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ABSTRACT This paper presents a new framework for island formation prior to windstorms, which considers 
tree-caused failures of distribution networks. In the proposed framework, both direct and indirect effects of 
windstorms on distribution lines are quantified. Thus, a novel discrete Markov chain model is proposed for 
representing the failure modes of trees in each time interval of windstorm duration. This model categorizes 
‘‘healthy’’, ‘‘uprooted’’, ‘‘stem breakage’’, and ‘‘branch breakage’’ states of a tree. In addition, a new line-
tree interaction model is presented for calculating tree-caused failure probability of overhead lines. The 
results of the proposed Markov model are taken as inputs by the developed line-tree interaction model. In 
these models, the different characteristics of windstorms are taken into account. Tree vulnerability to 
windstorms is characterized by different factors such as their species, height, and critical wind speeds. 
Windstorm duration is sectionalized into multiple time intervals, and the proposed models are applied to trees 
and distribution system components in each interval. Moreover, the interdependency between the intervals is 
captured by the Markov model. The results of the models are used by an optimization model, thereby dividing 
a distribution system into multiple islands before storm onset. Subsequently, the framework is extended as a 
two-stage stochastic optimization problem to address the uncertainties of loads. In addition, this framework 
considers the allocation of mobile emergency resources. The proposed models are implemented on the IEEE 
33- and 123-bus test systems, as well as a practical distribution feeder, and their effectiveness is demonstrated 
through several case studies.  

INDEX TERMS Discrete Markov chain, distributed energy resources (DERs), distribution system resilience, 
microgrids, mobile emergency resource (MER), tree failures, windstorms. 

NOMENCLATURE 
 

Indices and Sets 
s  Index of scenario. 
  Index for stage number of stochastic 

programming problem. 
,t   Index of time and storm time interval. 

, TT   Index and set of trees. 

, Ni   Index and set of nodes. 

, Bj   Index and set of distribution 
branches. 

, DERg   Index and set of DERs. 

, CLcl   Index and set of critical loads. 

, MERm   Index and set of mobile emergency 
resources, respectively. 

Parameters and Constants 
fP  Failure probability. 

max
,g n   Maximum wind speed at time 

interval n of storm. 

,Up SBCW CW  The critical wind speeds at which a 
tree is uprooted and trunk snapped, 
respectively.  

( )n  The stochastic transitional 
probability matrix of a tree in time 
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interval n. 
( )n  Vector of state probability for a tree 

in time interval n of windstorm. 

, e
T Th h  The tree height and the effective tree 

height, respectively. 
,e im

Th   Image of the effective tree height on 
the ground. 

Lh  The height of distribution lines above 
the ground. 

T  A binary parameter indicating 
whether the stem or branches of tree 
T can fall on the adjacent line or not, 
with regard to wind direction. 

  The fluctuation parameter in the wind 
direction. 

  A fraction of tree stem that is broken 
by storm and falls on the ground. 

d  The horizontal distance between a 
tree and its adjacent distribution line. 

,ij ijr x   Resistance and reactance of branch ij. 

  A binary parameter indicating a 
distribution component is in a healthy 
condition or not.  

, ,,D D
i t i tP Q  Active and reactive demand at bus i, 

at time t. 
Tr  Vulnerability threshold. 

1 2,   Min(d1, d2) and Max(d1, d2), 
respectively. 

Variables and Functions 
  A binary variable indicating if a 

distribution component is energized 
or not. (1/0) 

,m i   A binary variable specifying if 
mobile emergency resource m is 
allocated to node i before storm 
arrival or not. (1/0)  

, ,,sh sh
i t i tP Q  Active and reactive amount of load 

shedding at node i, at time t 

, ,,ij t ij tP Q  Active and reactive power flow in 
distribution branch ij, at time t. 

, ,,G G
g t g tP Q  Active and reactive power generation 

by DER g, at time t. 

,i tV   Voltage magnitude of node i, at time 
t 

Symbols and Acronyms 

f  Symbol for failure. 

,l p  Symbols for line and pole, 
respectively. 

,di ind  Symbols for direct and indirect, 
respectively. 

,Up SB  Symbols for uprooted and stem 
breakage. 

