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Abstract The task priority based control is a formalism which allows to create
complex control laws with nice invariance properties, i.e. lower priority tasks do
not affect the execution of higher priority ones. However, the classical task prior-
ity framework (Siciliano and Slotine) lacked the ability of enabling and disabling
tasks without causing discontinuities. Furthermore, tasks corresponding to inequal-
ity control objectives could not be efficiently represented within that framework.
In this paper we present a novel technique to integrate both the activation and
deactivation of tasks and the inequality control objectives in the priority based
control. The technique, called iCAT (inequality control objectives, activations and
transitions) task priority framework, exploits novel regularization methods to ac-
tivate and deactivate any row of a given task in a prioritized hierarchy without
incurring in practical discontinuities, while maintaining as much as possible the
invariance properties of the other active tasks. Finally, as opposed to other tech-
niques, the proposed approach has a linear cost in the number of tasks. Simulations,
experimental results and a time analysis are presented to support the proposed
technique.
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1 Introduction

Nowadays, redundant robotic systems are becoming increasingly more common
than a few decades ago. As these systems increased with popularity, the computa-
tional power available to control them has scaled from the 40 MHz Motorola 68040
CPUs that were used to control the 7 d.o.f. AMADEUS arms [26], where a compu-
tation of a 6×7 pseudo-inverse required around 150 ms, to dual or quad core GHz
systems where the same operation now takes a few microseconds. The increased
computational power has allowed to exploit the high versatility offered by such sys-
tems, due to their high number of degrees of freedom (d.o.f.), in order to perform
different, complex tasks. Examples of such systems are humanoid robots [9,14,17],
aerial vehicles with manipulation capabilities [21], mobile manipulators [47] and
autonomous underwater vehicle manipulator systems [33,40].

Given the high versatility and the fact that such systems need to complete
different goals, it became important to have a simple and effective way to specify
the control objectives. The task-based control [37], also known as operational space
control [25], allows one to define the control objectives in a coordinate system that
is directly relevant to the task that needs to be performed, rather than in the
generalized coordinates of the robotic system.

With the possibility of specifying the objectives directly in the operational
space, it became even more important to efficiently exploit the redundancy of the
system. The first studies on this subject date back to the seminal works [29, 50],
where the residual d.o.f., after accomplishing the end-effector position control, were
used in order to tackle the problem of singularity and obstacle avoidance for an
industrial manipulator. Another seminal work [24] introduced the use of potential
functions in order to efficiently implement the obstacle avoidance for manipulators
and mobile robots.

Since the control objectives do not always have the same importance, the task-
based control was enhanced by the introduction of the concept of task priority
[36]. A primary task was executed, and a secondary task was accomplished (or
attempted) only in the null space of the primary one, in order to guarantee the
invariance of the main task w.r.t. (with respect to) the secondary one. This concept
was later generalized to any number of task-priority levels in the seminal work [42].

Differing from the above works, [15] proposed a suboptimal approach, i.e. to
compute the secondary task as if it was alone, and projecting it in the null space
of the higher priority one, using a variable damping factor as proposed in [37]
to deal with singularities. This was later generalized in [2] and called null-space-
based behavioral control. The main advantage of this approach is that it avoids
the problem of algorithmic singularities that can occur due to rank loss caused by
the projection matrix. Further works on achieving a task priority control robust
to singularities are found in [22,34, 35].

Since those times, the task-priority framework has been applied to numerous
robotic systems: redundant manipulators, as was obvious in each of the works
mentioned until now; mobile manipulators such as [3, 4, 13, 33, 51] and multiple
coordinated mobile manipulators [39,47]; modular robots [11]; and also humanoid
robots [41, 48] just to cite a few examples. Furthermore, a stability analysis for
several prioritized inverse kinematics algorithms can be found in [1].

An important limitation of the classical task priority framework, which is evi-
dent in all the previous mentioned works, is that inequality control objectives (e.g.
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avoiding the joint limits) were never treated as such. Indeed, the corresponding
task was always active, even when the joints were sufficiently far away from their
limits. The reason for this is the fact that activating (inserting) or deactivating
(deleting) a task implies a discontinuity in the null space projector, which leads to
a discontinuity in the control law [28]. As a consequence, such control objectives
could be only considered as secondary tasks, otherwise they would have consumed
many d.o.f. even when not necessary (i.e. joints far away from their limit). This
led to an undesired situation where safety related tasks had a lower priority w.r.t.
mission-centric tasks such as the end-effector position control.

Thus, in the last decade, major research efforts have been spent in order to
incorporate inequality control objectives in the task-based control paradigm in a
more efficient way. In [32] a new inversion operator is introduced for the compu-
tation of a smooth inverse with the ability of enabling and disabling tasks in the
context of visual servoing. That work only dealt with the activation and deactiva-
tion of rows of a single multidimensional task (i.e. a single level of priority). The
extension of the operator to the case of a hierarchy of tasks is provided in [31].
However, the major problem within that work is that it requires the computa-
tion of all the combinations of possible active and inactive tasks, which grows
exponentially as the number of tasks increases.

Another interesting approach is given in [28]. The idea is to modify the refer-
ence of each task that is inserted or being removed, in order to comply with the
already present ones, in such a way to smooth out any discontinuity. However,
the algorithm requires m! pseudo inverses with m number of tasks. The authors
provide also approximate solutions, which are suboptimal whenever more than one
task is being activated or deactivated (in transition).

A further way to solve a hierarchy of tasks is proposed in [23], which gener-
alizes the earlier work [20] to any number of priority levels. Differing from the
aforementioned works, [23] directly incorporates the inequality control objectives
as inequality constraints in a Quadratic Program (QP). At each priority level, they
solve a QP problem finding the optimal solution in a least-squares sense, using slack
variables to incorporate inequality constraints in the minimization process. If the
solution contains a slack variable different from zero, it means that the correspond-
ing inequality constraint is not satisfied. Then they propagate to the next level all
the inequality constraints that were satisfied, and transform each one that was not
into an equality one (to prevent lower priority tasks from changing the best least-
square trade-off found). A similar process is done for the equality constraints. The
main drawbacks of this approach are that the cascade of QP problems grows in
dimension and that the work cannot handle the activation or deactivation of tasks.
Such a property is required whenever temporal sequences of tasks are used, as it
happens whenever complex behaviour such as assembling objects is required [7,38].
A similar approach is given in [16], where again the inequality constraints are di-
rectly tackled within a constrained minimization problem. However, no explicit
way to activate and deactivate an equality task is given.

Building on the results of [23], a hierarchical active set search is proposed
in [19]. The main difference with [23] is that instead of a cascade of QP problems,
the authors solve a single problem finding the active set of all the constraints
at the same time. This allows to speed up the process quite a bit w.r.t. [23].
Due to its iterative nature, the authors propose to limit the iterations number to
achieve a boundary on the computation times and be more suitable for a real-time
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implementation, although the resulting solution is not optimal. Similarly as [16,23],
the work does not have an explicit way to activate and deactivate an equality task.

An extension of the null space behavioural control which includes set-based ob-
jectives has also been proposed in [6]. The paper does not deal with activation and
deactivation of tasks, and further works are needed to cope with its computational
load.

Previous works of the authors dealt with the control of underwater free floating
manipulators [12,45,46] in the context of the TRIDENT Framework Programme 7
(FP7) project. In such works, all the tasks except the end-effector position control
were represented by scalar inequality objectives. The activation and deactivation
of scalar tasks was tackled in the prioritized control. While proving sufficient and
well working for the problem at hand also during the field trials, such works lacked
the ability to deal with the activation and deactivation of multidimensional tasks,
i.e. multiple scalar tasks at the same priority level.

In this work, we present a simple and generalized framework that has the
capability of activating and deactivating tasks without incurring in practical dis-
continuities. It retains the simplicity of the original task-priority framework [42]
since it only uses pseudo inverses. Tasks are activated and deactivated via the use
of an activation matrix. The possible discontinuities that can arise with the use of
an activation matrix [31, 32] are eliminated with the use of a novel task-oriented
regularization and the singular value oriented one.

With the possibility of activating and deactivating tasks, it becomes possible
to easily do the following:

– treat inequality control objectives efficiently: a suitable reference rate driving
the system toward the region where the inequality objective is satisfied is gen-
erated, however the task (i.e. tracking such a reference rate) is deactivated
whenever the system is inside the validity region, thus no over-constraining of
the system is done;

– manage task transitions in a simple way: whenever a temporal sequence of
tasks must be performed, it is possible to deactivate the tasks that are not
anymore necessary and activate the new ones using the same activation func-
tion mechanism, which can be applied to equality control objectives as well as
inequality ones in a uniform manner.

