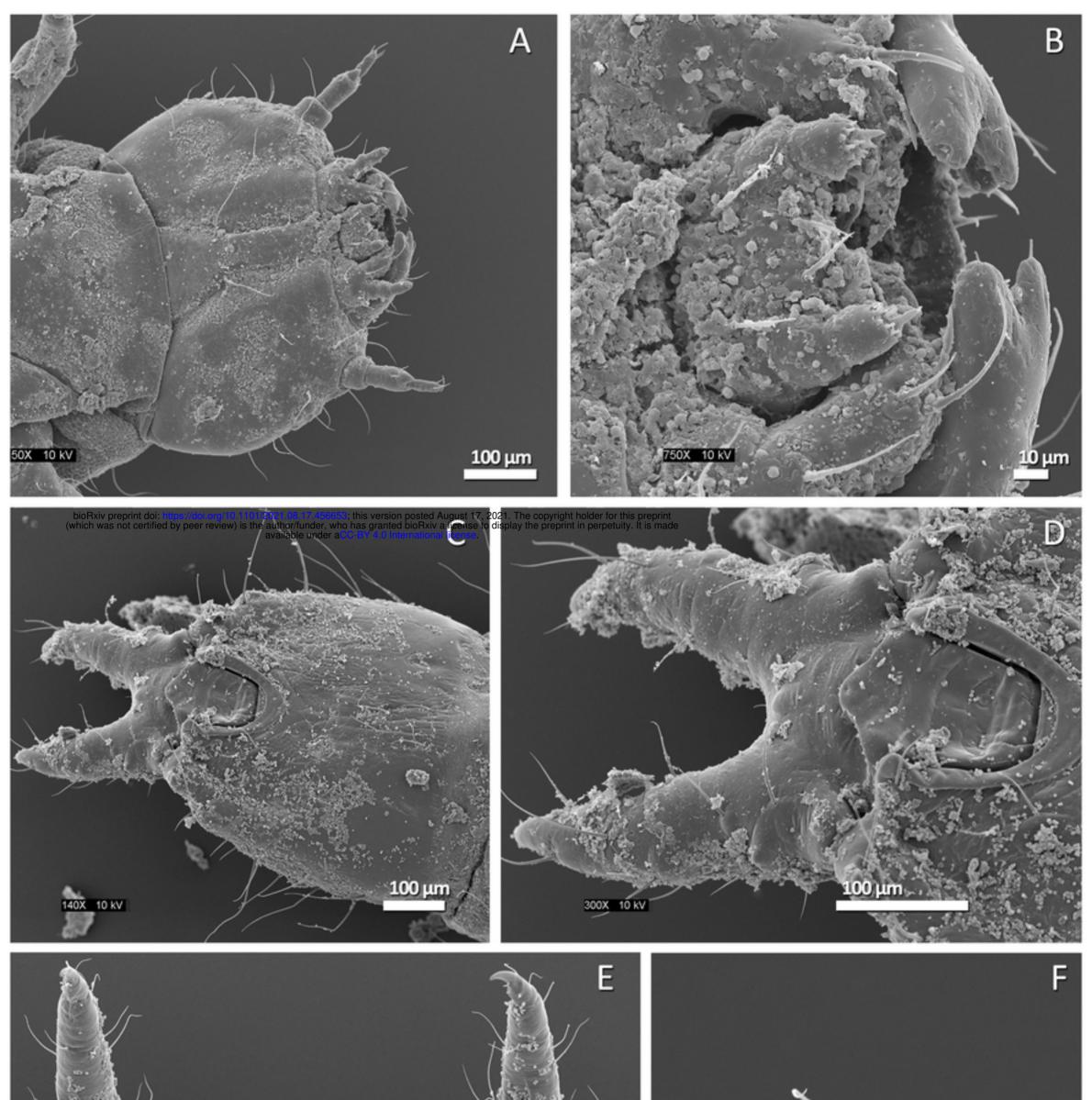

408 **Supplemental Video 2:** Slow motion sequences of *Laemophloeus biguttatus* jumping behavior.