,He BB  Symbols for healthy and branch 

breakage, respectively. 
Min , max Symbols for minimum and 

maximum, respectively. 
SE Priority-weighted supplied energy. 

I.  INTRODUCTION 
Weather-related incidents can make adverse impacts on 
power grids [1]. In this context, resilience-oriented measures 
should be taken by system operators. In particular, operation-
oriented proactive measures play a critical role in improving 
distribution system resilience [2]. In order to implement 
these measures, it is necessary to anticipate outages in 
distribution systems (DSs) [3], [4].  

Severe windstorms have catastrophic impacts on power 
system components. In this context, development of the 
models that can predict component outages prior to the 
storms is a crucial task for power grid utilities [5]. Indeed, 
outage prediction can significantly impact the storm-related 
efforts of electric utilities [6]. Based on the results of the 
outage prediction, they can plan their emergency storm 
response. For example, the utilities can estimate the amount 
of repair resources required to repair the possible damages. 
In the case of windstorms, trees are the dominant cause of 
DS component failures [7], [8]. In this regard, trees must be 
incorporated into the storm-related studies of DSs. However, 
modeling the tree-caused failures is a difficult task. The 
difficulty lies in the stochastic behavior of trees during 
storms [9]. 

In the literature, several methods have been developed for 
modeling the tree failures during windstorms, which can be 
divided into three groups: 1-explanatory, 2-mechanistic, and 
3-statistical models [10]. In the explanatory models, the 
causal relationships between different factors, such as 
species and dimensions, are investigated. These models are 
suitable for the conditions in which there are not sufficient 
historical data [10]. In the mechanical wind-risk models, 
wind loading on trees is analyzed, and accordingly the failure 
probability of trees during windstorms is calculated [11], 
[12]. The mechanical models require some detailed data for 
each tree, such as tree mass [13]. Nonetheless, it is very 
difficult to collect such detailed data for all trees. Statistical 
modeling techniques aim at predicting tree damage 
probability using the machine learning methods [14], [15]. 
To do so, they need tree-related data such as tree locations 
and heights for different windstorms and locations. Based on 
the above discussion, it can also be confirmed that the 
referred papers only focus on tree damage modeling, and do 
not investigate the effects of tree failures on power lines. 

There are some studies that have focused on power outage 
prediction during normal weather condition [16-18], which 
are not applicable under windstorms. To address this 
concern, a variety of methods have been proposed in the 
past-published studies to predict the storm-caused outages, 
which can be broadly classified into two main categories: 1- 
fragility-based approaches 2- statistical models [19]. In the 
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first category, reference [19] estimates power outages during 
disasters based on fragility curves. In the second category, 
[20] develops an outage-forecasting model based on the 
random forest method. Likewise, a statistical model in [21] 
is presented for power outage prediction during typhoons. In 
addition to the power grid data, this model considers 
meteorological and geographical factors. However, there are 
few papers that quantify tree-induced failures of DS 
components during windstorms. In this group, the authors in 
[22] propose a method in which the effects of windstorms on 
DSs are evaluated through sequential Monte Carlo 
simulation method. In this paper, a linear relationship 
between the failure rate of components in normal and 
windstorm conditions is established. Likewise, reference [5] 
proposes a framework for assessing transmission system 
availability in the case of extreme weather events. In this 
study, the effect of tree falling on power components is 
considered through failure rates of components. The authors 
in [23] proposed an outage prediction model for DSs during 
storms. In this model, machine learning method is used for 
predicting power outages. Reference [8] uses a statistical 
model to predict the locations and number of hurricane-
caused outages for a utility located in the coastal Gulf of 
Mexico areas. In this model, some tree-related variables such 
as tree species are added to the model. Nevertheless, trees 
have different failure modes whose effects on distribution 
branches are not identical. Hence, it is necessary to 
distinguish between them. Moreover, possible impacts of 
damaged trees on power lines have not been properly 
analyzed in the existing literature.  