The work is structured as follows. Section 2 introduces some definitions and re-
calls some basic principles about the regularized pseudo inverses. Section 3 presents
the basic idea to activate and deactivate rows of a single multidimensional task
without practical discontinuities. Section 4 generalizes the approach to any number
of multidimensional tasks inserted in multiple priority levels. Section 5 presents
the activation functions and a deep discussion on task transitions. Simulation and
experimental results, together with a computation time analysis, are presented in
Section 6, and some final conclusions are given in Section 7. Finally, Appendix A
gives further insights on how to construct the activation functions to implement
inequality control objectives and task transitions.



Title Suppressed Due to Excessive Length 5

2 Definitions and Preliminaries

Before starting the discussion we first introduce some notation in the next sub-
section. Then some definitions are given in the successive subsection, while some
preliminaries on the regularized pseudo inverses are given in the last one.

2.1 Notation

Vectors and matrices are expressed with a bold face character, such as M , whereas
scalar values are represented with a normal font such as γ. Given a matrix M :

– M(i,j) indicates the element of M at the i-th row and j-th column;
– M{k} refers to the k-th row of M ;

– M# is the exact generalized pseudo-inverse (see [8] for a review on pseudo-
inverses and their properties), i.e. the pseudo inverse of M performed without
any regularizations.

Further, less used, notation is introduced as needed.

2.2 Definitions

We report hereafter some definitions often used in this paper:

– the system configuration vector c ∈ R
n of a robotic system. For example, this

vector is formed by the collection of all the joint positions if we consider just
a robotic arm, the position and three orientation parameters if we consider an
underwater vehicle, or both if we consider an underwater vehicle manipulator
system;

– the system velocity vector q̇ ∈ R
n. Note that the system velocity vector may

be different from the derivative of the system configuration vector. An example
of such a case is an underwater vehicle, where the system velocity vector is the
collection of the three linear and three angular velocities, where the latter are
not the derivatives of the orientation parameters;

– a configuration dependant scalar variable x(c) is said associated to an equality

control objective when it is required to eventually satisfy, if possible,

x(c) = x0, (1)

or to an inequality control objective when it is required to eventually satisfy, if
possible,

x(c) ≥ xm (2)

or

x(c) ≤ xM . (3)

The case where a variable needs to stay within an interval can be represented
by two separate objectives. Examples of such variables are the arm joints qi,
which are required to be within the joint limits, or the manipulability measure
µ, which is required to be above a certain minimum threshold.
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However, we can also consider as x(c) the modulus of a certain vector p. This
allows to control its norm to a particular value (for instance if we want to
nullify some error vector or having a vector p lying on a sphere surface), to be
below a given threshold (if we just need to keep a reasonable error bound), or
to be above a threshold (for instance if such a vector is a distance between two
objects to avoid collisions).
In addition, we can also consider x(c) to be the i−th component of a vector
p ∈ R

m. Then if we consider its m different variables xi(c), it is possible to
ask vector p to be inside/outside a polyhedral surface, or just achieving any
desired value.
For the remainder of the paper, we will drop the dependency of x from c to
ease the notation;

– for such variables, we also consider the existing Jacobian relationship between
x and the system velocity vector q̇ as

ẋ = g
T (c)q̇, (4)

where g ∈ R
n is a vector. Again, in the rest of the paper we will drop the

dependency of g from c;
– we define as a reference rate ˙̄x associated to a control objective any rate capable

of driving the associated variable x toward the corresponding control objective.
For equality control objectives, a suitable reference rate ˙̄x that drives x toward
x0 is

˙̄x , κ(x0 − x), κ > 0, (5)

where κ is a positive gain to control the convergence speed. For inequality
control objectives, a suitable reference rate ˙̄x is any rate that drives x toward
any arbitrary point inside the region where the inequality is satisfied. For
instance, consider an inequality objective of the type x ≤ xM and consider
a point x∗ such that x∗ ≤ xM , then a suitable reference rate that drives x

toward its corresponding objectives is

˙̄x , κ(x∗ − x), κ > 0. (6)

As it is clear from the above equations, the main difference between the two
kind of objectives lies in the arbitrariness of the choice of x∗ compared to x0;

– an active task is defined as the requirement of tracking at best a reference
rate ˙̄x in the current operational conditions, while an inactive task is trivially
defined as the the absence of any tracking requirement of a reference rate ˙̄x.
Independently from the active or inactive state, the two categories will however
be indicated via the common term task.
To clarify the above definitions, we can observe how when an inequality objec-
tive is not satisfied, then the associated task must be active to drive the variable
toward the region where the inequality is satisfied, while when it is satisfied it
can also be inactive. For equality objectives the corresponding task is always
active, unless external conditions (i.e independent from the achievement or not
of the equality, for example related to a change of mission phase) are allowed
to intervene to activate or deactivate the corresponding task. Such a situation
can of course be also applied to tasks associated to inequality objectives.
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In the following we shall see how suitable combinations of continuous activation
functions will reveal as the necessary tool for guaranteeing continuous transi-
tions of tasks from active to inactive states and vice versa. During a transition
the corresponding task will be therefore denoted as being in transition;

– the control objectives may have different priorities and the same holds for
their associated tasks. Whenever multiple scalar tasks are considered with the
same priority they form a so called multidimensional task, where its related
variable x results as the stacking of all the scalar variables x, and the same
goes for its reference rate ˙̄x. We will term the associated Jacobian as J , which
is the stacking of all the vector Jacobians gT . Note that a multidimensional
task may be formed, at a given time, by any combination of active, inactive
and in transition scalar tasks;

– all the active scalar tasks within a multidimensional task should be achieved
simultaneously, if possible. Scalar or multidimensional tasks with lower prior-
ity should not interfere with the achievement of any active tasks with higher
priority. A set of tasks with different priorities is also called a hierarchy of

tasks.
– a practical discontinuity is a mathematically continuous rapidly varying be-

haviour that becomes a discontinuity or chattering phenomena once imple-
mented in a discretized control system for practical values of the control gains.
As it will be clear in the rest of the paper, most of the present work is aimed at
mitigating the possible effects of practical discontinuities in order to implement
task transitions without strong impacts on the control performances.

2.3 Regularized Pseudo Inverse

Before introducing the core of this work, it is useful to recall the fundamentals
of pseudo inverses and the regularization mechanism. Toward that end, let us
consider the following Jacobian relationship

ẋ = Jq̇, (7)

with J ∈ R
m×n, q̇ ∈ R

n and ẋ ∈ R
m.

Given a reference velocity vector ˙̄x, it is well known that the minimum norm
velocity vector q̇ that realizes ˙̄x at best, in a least-squares sense, can be found as
the minimum norm solution of the following minimization problem

min
q̇

∥

∥ ˙̄x− Jq̇
∥

∥

2
. (8)

Such a solution can be found computing the square and taking the derivative equal
to zero, which leads to the condition

(JT
J)q̇ = J

T ˙̄x, (9)

which can be solved using the pseudo inverse as

q̇ = (JT
J)#J

T ˙̄x. (10)
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Since for the rest of the work we will focus on exploiting the residual arbitrariness
in the solution, it is worth to consider the actual manifold of all solutions, by also
including the null space, that is the manifold:

q̇ = (JT
J)#J

T ˙̄x+ (I − (JT
J)#J

T
J)ż, ∀ż. (11)

Then, by exploiting the following identities involving pseudo inverses

G
# = (GT

G)#G
T
, (12)

G
# = G

T (GG
T )#, (13)

we note that (11) can be equivalently rewritten in the following, more usual form

q̇ = J
# ˙̄x+ (I − J

#
J)ż, ∀ż. (14)

Performing a regularization means changing the original minimization problem
(8) by adding an additional regularization cost, as in the following

min
q̇

∥

∥ ˙̄x− Jq̇
∥

∥

2
+ ‖q̇‖2R ; R ≥ 0, (15)

where the notation ‖q̇‖2R indicates the weighted norm, i.e. q̇TRq̇.
This is usually done to deal with the ill-definition of the solution near a singu-

larity of the matrix J . The solution of the regularized problem is found along the
same steps performed for the original one, as the minimum norm solution of the
following equation

(JT
J +R)q̇ = J

T ˙̄x (16)

that is

q̇ = (JT
J +R)#J

T ˙̄x, (17)

while the manifold of all solutions is

q̇ = (JT
J +R)#J

T ˙̄x+ (I − (JT
J +R)#(JT

J +R))ż, ∀ż. (18)

However it is important to note that the above projection matrix (I − (JTJ +
R)#(JTJ + R)) preserves the overall minimum of problem (15), including that
of the regularization cost ‖q̇‖2R. This means that if R > 0 then the projection
matrix becomes equal to 0 (e.g. in the case of damped least squares, see the next
subsection) and no arbitrariness is available.