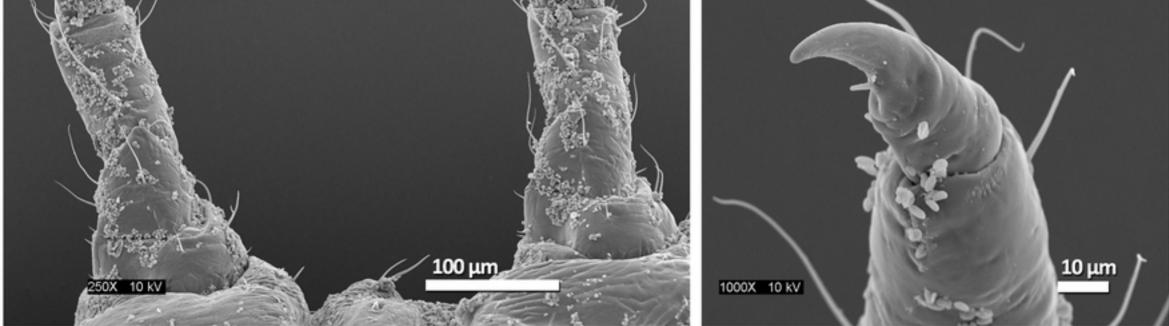

409 In order of appearance: 1: 3,200 frames per second capture of the jump pictured in panels A-C

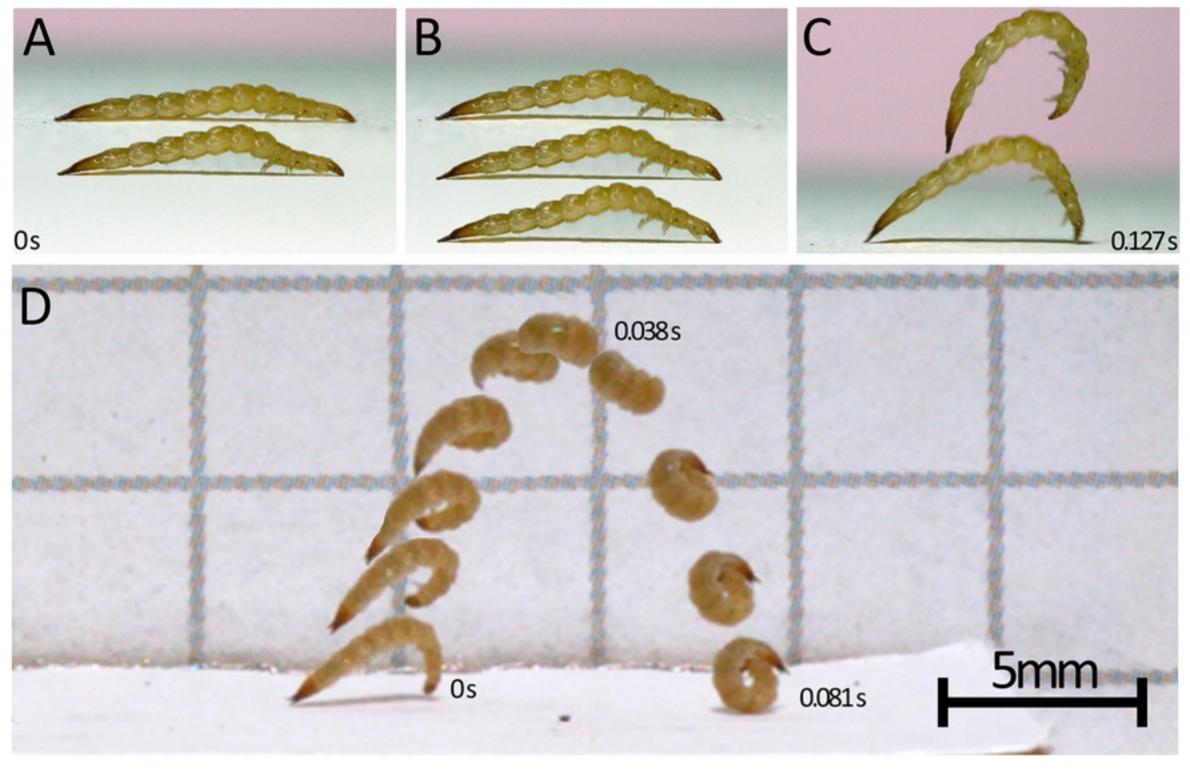

410 of Figure 3; 2: 3,200 frames per second capture of the jump pictured in panel D of Figure 3; 3:

411 60,000 frames per second capture of the initiation of jump showing the hind legs detaching from


412 the substrate, as first body movement, when the jump sequence is set into motion.






80 ή