Microgrid formation against extreme events has been 
recognized as an effective strategy for reducing the impacts 
of extreme events on DSs [24]. In this regard, several studies 
in the literature investigated the role of microgrids in serving 
critical loads in the event of natural disasters. They can be 
classified into two categories of post-disaster and pre-
disaster microgrid-forming studies. The studies in the first 
group construct microgrids in the aftermath of disasters. For 
example, a distributed secondary control strategy is 
developed in [25], which forms microgrids with dynamic 
borders after natural disasters. The authors in [26] propose 
an integrated optimization model that dynamically forms 
microgrids after extreme events. In this study, the optimal 
dispatch of repair crews is determined as well. In [27], an 
algorithm for the construction of network microgrids after a 
natural disaster is developed. In this algorithm, Petri nets are 
utilized for recognizing the status of healthy components. In 
contrast, a few papers in the second category have focused 
on constructing microgrids before the arrival of disasters. For 
example, the authors in [28] propose a heuristic method for 
solving the two-stage optimization problem. In the first 
stage, the optimal locations of distributed generators (DGs) 
are determined prior to disaster onset, and the second stage 
constructs microgrids in the aftermath of the disasters. In 
[29] and [30], a proactive microgrid formation against 

windstorms and floods is presented. Nevertheless, to the best 
of authors’ knowledge, none of these studies covers the task 
of modeling the tree-caused failures. However, there are 
some studies that propose hardening-oriented measures for 
improving DS resilience against windstorms. For example, 
an optimal hardening strategy is presented in [31] that 
enhances the resilience of a DS against storms. Three 
resilience-enhancement strategies are considered, including 
the vegetation management. Nonetheless, operational and 
hardening measures are two complementary actions to make 
a DS more resilient against windstorms. Consequently, 
utility companies should implement these two resilient-
oriented measures. 

Motivated by the aforementioned challenges, this paper 
proposes a novel framework that not only models the three 
main failure modes of trees during windstorms, but also 
evaluates the effects of each tree failure mode on its adjacent 
distribution lines. In this framework, the duration of a 
windstorm is divided into multiple time intervals. In 
addition, both direct (wind-induced damages) and indirect 
(tree-caused damages) effects of windstorms on overhead 
structures are addressed. Since the stochastic behavior of a 
tree during storms can be modeled by analyzing Markov 
models in series, a new discrete Markov chain model is 
developed to categorize the possible states of an individual 
tree during each time interval of windstorm duration. In this 
context, ‘healthy’, ‘uprooted’, ‘stem breakage’, and ‘branch 
breakage’ are recognized for a tree by the Markov model. 
Transition probabilities of this Markov model are computed 
based on the characteristics of trees and windstorms in each 
time interval. Subsequently, a novel line-tree interaction 
model is presented, whereby the tree-caused failure 
probability of overhead distribution lines is calculated. To 
this end, the probability of residing in each state of the 
Markov model is imported as inputs to the line-tree 
interaction model. Subsequently, the line-tree interaction 
model is employed to quantify the impact of each failure 
mode of trees on their adjacent overhead lines. In the next 
step, the results of the line-tree interaction models are 
utilized as inputs to the optimization problem, thereby 
identifying storm-vulnerable lines. Finally, the optimization 
problem for constructing islands prior to windstorms is 
expressed in the form of a mixed-integer linear programming 
(MILP) model. The objective is to maximize the priority-
weighted supplied energy to critical loads, while minimizing 
the vulnerability of energized lines during windstorms. In 
order to address the uncertainty associated with load 
demands, the proposed deterministic framework is extended, 
and a two-stage stochastic framework is proposed. In this 
stochastic framework, the optimal allocation of mobile 
emergency resources (MERs) is incorporated. On these 
bases, the main contributions of this paper can be listed as 
follows: 
 A new Markov model is proposed for identifying the states 

in which a tree can reside in each time interval of the storm 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3179973, IEEE
Access

 

VOLUME XX, 2022 1 

duration, and the associated transition probabilities are 
calculated based on the tree and windstorm characteristics. 
The obtained transition probabilities are subsequently 
used to calculate the probability of residing in each tree 
state during a storm. 

 A novel line-tree interaction model is proposed for 
calculating tree-induced failure probability of overhead 
lines for each failure mode of a tree during windstorms.  

 The vulnerable branches to an approaching storm are 
identified using the proposed framework, and an 
optimization model is presented that constructs islands 
prior to the storm. 