For the above reason, the following substitution is instead typically performed

J
# → (JT

J +R)#J
T (19)

and a manifold of solutions with J regularized by R is consequently constructed
by analogy with (14) as

q̇ = (JT
J +R)#J

T ˙̄x+ (I − (JT
J +R)#J

T
J)ż, ∀ż. (20)

It is noteworthy to see that the projection matrix (I − (JTJ +R)#JTJ) is not
anymore an orthogonal projector on the null space of J whenever R 6= 0.
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Important remark: In some works, notwithstanding the introduction of a regu-
larization of J with R in the minimum norm solution, the null space projection
matrix is calculated without the regularization matrix R, and thus is still an
orthogonal projection. However, since exploiting the non-orthogonality of the pro-
jection matrix is actually one of the key ideas of this work, we will always consider
it computed with J regularized by R as in (20). Furthermore, if the projection
matrix is calculated without any regularization, a discontinuity occurs whenever
an exact singularity of the matrix J is encountered.

2.3.1 Damped Least Squares

Among the different regularization we can cite the damped least squares (DLS)

min
q̇

∥

∥ ˙̄x− Jq̇
∥

∥

2
+ γ

2 ‖q̇‖2 , (21)

where thus R = γ2I. In this case, finding the solution to the original problem (8)
is balanced with the requirement of also maintaining all the components of the
velocity vector q̇ limited. The scalar value γ balances this trade-off: smaller values
of γ will favor accomplishing the original minimization, while greater values will
maintain q̇ much more limited. A more detailed discussion on DLS can be found
in the book [27] and in [49].

2.3.2 Singular Value Oriented Regularization

Another popular regularization is the SVD-based one (see the book [36] for a
deeper investigation). In this case, the Jacobian matrix is first decomposed along
its singular values:

J = UΣV
T
, (22)

with U ∈ R
m×m, Σ ∈ R

m×n and V ∈ R
n×n. Σ is a rectangular diagonal matrix,

whose diagonal elements are the singular values. U and V are orthogonal matrices,
where the m columns of U and the n columns of V are called the left-singular
vectors and right-singular vectors of J and are respectively the eigenvectors of
JJT and JTJ .

It is easy to see that, if a singular value is small, there is a need for a big effort
along corresponding control direction in V to accomplish a given task along the
corresponding task direction of U . To prevent the control from growing unbounded
as the singular value approaches zero, a diagonal singular value oriented regular-
ization matrix P ∈ R

n×n can be computed as follows: each diagonal elements
p(i,i) of P is a bell-shaped, finite support function of the corresponding singular
value, or it is zero if i > m (i.e. the corresponding singular value does not exist).

With this definition, the singular value oriented (SVO) regularization problem
becomes that of minimizing

min
q̇

∥

∥ ˙̄x− Jq̇
∥

∥

2
+

∥

∥

∥
V

T
q̇
∥

∥

∥

2

P
, (23)

where thus R = V PV T . In this case it is possible to see that the regularized
solution is

q̇ = V (ΣT
Σ + P )#Σ

T
U

T ˙̄x, (24)
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A(2,2)
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(a)
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ẋ(2)

(b)

Fig. 1 Example of task activation using only the SVO regularization as the second row of the
task (28) is deactivated: a practical discontinuity can be seen in both (a) control vector q̇ and
(b) task velocities ẋ.

and that the projection matrix becomes

V (I − (ΣT
Σ + P )#Σ

T
Σ)V T

. (25)

Given the definition of P it is simple to see that only the directions with a small
singular values, such that p(i,i) 6= 0, are affected by the regularization. Finally, it

is evident how with the use of the SVO regularization the matrix (ΣTΣ + P ) is
always of constant rank m. An application of such a regularization method can be
found in [37].

3 Activation and Deactivation of Tasks

In this section, we present the methodology for activating and deactivating any of
the scalar tasks composing a single multidimensional task. We first show how clas-
sical regularization methods are not sufficient to eliminate practical discontinuities,
without greatly impacting on control performances. Instead, the introduction of a
novel regularization, called task oriented, coupled with the SVO one and a final
minimization on the control vector allows to eliminate any practical discontinuity.
The extension to the hierarchy of priority levels is given in a later section.

3.1 Classical Regularization Methods

Let us now consider a scenario where, for some reason, one or more of the scalar
tasks composing a multidimensional task start losing importance, even to the point
where they should not be anymore considered. To represent this fact, we consider
a scalar value 0 ≤ a(i) ≤ 1, associated to i-th scalar task, whose meaning is the
following:

– a(i) = 1 implies that the corresponding scalar task must be exactly assigned if
possible, i.e. the goal is to have ẋ(i) = ˙̄x(i) (active task);

– a(i) = 0 implies that the corresponding scalar task should not be considered,
i.e. ẋ(i) should be unconstrained (inactive task);

– 0 < a(i) < 1 implies that ẋ(i) should smoothly evolve between the two previous
cases (task in transition).
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Then, the straightforward initial idea is to modify the problem (8) by inserting
a weight diagonal matrix A, whose diagonal elements are defined as above, as
hereafter indicated

min
q̇

∥

∥A( ˙̄x− Jq̇)
∥

∥

2
, (26)

whose corresponding manifold of non-regularized solutions is

q̇ = (AJ)#A ˙̄x+ (I − (AJ)#AJ)ż, ∀ż. (27)

Equation (27) unfortunately exhibits discontinuities in the q̇ when A is varied,
since the resulting weighted pseudo-inverse (AJ)#A is invariant to the weights on
the rows of J that are linearly independent [18]. More specifically, the discontinuity
occurs whenever a value of A(i,i) changes from 0 to ǫ > 0 and vice versa.

To deal with this discontinuity problem, the use of the DLS and SVO regu-
larizations can be therefore proposed, where the latter is certainly better, since it
specifically acts only along the singular directions. However, in both cases, since
there is not a straightforward relationship between the activation and the regular-
ization damping values, this in turn requires either to have high damping values,
which have a detrimental impact on the performances, or small ones, which do not
prevent the issues with “practical” discontinuities, as highlighted in [32].

An example is reported in Fig. 1 for the case of

J =

[

−1 −0.5
1 1

]

, (28)

with a velocity reference ˙̄x =
[

0.1 0.1
]T

and by varying the value of A(2,2), i.e.
activating/deactivating the second task, represented by the second row of J .

Remark 1: Despite being continuous, the use of such rapidly varying control vec-
tors and task velocities can easily create chattering phenomena in discrete control.
See Fig. 8 and its related simulation in Section 6 or see the details in [32].

Remark 2: It is important to note how for a large part of the variation of A(2,2)

the value of the control vectors are constant, due to the aforementioned reasons.
This exemplifies the fact that a straightforward relationship between the acti-
vation and the regularization damping values does not actually exist. This in
turn makes the transition between the solution where the second task is inactive
(q̇ =

[

−0.08 −0.04
]T

) and where it is active (q̇ =
[

−0.3 0.4
]T

) compressed in the
small interval of variation between A(2,2) = 0.03 and A(2,2) = 0.2.

3.2 Task Oriented Regularization

Since solely imposing a weight A is insufficient to obtain the desired continuous
behavior of activating and deactivating some rows of J without discontinuity,
and that both the DLS and SVO regularizations, even if assuring a theoretical
continuity, are however affected by practical discontinuities, the additional idea is
therefore to modify the original minimization problem (26) by introducing a novel
regularization, the here called task oriented regularization:

min
q̇

[

∥

∥A( ˙̄x− Jq̇)
∥

∥

2
+ ‖Jq̇‖2A(I−A)

]

. (29)
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The above problem is a special instance of the general regularized problem (15),
where the regularization matrix R results to be

R = J
T
A(I −A)J . (30)

The rationale of this choice is that we want to preserve the rows that have their
corresponding A(i,i) = 1, while at the same time we want to introduce a regular-
ization on those with A(i,i) < 1. The choice of using A(I − A) guarantees that
a regularization is added only to the rows in transition. Indeed, it is easy to see
that the cost vanishes for all the rows with A(i,i) = 0 or A(i,i) = 1. Thus, if A
is made of only such values, the regularization cost vanishes and the solution just
corresponds to the pseudo inverse of the active rows, as it will be evident in the
following discussion.