 The proposed deterministic framework is extended to 
consider load demand uncertainties and pre-storm 
allocation of MERs. 
The rest of this paper is organized as follows. Section II 

presents the general overview of the proposed deterministic 
framework. The details of the proposed Markov and line-tree 
interaction models are presented in Section III. Section IV 
formulates the proposed island formation framework in form 
of a MILP problem. In Section V, the two-stage stochastic 
framework and its formulation are introduced. Section VI 
presents and discusses the simulation results on three test 
systems and finally, summary conclusions are provided in 
Section VII.  

II. PROPOSED FRAMEWORK 
In this section, the general structure of the proposed 
framework is described. Subsequently, an illustrative 
example is shown so as to implement the framework on a 
simple distribution network.  

A. GENERAL DESCRIPTION OF THE PROPOSED 
FRAMEWORK 
The overall structure of proposed method is depicted in Fig. 
1. The proposed framework consists of two stages. 

 

FIGURE 1. General structure of the proposed framework. 
 

In the first stage, all of the distribution lines vulnerable to 
windstorms are identified. To do so, the proposed Markov 
and line-tree interaction models are utilized. In the second 
stage, the proposed framework is implemented to form the 
islands, using the results of the first stage as inputs. The 
proposed framework is constructed based on the above 
methodology through the following steps (in each stage): 

Stage 1) The first stage calculates the failure probability 
of overhead distribution lines under direct and 
indirect effects of windstorms. This stage can be 
divided into five steps as follows: 

Step 1) The information about trees, distribution overhead 
structures, and windstorm forecasts is collected.  

Step 2) The proposed Markov model is constructed for a 
tree in each time interval of storm duration. In 
addition, its transition probabilities are calculated 
based on the characteristics of the tree and the 
windstorm in that time interval. Based on the 
results of this model, the failure probability of the 
tree in each state is computed, for the time interval 
of interest. 

Step 3) Based on the probability values obtained in the 
previous step, the tree characteristic, and the 
windstorm features, the proposed line-tree 
interaction model calculates the tree-caused failure 
probability of each distribution line (indirect 
effect) in each time interval of the storm  

Step 4) Using the fragility curves, the failure probabilities 
of the distribution lines and the poles under the 
direct effect of windstorms are calculated. 

Gather Windstorm  
Forecasts 

Stage I: Storm-caused Failure Modeling

Gather Data on Trees and 
Distribution Lines 

Determine the Vulnerable Branches  

Form Fragility Curve for Overhead 
Structures 

 

Borders of the Formed Islands 

 
 
 
 
 

Stage II: Optimization Problem 

Distribution Branch Failure Probability under 
Direct and Indirect Effects of Windstorms  

Run the proposed MILP Optimization 

Build the Proposed Markov Model 
for Trees in each Time Interval 

Construct the Proposed Line-Tree 
Interaction Model for each Line in 

each Time Interval 

Calculate Branch Failure 
Probability Due to Windstorm 

Calculate Branch Failure 
Probability Due to Tree Failure 
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Step 5) Based on the obtained results of Steps 3 and 4, the 
windstorm-vulnerable branches are identified, 
which are used as the inputs into the second stage. 

Stage 2) The second stage optimally constructs islands 
prior to windstorms, which can be summarized 
in the following steps:  

Step 1) The proposed optimization framework is run.  
Step 2) The configurations of the constructed islands are 

determined.  
 

B. ILLUSTRATIVE EXAMPLE 
In this part, the proposed framework is implemented on a 
sample distribution network, which is shown in Fig. 2. It is 
assumed that an upcoming windstorm will hit the network, 
thereby causing three permanent faults along the distribution 
network. 
 

FIGURE 2. Illustrative example of implementing the proposed framework on a 
sample electricity distribution network. 
 