The definition (30), substituted into (20), gives the following form for the
manifold of regularized solutions

q̇ = (JT
AJ)#J

T
AA ˙̄x+ (I − (JT

AJ)#J
T
AAJ)ż

, ρ+Qż, ∀ż.
(31)

In order to analyze the properties of (31) we now need to to analyze the so
called residual orthogonality properties of the projection matrix Q, as hereafter
reported in the next subsection.

3.2.1 Residual Orthogonality Properties of the Projector

In the classical task priority framework the projection operator is orthogonal, and
guarantees that lower priority task can only act inside the null space of the higher
priority ones. This ensures the invariance of the main task w.r.t. lower priority
ones. However, in the here proposed case, the projection matrix is not orthogonal
whenever any of the activation values are different from 0 and 1, i.e. whenever
some task is in the transition zone. As we shall see, this is actually a positive
fact, since the d.o.f. that are being released from the higher priority tasks can be
exploited, at least partially, by the lower priority ones. For the time being, let us
prove the fact that, under some assumptions, the projection matrix admits some
residual orthogonality property: it is orthogonal with respect to the active rows of
J , i.e. (JQ){i} = 0 for every i-th row for which A(i,i) = 1.

To simplify the subsequent analysis, it is convenient to note that

(JT
AJ)#J

T
A

=(JT
√
A
√
AJ)#J

T
√
A
√
A

=(
√
AJ)#

√
A,

(32)

where the identity (12) has been used. Substituting this relationship in the mani-
fold (31) yields

q̇ = (
√
AJ)#

√
AA ˙̄x+ (I − (

√
AJ)#

√
AAJ)ż

, ρ+Qż, ∀ż.
(33)
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Let us start the discussion by considering A(i,i) > 0, ∀i and J full rank, which

implies that
√
AJ is full row rank. Let us compute (

√
AJ)#:

(
√
AJ)# = J

T
√
A(

√
AJJ

T
√
A)−1

= J
T
√
A
√
A

−1
(JJT )−1

√
A

−1

= J
T (JJT )−1

√
A

−1

= J
#
√
A

−1

(34)

which substituted into (33) gives

q̇ = J
#
A ˙̄x+ (I − J

#
AJ)ż

, ρ+Qż, ∀ż.
(35)

It is easy to see that the projection matrix (I − J#AJ) is actually orthogonal
to the active rows. Indeed, multiplying the projector by J yields

J(I − J
#
AJ) = (J − JJ

#
AJ) = (I −A)J (36)

since JJ# = I under the above assumptions. The above result implies that, for
every row where A(i,i) = 1, then (JQ){i} = 0 as it was claimed. However, the
projection matrix Q does not prevent ż from influencing the other rows. As said
before, this is a positive fact, as those rows are being deactivated and thus there is
not anymore any need to guarantee the fulfillment of their corresponding velocity
reference. Indeed, when A(i,i) reaches zero, the corresponding velocity should be
unconstrained.

Let us now drop the two assumptions of full rankness of A and J . If A contains
any value equal to zero in its diagonal, then the above formula cannot be used, since
it contains (

√
A)−1 which cannot be computed. Instead, without losing generality,

let us suppose that the rows with A(i,i) = 0 are at the bottom, and let us partition
A and J in the following way

A =

[

Ā 0

0 0

]

; J =

[

J̄

Ĵ

]

, (37)

where J̄ only contains the i-th rows for which A(i,i) 6= 0.

Let us still compute the value of (
√
AJ)#. Using (13) let us write it as

(
√
AJ)# = J

T
√
A(

√
AJJ

T
√
A)#. (38)

Then using the definition (37) it is simple to compute

√
AJ =

[
√
ĀJ̄

0

]

(39)

and
√
AJJ

T
√
A =

[
√
ĀJ̄J̄T

√
Ā 0

0 0

]

(40)
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Fig. 2 Example of task activation using only the task oriented regularization as the second
row of the task (28) is deactivated: a discontinuity occurs near A(2,2) = 0. History of (a) q̇

and (b) history of ẋ as A(2,2) is varied.

After some simple algebra, the formula for the pseudo-inverse (
√
AJ)# be-

comes:
(
√
AJ)# = J

T
√
A(

√
AJJ

T
√
A)#

=
[

J̄# 0
]
√
A

# (41)

which substituted into the control law (33) yields

q̇ =
[

J̄# 0
]

A ˙̄x+ (I −
[

J̄# 0
]

AJ)ż

, ρ+Qż, ∀ż.
(42)

This could not be otherwise, as the added cost in (29) vanishes whenever A is
composed only by ones and zeros, and thus the obtained solution is just the pseudo
inverse of J with only the relevant rows.

The projection matrix (I −
[

J̄# 0
]

AJ) is still orthogonal to the active rows.
Indeed,

JQ = (I −
[

J̄

Ĵ

]

[

J̄# 0
]

A)J

= (I −
[

J̄ J̄# 0

Ĵ J̄# 0

]

A)J

=

[

(I − J̄ J̄#Ā)J̄

(I − Ĵ J̄#Ā)J̄

]

.

(43)

We have the following results:

– if a row i is linearly independent from all the others, and its A(i,i) = 1, then
(JQ){i} = 0 as it was claimed;

– for a set of rows of J that are linearly dependent between each other, but
linearly independent from the others, the orthogonality property holds if and
only if all the corresponding A(i,i) are equal to one.

The clear advantage of the proposed regularization method is that the activa-
tion value is directly linked with the regularization itself, unlike in the SVO case.
This allows to exploit the full range of variation of the activation value to perform
the transition, clearly mitigating the possible practical discontinuities. Further-
more, the above analysis shows that the regularization is oriented along the task
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Fig. 3 Example of task activation using the task oriented regularization combined with the
SVO one as the second row of the task (28) is deactivated: the discontinuity of Fig. 2 is removed
however a practical one still persist in both (a) control vector q̇ and (b) task velocities ẋ.

in transitions, preserving those that are active (whenever they are linearly inde-
pendent from those in transition).

Before moving to the next section, we immediately note that using (31) an
inevitable discontinuity occurs both in the minimum norm solution ρ and in the
projection matrix Q whenever one of the A(i,i) becomes zero. This is clear when
comparing its specialization (35) (all rows are active) and (42) (some rows are now
deactivated). This is depicted in Fig. 2 where the same example (28) of Fig. 1 has
been used.

3.3 Combining the Task Oriented and the SVO Regularizations

In this section we will show how to solve the problem of the residual discontinuity of
the control law (31). The idea is simply that of combining the previously introduced
task oriented regularization with the SVO one. As highlighted in Section 2.3.2, the
SVO regularization ensures the theoretical continuity of the pseudo inverse, making
the matrix to be inverted always of constant rank m. However, as stated in Section
3.2, the problem of using only the SVO regularization is that, in order to obtain
a practical continuous transition, high values of the regularization parameters are
actually necessary, with a clear impact on the performances of the control. Instead,
in the previous sections we have shown how the task oriented regularization acts
as soon as the activation is lower than one, thus smoothing the transition within
the whole interval 0 ≤ a(i) ≤ 1, without impacting on the other rows, but without
preventing the change of rank of the matrix to be inverted, which always occurs
in the close vicinities of a(i) = 0. The idea is thus to combine the task oriented
regularization with the SVO one, thus combining the best of both regularizations:

– the task oriented regularization acts as soon as the task is being deactivated,
thus immediately releasing its corresponding control directions, with a conse-
quent immediate increase in the arbitrariness space of the solution in the whole
interval 0 ≤ a(i) < 1;

– the singular value oriented regularization instead ensures the continuity in the
close vicinities of a(i) = 0, even with small regularization parameter values,
because of the contemporaneous presence of the task oriented one.
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The minimization problem (29) thus is modified as follows

min
q̇

[

∥

∥A( ˙̄x− Jq̇)
∥

∥

2
+ ‖Jq̇‖2A(I−A) +

∥

∥

∥
V

T
q̇
∥

∥

∥

2

P

]

, (44)

where V T is the right orthonormal matrix of the SVD decomposition of JTAJ =
UΣV T , and P is the SVO regularization matrix described in Section 2.3.2. The
manifold of solutions of the above problem can be thus written as

q̇ = (JT
AJ + V

T
PV )#J

T
AA ˙̄x

+ (I − (JT
AJ + V

T
PV )#J

T
AAJ)ż

, ρ+Qż, ∀ż,
(45)

and coincides with (31) whenever P = 0.

From the above formula it is clear that the matrix Q evolves smoothly with
A, since the V TPV regularization maintains the matrix to be inverted always of
the same rank.

The addition of the SVO regularization to the task oriented one therefore
allows to eliminate the residual discontinuity of Fig. 2 by transforming it into the
practical one of Fig. 3, just emerging in the proximity of a(i) = 0, due to the use of
small SVO regularization parameters. In the following section we shall show how
we can finally eliminate also such a practical discontinuity.

3.4 Minimization of the Control Vector

The main idea to eliminate any practical discontinuities is to exploit the arbi-
trariness of the solution ż in order to minimize the resulting control vector q̇. The
rationale is simple. At the extreme values of A (i.e. its diagonal elements are either
one or zero) the solution corresponds to the pseudo inverse of only the active rows,
which is the minimum norm solution obtainable while fulfilling the given active
tasks. Thus, the idea is to minimize the control vector as much as possible also
during a task activation/deactivation transition, in order to smoothly join these
two minimum-norm extrema. The above idea can be represented by the following
minimization problem

min
ż

‖ρ+Qż‖2 (46)

The solution of the above problem is simply

ż = −Q
#
ρ, (47)

which substituted in (45) gives

q̇ = ρ−QQ
#
ρ. (48)

It is clear that the above formulation cannot be applied. Indeed, as soon as one
eigenvalue of Q changes from zero to a value ǫ > 0, the above solution would
instantly cancel out any part of q̇ along the corresponding eigenvector direction.
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Fig. 4 Example of task activation using the proposed algorithm as the second row of the
task (28) is deactivated: the resulting control vector and task velocity are now free of practical
discontinuities (using η = 10). History of (a) control vector q̇ and (b) task velocities ẋ.

To solve the aforementioned discontinuity, let us consider the following mini-
mization problem in lieu of (46):

min
ż

[

‖ρ+Qż‖2 + η ‖(I −Q)ż‖2
]

. (49)

The introduction of the second cost allows to penalize the use of the control di-
rections characterized by an eigenvalue strictly less than one, due to the comple-
mentary nature of the eigenvalues of Q and I −Q. The scalar value η > 0 allows
to balance the two needs. The solution of (49) is

ż = −(QT
Q+ η(I −Q)T (I −Q))#Q

T
ρ, (50)

which substituted into the manifold ρ+Qż yields

q̇ = ρ−Q(QT
Q+ η(I −Q)T (I −Q))#Q

T
ρ

=

(

I −Q
(

Q
T
Q+ η(I −Q)T (I −Q)

)#
Q

T

)

ρ

, Mρ.

(51)

Figure 4 shows the resulting final behaviour of the proposed algorithm as the
same example (28) of the previous figures has been used. Summing up, for the
example (28), we have:

– classical regularization methods such as SVO or DLS suffer of practical discon-
tinuities, as highlighted in Fig. 1;

– the novel task oriented regularization has nice properties, as reported in Section
3.2.1, but has a discontinuity near zero as seen in Fig. 2;

– combining the task oriented and the SVO regularization allows to have a con-
tinuous, non-orthogonal projection matrix Q and to remove the discontinuity
near A1(2,2) = 0, although issues of practical discontinuities arise and can be
seen in Fig. 3;

– finally, the continuous, non-orthogonal projection matrix Q is exploited with a
final minimization on the control vector q̇, and allows to join the two minimum
norm extrema without practical discontinuities issues, as shown in Fig. 4.
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Finally, let us remark how the properties that have been highlighted in the Sec-
tion 3.2.1 hold only when P = 0, i.e. when the corresponding SVO regularization
is not active. The only drawback due to the introduction of the SVO regulariza-
tion is that whenever it is active, it is not possible to ensure the invariance of
the active tasks. However, since the required values for the SVO regularization
can be chosen small, this drawback is almost negligible, as can be appreciated in
Fig. 4. This indeed allows to reach a good compromise between simplicity of the
algorithm, continuity of the obtained control and performances.

4 Extension to Task Priority Framework

In the previous section, the methodology for activating and deactivating rows
of a single task has been presented, with the introduction of the so called task
oriented regularization, the use of the SVO one and a final minimization on the
control vector to ensure the continuity of the solution. In this section, we shall first
tackle the possible discontinuity that can arise when a second level of priority is
introduced, and then generalize the proposed framework to any number of priority
levels.

4.1 Removing the Discontinuities in the Prioritized Control

Let us now consider another task that has to be executed with lower priority,
represented by the following Jacobian relationship

ẋ2 = J2q̇, (52)

with J2 ∈ R
m2×n, q̇ ∈ R

n and ẋ2 ∈ R
m2 . The minimization for this second

task must be performed taking into account that q̇ has been partially fixed by the
higher priority task. The manifold of solutions of the first task is given by (45) and
is q̇ = ρ1 +Q1ż1. Let us remark how, for the time being, we are not considering
the minimization on the control vector, because that completely consumes any
residual arbitrariness. We shall later see in Section 4.2 how that minimization is
used in a hierarchy of tasks.

With that in mind, the second minimization problem can only exploit the
arbitrariness of ż1, leading to

min
ż1

[

∥

∥

∥
A2( ˙̃x2 − J2Q1ż1)

∥

∥

∥

2
+ ‖J2Q1ż1‖2A2(I−A2)

+
∥

∥

∥
V

T
2 ż1

∥

∥

∥

2

P2

]

,

(53)

with the definition ˙̃x2 , ˙̄x2 − J2ρ1, and where the same task oriented and SVO
regularizations have been employed to deal with the activation matrix A2.

Whenever a second level of priority is considered, a new source of possible
discontinuities is represented by the non-orthogonal projection matrixQ1. To focus
only on the discontinuities created by the projection matrix and to simplify the
notation, let us suppose, without loss of generality, A2 = I and for the moment
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let us neglect the presence of the SVO regularization. Then, the solution of the
previous minimization is

ż1 = (J2Q1)
# ˙̃x2 (54)

which substituted into the first control law leads to

ρ2 = ρ1 +Q1(J2Q1)
# ˙̃x2. (55)

Note that Q1(J2Q1)
# is in actuality the weighted pseudo-inverse, with weights

Q−1
1 on the control vector q̇ [36]. However, the above solution, while weighting the

control directions, thus preferring to use those that have an eigenvalue of λi = 1
(i.e. unconstrained), fails under certain conditions. Indeed, there are cases where
control directions with an eigenvalue 0 < λi < 1 are treated as if λi = 1, because
of possible invariance of the minimization with respect to the weights [18]. A very
simple example can be constructed by considering Q1 = αI. It is easy to see
that α cancels out in Q1(J2Q1)

# unless it is zero. This means that, even if the
corresponding control direction only begins to be released by the higher priority
tasks, the current priority level would consider it as totally free, with an inevitable
discontinuity when it becomes zero.

To solve this problem, the idea is to compute a new task reference in lieu of ˙̃x2.
In particular, we want to find which is the best velocity obtainable minimizing the
use of control directions in transition. Toward that end, we exploit the following
auxiliary problem

min
u̇1

[

∥

∥

∥
A2( ˙̃x2 − J2Q1u̇1)

∥

∥

∥

2
+ ‖J2Q1u̇1‖2A2(I−A2)

+ η ‖(I −Q1)u̇1‖2 +
∥

∥

∥
V̂

T
2 u̇1

∥

∥

∥

2

P̂2

]

,

(56)

where this time V̂ T
2 is the right orthonormal matrix of the SVD decomposition of

Q
T
1 J

T
2 A2J2Q1 + η(I −Q1)

T (I −Q1).

The corresponding task velocity is

ẋ
∗
2 = J2Q1u̇1 , W2

˙̃x2, (57)

which is then used as a reference velocity in (53). We then have the following
results:

– if u̇1 is such that ẋ∗
2 = ˙̃x2, then ż1 will be the minimum norm solution that

gives ˙̃x2, just as in (54). Furthermore, in this case W2 = I;
– conversely, ż1 = u̇1 and the obtained ẋ2 will necessarily differ from ˙̃x2 because

not enough unconstrained control directions are available to obtain the desired
velocity.

In practice, Q1(J2Q1)
#W2

˙̃x2 operates in this way: first it finds the best ẋ∗
2 =

W2
˙̃x2 that can be obtained minimizing the use of control directions in transition,

and then it exploits the standard weighted pseudo-inverse to obtain the corre-
sponding weighted minimum norm solution (i.e. Q1(J2Q1)

#ẋ∗
2 ).



20 Enrico Simetti, Giuseppe Casalino

4.2 Minimization of the Control Vector as the Final Task

In the previous section we have seen how to deal with a secondary task, exploiting
(56) to cope with fact that the standard weighted pseudo inverse Q1(J2Q1)

# is
insufficient.

Let us now go back to the minimization of the control vector presented in
Section 3.3. It is clear that such a minimization can actually be seen as another
task to be executed. This can be simply done considering J2 = I, A2 = I and
˙̄x2 = 0. Then, we can see how (49) is just a special instance of (56).

Then, this task should be placed as the very last task of the hierarchy, con-
suming all the residual arbitrariness for minimizing the control vector, eliminating
any practical discontinuities during task activations.

4.3 Unifying Formula for the Pseudo Inverse

Before proceeding to the extension to any number of priority levels, let us first
introduce a more compact notation by introducing the operator (X)#,A,Q as in
the following:

X
#,A,Q

,

(

X
T
AX + η(I −Q)T (I −Q) + V

T
PV

)#
X

T
AA (58)

where V is the right orthonormal matrix of the SVD decomposition of XTAX +
η(I −Q)T (I −Q).

The task oriented regularization (44) can be simply obtained by writing J#,A,I

and the auxiliary problem (56) can be obtained by writing (JQ)#,A,Q.

4.4 Extension to Any Number of Priority Levels

Putting all the pieces together, and with the definition of the pseudo inverse given
in the previous section, the extension to any number of priority levels is straight-
forward. With the initializations

ρ0 = 0, Q0 = I, (59)

then for k = 1, . . . , p, where p is the total number of priority levels:

Wk = JkQk−1(JkQk−1)
#,Ak,Qk−1

Qk = Qk−1(I − (JkQk−1)
#,Ak,IJkQk−1)

Tk , (I −Qk−1(JkQk−1)
#,Ak,IWkJk)

ρk = Tkρk−1 +Qk−1(JkQk−1)
#,Ak,IWk ˙̄xk

(60)

thus ending up with the final control law

q̇ = ρp (61)

because, according to Section 4.2, the p-th and final task should be the minimiza-
tion of the control vector q̇, which consumes any residual arbitrariness.
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5 Details on Activation Functions and Transitions

We have described in the previous sections the framework for activating and de-
activating tasks, even when they are distributed within different priority levels,
without issues of practical discontinuities. We started the discussion by referring
to an activation value a for each row of such tasks that defines if a task is active,
in transition or deactivated. This in turn implies if the corresponding reference
signal should or should not be tracked exactly. We first show how the activation
functions can be defined, and how they can be exploit to manage task transitions
and implement inequality control objectives. Then a detailed discussion on the
closed loop dynamics in task space whenever one or more tasks are in transition
is presented, using simple geometrical tasks.

5.1 Activation Functions

Let us consider a multidimensional task and the activation value associated to
each i-th of its components, called a(i), and let us construct it as the product of
two functions

a(i) , a
p

(i)a
s
(i), (62)

which have the following specific purposes:

– as(i) is used to activate/deactivate the task based on its internal state, i.e. the
current value of the actual i-th component x(i);

– a
p

(i) is instead used to activate/deactivate the task based on external parame-
ters to the task itself, e.g. an activation based on the current elapsed mission
time.

For each inequality control objective, we consider as activation function as(i) the
one defined as follows for objectives of the type x(i) ≤ x(i),M (a similar function
can be constructed for objectives x(i) ≥ x(i),m):

a
s
(i) ,











1, x(i) > x(i),M

si(x), x(i),M − β(i) ≤ x(i) ≤ x(i),M

0, x(i) < x(i),M − β(i)

(63)

where si(x) is any sigmoid function with a continuous behaviour from 0 to 1 when
x(i),M − β(i) ≤ x(i) ≤ x(i),M . The β(i) value allows to create a buffer zone, where
the inequality is already satisfied, but the activation value is still greater than zero.
This is necessary to prevent any chattering problem around the inequality control
objective threshold. On the other hand, note that for equality control objectives
it clearly holds that ai(i) = 1.

The activation value a
p

(i) is instead a value which can be exploited to perform
task transitions based on variables external to the task itself. For example, let us
consider a mobile manipulator, moving on a horizontal plane, performing a grasp-
ing task. The end-effector position control (which is an equality control objective)
should be activated only when the vehicle is sufficiently close to the object to be
grasped, since it does not make sense to move the arm when the object is far away.
Thus the activation function a

p

(i) of the end-effector position control task would
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be a function of the horizontal distance d between the vehicle and the object. This
allows to surpass sequential approaches, where the vehicle is first commanded to
get close and only successively the arm is commanded to grasp the object. In-
stead, the robot will accomplish both tasks, enabling the arm end-effector control
smoothly as the vehicle approaches the object. A simulation trial implementing
this seamless task transition is presented in Section 6.2.

Remark: We have implicitly considered objectives of the type xm < x < xM as two
separate ones. Note that if xm and xM are sufficiently spaced, i.e. xm+β < xM−β,
then they can be considered together by using as activation function the sum of
the two activation functions, and by choosing an arbitrary point inside the validity
of both inequality to construct the common reference rate in (6). This is actually
what is done for the joint limits task implementation, since the minimum and
maximum limits satisfy the above conditions.

5.2 Discussion on Transitions

Let us for now discuss what happens when one or more tasks at the same or
different priority levels are in transition. Toward that end, let us consider a simple
two dimensional example. A point-wise robot moves on the plane (χ, γ) and has
the following inequality control objectives to satisfy:

– objective 1: γ > 3;
– objective 2: χ > 1;
– objective 3: γ − χ < 0.

These objectives are grouped in two different priority levels:

– priority level 1: objective 1 and 2, with their respective velocity references
stacked in the vector ˙̄x1 and their activation values in the matrix A1, where
the subscript indicates the priority level as done in the previous sections;

– priority level 2: objective 3, with a velocity reference denoted as ˙̄x2 and acti-
vation matrix as A2.

The activation functions corresponding to these control objectives have been cho-
sen with buffer zone size β = 1 (see Appendix A for the actual choice of sigmoid
function).

In the first example the starting point of the robot is (−4, 4.5). Figure 5(a)
shows the trajectory of the robot on the (χ, γ) plane, as well as the inequality
control objectives with a solid line and their corresponding buffer zone with a
dashed line. Figure 5(b) reports the time behavior of the activation functions,
while Fig. 5(c) reports the reference velocities for each task (dashed lines) and the
actual task velocities (solid lines).

In the initial point of the first example, the first objective is already satisfied
and the corresponding activation value is A1(1,1) = 0, while the second and third
objectives have their corresponding activation values equal to one. At the same
time, the velocities of the task 2 and 3 are tracked exactly, since the first task
is completely deactivated. As the robot moves, it enters the buffer zone of the
first task at approximately t = 0.04 s, which implies an activation of the task 1.
For this reason, since the robot has only 2 d.o.f., the tracking of task 3 cannot be
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Fig. 5 Example 1: the robot initial position is (−4, 4.5). (a) robot trajectory, where the
solid lines represent the objectives boundaries and the dashed lines represent the thresholds at
which the activation functions become different from zero (b) the time history of the activation
functions (c) the reference and actual velocities of each of the three tasks.
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Fig. 6 Example 2: the robot initial position is (−2,−4.5). (a) robot trajectory, where the
solid lines represent the objectives boundaries and the dashed lines represent the thresholds at
which the activation functions become different from zero (b) the time history of the activation
functions (c) the reference and actual velocities of each of the three tasks.

anymore guaranteed, because it is at a lower priority level w.r.t. task 1 and 2. This
is evident when looking at 5(c), since the reference ˙̄x2(1) is not anymore tracked
exactly. We further note how the tracking of the task 2 reference is still exactly
fulfilled.

As the simulation progresses, task 1 remains in the transition zone and partially
conflicts with task 3, for what concerns the motion on the γ axis. However, as can
be noted from Fig. 5(a), a balance between the two tasks is reached and essentially
the robot only moves on the χ axis, heading toward the achievement of both tasks
2 and 3. As soon as task 2 is completed (at approximately t = 2.5 s), the task 3 is
again tracked exactly, despite task 1 is still in the transition zone.

In the second example the robot starts at (−2,−4.5). As before, Figure 6(a)
shows the trajectory of the robot on the (χ, γ) plane, as well as the inequality
control objectives with a solid line and their corresponding buffer zone with a
dashed line, Fig, 6(b) reports the time behavior of the activation functions, and
Fig. 6(c) reports the reference velocities for each task (dashed lines) and the actual
task velocities (solid lines).

In this case, tasks 1 and 2 are fully activated at the start, while task 3 is
deactivated. Since tasks 1 and 2 have the highest priority, their velocity reference
is tracked exactly, while the actual velocity of task 3 is imposed by the first two and
actually drives the robot away from the region where the objective 3 is satisfied.
Near t = 0.4 s, task 3 starts being activated, however as there are not enough
d.o.f. available, its actual velocity remains the one set by task 1 and 2. However,
as soon as task 2 enters its transition region at t = 1.39 s, then the actual velocity
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Fig. 7 Example 3: the robot initial position is (−4, 4.5). (a) robot trajectory, where the
solid lines represent the objectives boundaries and the dashed lines represent the thresholds at
which the activation functions become different from zero (b) the time history of the activation
functions (c) the reference and actual velocities of each of the two tasks.

of task 3 begins to converge to its desired one. An exact tracking is accomplished
at t = 2.06 s, when task 2 is finally completely deactivated.

A further example is proposed, where this time only two objectives are present
and are clearly impossible to satisfy contemporaneously:

– objective 1: γ > 3;
– objective 2: γ < −3.

These two objectives are distributed within two priority levels. Such a situation
should be clearly avoided in a real scenario, and is presented only for sake of a
complete discussion.

At the start of the simulation the robot is placed in (−4, 4.5), as can be seen
in Fig. 7(a). In such a situation, A1(1,1) = 0 and A2(1,1) = 1, as can be seen in Fig.
7(b) thus the robot moves vertically towards the second objective. Furthermore,
the velocity reference of the second task is tracked exactly, since the first task is
inactive (see Fig. 7(c)). However, as soon as the robot enters the transition zone of
the first task, the robot starts slowing down and actually stops in an equilibrium
position where the first task is in the transition zone (and thus still γ > 3) and
the second task is unsatisfied.

We conclude this preliminary discussion by noting how the proposed regular-
ization method allows to share d.o.f. between the priority levels whenever tasks
are in transition, without affecting the other active higher priority tasks. Further-
more, this sharing happens as soon as the activation values are different from zero
and one, allowing to exploit the full extent of the transition, as opposed to SVO
only regularization methods, generally only acting in a small zone of the transi-
tion interval. The first two examples shows that if a region where all the tasks
are satisfied exists, then the system will evolve towards that zone. Instead, as
the third example shows, if such a zone does not exist, then an equilibrium point
within the transition zone will be established, without any chattering around it,
in a configuration where the higher priority tasks are mainly satisfied.

Naturally, the fact that the task reference gains cannot be increased indepen-
dently of the control sample time still holds true as in any discrete control sys-
tem. In practice, once implemented in a discrete control system, the discontinuity-
mitigation action which emerges from the proposed technique allows to have higher
gains, and thus better control performances, before chattering or limit cycle prob-
lems arise when using SVO-only regularization solutions.
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6 Simulation and Experimental Results

In this section we present some simulation and experimental results obtained using
the proposed task-priority framework. The section is structured as follows:

– in Section 6.1 we present a simple case study, with the same 2-d.o.f. planar
robot of [31]. We first show how with the use of classical regularization methods
based only on SVO regularization the practical discontinuity issues generate
chattering phenomena. Then, we compare our approach with the one provided
in [31] showing similar results, despite our approach scaling linearly in the
number of tasks;

– in Section 6.2 we move to the control of an underwater vehicle manipulator
system. We first show the capability of the proposed framework to handle
the activation and deactivation of tasks at any point of the hierarchy and
within the same priority level. Then, another simulation is presented, showing
an example of task transition for equality tasks. In particular, the end-effector
position control (whose error must be zeroed) is activated only when the vehicle
is actually within grasping distance;

– in Section 6.3 an experimental result obtained with the AMADEUS 7 d.o.f.
manipulator is presented;

– finally, Section 6.4 presents a computational time analysis of the proposed
framework.

6.1 Simple Case Study: 2-d.o.f. Planar Robot

In this first basic example the same 2-d.o.f. planar robot of [31] is employed,
with joint limits equal to 1 and −1 for both joints. The starting position of the
robot is q = [ 0.3 0.1 ]T and the desired final position for the end-effector is
x̄ = [ 0.1 0.7 ]T . Two tasks are implemented: the joint limit avoidance task and
the end-effector position one.

The velocity reference for the joint limits avoidance task is simply

˙̄xjl = −γjlq, (64)

and it is activated by an activation function as defined in [31] eq. (55) with a
buffer zone β of 0.1 rad. This means that the activation function is zero between
−0.9 ≤ qi ≤ 0.9 and then smoothly goes one for 0.9 ≤ qi ≤ 1 and the same for the
negative part.

The position task is described by the following velocity reference

˙̄xee = −γee(x̄− x). (65)

First we show how with the sole use of SVO regularization, the issues of prac-
tical discontinuities become chattering phenomena in discrete control. Figure 8(a)
shows that as soon as the activation function reaches a critical value shown in Fig.
8(b), the control begins chattering around the threshold creating an undesired
oscillating behaviour.

Then we proceed to compare our approach to the one presented in [31]. In
particular, Fig. 9(a) shows the position of the end-effector obtained as result of
the application of the control law [31] in a red solid line, while the proposed one
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Fig. 8 Practical discontinuities create chattering phenomena around the activation thresholds:
(a) the generated joint velocities, (b) the activation function value, (c) joints position.
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Fig. 9 Comparison between the proposed approach (blue dashed line) and [31] (red solid line):
(a) (x, y) position of the end-effector, (b) arm joints velocities, (c) joints position.
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Fig. 10 Free floating vehicle simulation: (a) arm joints velocities, (b) vehicle velocities, (c)
end-effector positioning error.

is presented with a dashed blue one. Figure 9(b) shows the resulting q̇, while
the final Fig. 9(c) represents the time history of q. As can be seen, the resulting
behaviour is very similar. However, the approach in [31] scales exponentially and
thus is difficult to apply as the number of tasks and d.o.f. increases.

6.2 Free Floating Underwater Manipulator

In this second simulation the reference scenario for the TRIDENT FP7 project [40]
is studied. A free floating vehicle (6 d.o.f.) endowed with a redundant arm (7 d.o.f.)
must recover a blackbox from the sea floor. The main task is thus represented by
a position control of the end-effector (6 d.o.f.). However, the system must also
simultaneously satisfy different safety and operational-enabling objectives [45]:

1. avoid the arm’s joint limits (a 7 dimensional task, one for each joint);
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Fig. 11 Free floating vehicle simulation: (a) activation functions for manipulability, camera
and elbow tasks, (b) activation functions for the joint limits task.

2. maintain a good arm dexterity to avoid singular postures (a scalar task);
3. keep the object grossly centered in the camera visual cone and keep the center

of the object within given horizontal and vertical distances, to improve the
performances of the visual tracking algorithm (a 3 dimensional task);

4. maintain the arm’s elbow away from the camera visual cone, to avoid unnec-
essary occlusions of the object (a 2 dimensional task).

All these inequality control objectives would require 13 d.o.f. if their corresponding
tasks are always active, as was done in the classical task-priority framework, which
coupled with the main task of the end-effector position control would sum up to
19 d.o.f., surpassing the capabilities of the system. However, with the possibility of
activating the tasks as seen in the previous sections, it becomes possible to activate
these tasks only when strictly necessary, i.e. when the corresponding inequalities
are not yet satisfied. Furthermore, with the proposed approach they can be given
an higher priority w.r.t. to the position control of the end-effector, in order to
guarantee their accomplishment and the respect of the corresponding inequality
control objectives.

Figure 10(a) shows the arm’s joint velocities and Fig. 10(b) shows the vehicle
velocities obtained during the simulation, demonstrating the continuity of the
control. Furthermore, Fig. 10(c) shows the six components of the position error of
the end-effector, showing how it converges to zero.

Figure 11(a) reports the time history of the activation functions for the manip-
ulability, camera and elbow tasks, while Fig. 11(b) reports the seven values of the
activation functions of the joint limits task. As can be seen, different tasks are in
transition during the trial. However, thanks to the proposed approach, the system
manages to maintain the inequality tasks within the required thresholds, while at
the same time accomplishing the final objective of the mission, by having the arm
in the desired grasping position (see Fig. 10(c)).

The successive simulation is again performed with an underwater vehicle ma-
nipulator system. This simulation shows how with the method presented in Section
3 it is possible to activate and deactivate also equality tasks. For this simulation,
the tasks are:

1. avoid the arm’s joint limits (a 7 dimensional task, one for each joint);
2. maintain a good arm dexterity to avoid singular postures (a scalar task);



28 Enrico Simetti, Giuseppe Casalino

0 5 10 15
−0.05

0

0.05

0.1

0.15

0.2

t [s]

Arm Joint Velocities

(a)

0 5 10 15
−0.2

0

0.2

0.4

0.6

t [s]

Vehicle Velocities

(b)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t [s]

Activation Functions

 

 

manipulability

horiz. attitude

vehicle position

end effector position

(c)

0 5 10 15
−1

0

1

2

3

4

5

t [s]

Object Position Error

(d)

Fig. 12 Example of task transition: the end-effector position control is activated only when
the vehicle is close to the object (a) time history of the joint velocities, (b) time history of the
vehicle velocities (c) time history of the activation functions and (d) Cartesian position error
between the end-effector and object frame.

3. keep the vehicle grossly horizontal (a scalar task)
4. precisely control the end-effector on top of the object frame (a 6 dimension

task);
5. get the vehicle close to the object in a given position (a 6 dimension task).

In particular the last two task are both of equality type. However, since it is not
needed to move the arm while the object is away from the arm’s availability, the
end-effector position control is enabled only when the vehicle is close to the object
to be grasped. At the same time, the vehicle position control is deactivated, since
there is not a specific position needed.

Figure 12 shows the results of this simulation, presenting the joint and vehicle
velocities generated, the activation functions showing this seamless task transition
between getting close to the object and grasping it, while the last figure shows the
convergence of the end-effector position control error. The simulation thus shows
how sequential approaches can be implemented in a much smoother way.

6.3 Experimental Results with the AMADEUS Redundant Manipulator

In this section an experimental trial with the AMADEUS 7 d.o.f. manipulator
(visible in Fig. 13) is shown. The tasks are, in order of priority: keeping away
from joint limits, keeping the manipulability measure above a given threshold and
finally reaching the desired end-effector position. The robot starts from an initial
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Fig. 13 The AMADEUS 7 d.o.f. manipulator used during the experimental trials.
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Fig. 14 AMADEUS experimental trial: (a) activation functions for the joint limits task, (b)
values of the joint near its physical limit (c) time history of the joint velocities during the trial.
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where the Cartesian components represent the yaw, pitch, roll angles, followed
by the x, y, z position of the end-effector. The robot is commanded to perform
a diagonal movement on the horizontal plane, namely a −0.4 m movement along
the x axis, and a 0.4 m one along the y axis, in order to reach the desired final
position.

Figure 14(a) shows that during such a movement, one of the joint’s arm ap-
proaches its end of race, causing the activation of the corresponding row in the
joint limits avoidance task. Figure 14(b) shows the joint’s position and the bounds
for the start of task activation (−0.41 rad) and its complete activation (−0.61
rad). The figure thus show how the task successfully avoids the joint limit. The
generated joint velocities are reported in Fig. 14(c), which are continuous and free
of chattering phenomena even during the activation of the joint limit task.
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Fig. 16 Computation times as the number m of tasks for each level is increased, considering
10 priority levels.

6.4 Execution Times Analysis

The effectiveness from a computational point of view has been tested running
the proposed algorithm on a test machine equipped with a Intel Core i7-4790 3.6
GHz CPU. Figure 15 shows the execution times as the number of priority level is
increased, and each level is represented by a 3 or 5 dimensional task. The tests
depicted in the figure have been done with 13 and 20 control variables, i.e. the
number of d.o.f. available with an underwater vehicle manipulator system with
one or two arms. The results show how with 13 d.o.f. the control can be run at
1 kHz even with 25 different priority levels with 5 dimensional task at each level,
for a total of 125 scalar tasks. For a 20 d.o.f. system, a 1kHz control rate can be
achieved with 9 priority levels each with 5 dimensional task for a total of 45 scalar
tasks.

The successive Fig. 16 shows the linear scaling considering a fixed (10) amount
of priority levels, as the dimension m of the tasks at each level is increased. The
proposed approach can handle more than 200 scalar tasks divided equally at each
priority level for a 13 d.o.f. system in less than 1 ms.

The final Fig. 17 shows the cubic scaling of the algorithm (due to the pseudo
inverse) w.r.t. the number of d.o.f., considering a fixed (5) number of priority levels.
The figure shows the computational times with different values of m. Despite the
cubic scaling, the figure shows how the proposed algorithm can handle 100 scalar
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Fig. 17 Computation times as the number n of degrees of freedom is increased, considering
5 priority levels with different number m of task dimensions.

tasks for a 20 d.o.f. system in under 1 ms, while the number decreases to 25 scalar
tasks for a 25 d.o.f. system.

Remark 1: For practical applications, this means that a mobile manipulator (3 +
7 d.o.f. for vehicle and redundant arm), a free floating vehicle manipulator system
(6 + 7 d.o.f.) and dual arm systems (6 + 7 + 7 d.o.f.) are all capable to be
controlled at 1 kHz, while considering at least 100 scalar tasks. It is important to
stress the fact that the algorithm has a deterministic computational time, thus is
perfectly suited for a real-time implementation. For these reasons, the proposed
algorithm is being used by the authors in the context of the MARIS project [10]
for the control of single, dual arm and cooperative underwater vehicle manipulator
systems [30,43, 44].

Remark 2: Finally, it must be noted that the implementation only uses one core
of the CPU, leaving the other cores free to be used for other processes.

7 Conclusions

This paper has presented a novel framework for the task-priority control. The
major novelty consists in the ability of activating and deactivating tasks without
incurring into practical discontinuity problems, while at the same time keeping
much of the simplicity of the original task-priority framework. Indeed, the pro-
posed algorithm has a linear scaling in both the number of tasks and priority
levels. Furthermore, it is deterministic and thus perfectly suited for a real-time
implementation. Despite the cubic scaling in the number of degrees of freedom,
we have shown that many redundant systems can be controlled up to 1 kHz with
a significant number of tasks (at least 100).

The ability of activating and deactivating tasks has two main benefits. On
the one hand it allows one to efficiently deal with inequality control objectives.
Indeed, the corresponding task can be simply deactivated whenever inside the va-
lidity region of the inequality control objectives, without any over-constraining of
the system mobility and without incurring in practical discontinuities or chatter-
ing problems. On the other hand, the same technique can be used to implement
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a temporal sequence of tasks. This is due to the fact that the mechanism for ac-
tivating the tasks, i.e. the activation functions, can be also parametrized by some
external variable (e.g. time, but also distance, etc.), providing an effective way to
transition from a set of tasks to another. Future works may include the addition
of velocity saturations in the prioritized control, in a similar manner as developed
in [5].

A Appendix: Selection of Activation Functions

We have reported in Section 5 the general definition of the activation functions. We hereafter
report the actual sigmoid function that we have used:

sg(x) ,











1, x < xm

1
2
∗ (cos(

(x−xm)∗π
β

) + 1), xm ≤ x ≤ xm + β

0, x > xm + β

(66)

for objectives of the type x > xm and

sl(x) , 1− sg(x) (67)

for objectives of the type x < xM .
We report here an example of activation function used in the implementation of the

AMADEUS experiment presented in Section 6.3. Let us consider the joint limit task and
in particular for the third joint lower the objective is

q3 > −0.61

since the hard joint limit is −0.66 rad.
In this case the variable of interest is x = q3, and the Jacobian of this task is simply

Jjl3 =
[

0 0 1 0 0 0 0
]

. In accordance with the definitions given in Section 2, we have computed
the task reference for q3 as

˙̄xjl3
= κ(−0.41− q3),

where κ > 0 is a positive scalar gain. Then by using (66) with xm = −0.61 and β = 0.2
we have that whenever q3 > −0.41 the task is completely deactivated, q̇3 is freely used for
other tasks and the fact that ˙̄xjl3

is negative does not matter. Figure 18 reports the specific
activation function for this example.

The values of xm and xM can be tuned to increase or decrease the length of the transition,
which can be important w.r.t. the velocities of the robot in the context of discrete control to
avoid chattering phenomena: in practice, larger transitions are needed as the sample time of
the control is increased.
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