Using the first-stage results of the proposed framework, 
three branches 2-3, 6-10, and 14-15 are recognized as 
vulnerable to the upcoming storm. Two branches 2-3 and 14-
15 will be damaged by the fallen trees (indirect effect of 
storm), while branch 6-10 will be directly damaged by the 
storm. Afterward, the second stage determines the island 
borders such that the amount of priority-weighted supplied 
energy after storm is maximized. At the same time, the 
vulnerability of the energized branches during the storm is 
minimized. Thus, two islands are constructed to supply the 
critical loads. In island 1, three branches are energized. DG 
1 supplies critical load 1 through branches 1-2 and 2-8. This 
is because the vulnerability of this path to the upcoming 
storm is lower than the path involving: 8-7, 7-6, 6-5, and 5-
1 branches. In addition, critical load 3 is energized through 
the island number 2. Moreover, by implementation of this 
framework, since a tree is located near branch 5-13, this 
branch will not be energized. This will minimize the 
vulnerability of the network through energized branches to 
the upcoming storm. 

III. TREE-CAUSED FAILURE MODELING 
In this section, the indirect effects of windstorms on 
distribution lines are modeled. During windstorms, the 
damages to trees and distribution system components are 
closely associated with gust wind speeds [32]. Thus, 
windstorms are characterized by time-based gust speed 
profile and wind direction in this study. This profile is 
subsequently divided into some time intervals. In each time 
interval, the maximum wind speed is used in order to 
calculate the storm-caused failure probability of the 
components. On these bases, windstorm dynamic is 
considered in the proposed framework. 

In addition, a tree is modeled considering its general 
physical features as well as its critical wind speeds. The 
proposed models are developed for each distribution line and 
its adjacent trees in each time interval of a storm event. The 
spatial information about DSs can be accessed through the 
Geographic Information System (GIS) [33]. Moreover, tree 
data, such as height, can be derived from LiDAR, tree maps, 
and satellites [23]. 

A. DIRECT EFFECT OF WINDSTORMS ON LINES 
In order to calculate the failure probability of distribution 

system components under the direct effects of windstorms, 
the concept of fragility curves is utilized [34]. To do so, the 
maximum wind speed during each time interval is mapped 
onto the fragility curves of overhead components. As a 
result, the failure probabilities of the components under 
direct effect of a storm are obtained in each interval.  

B. MODELING INDIRECT EFFECTS OF WINDSTORMS 
In this part, a new model is proposed that calculates the tree-
induced failure probability of overhead distribution lines 
during windstorms. This model includes two sub-models. 
The first one models the random response of an individual 
tree during windstorms (the Markov model). The second 
sub-model, however, mathematically computes the tree-
induced failure probability of overhead distribution lines for 
different failure modes of a tree (the line-tree interaction 
model). These models are constructed in each time interval 
of storm duration. In addition, the line-tree interaction model 
is formed in each time interval based on the results of the 
related Markov model(s) for that interval. In the proposed 
Markov model, a tree condition at the end of a time interval 
is considered as the initial state of the tree Markov model in 
the next time interval. Thus, a chain of Markov models is 
constructed for modeling the response of a tree during a 
windstorm. The number of the Markov models used for 
modeling a tree equals the number of time intervals. This 
process is schematically illustrated in Fig. 3. 
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FIGURE 3.  Schematic illustration of the dependency between Markov models of 
a tree during storm time intervals. 

 

1) PROPOSED DISCRETE MARKOV MODEL 
The random behavior of trees during storms can comply 

with the requirements of Markov models [35]. Therefore, the 
concept of discrete Markov chain is used in this paper. As 
mentioned earlier, maximum wind speed is the primary 
cause of tree failures and power outages during storms. With 
this in mind, the maximum wind speed in each time interval 
of storm duration is used to calculate the failure probability 
of the trees and overhead components. In doing so, the 
transitional probabilities between different states of the 
Markov model are a function of maximum wind speed, and 
they remain constant during a specific time interval. Thus, 
the stochastic response of a tree in a time interval can be 
modeled using discrete Markov model. Fig. 4 shows the 
proposed Markov model for representing the behavior of an 
individual tree in a time interval of storm duration.  

12p13p

42p
43p

14p

44p

22p33p

11p

FIGURE 4.  Proposed four-state Markov chain for modeling tree response 
during wind storms in a time interval. 

 
In the proposed Markov model, the states represent 

different situations of the tree during windstorms. The 
proposed Markov model addresses four main states for a tree 
during storms [36], [37]. These states are ‘healthy’, 
‘uprooted’, ‘stem breakage’, and ‘branch breakage’. In 
addition, this model represents all of the feasible transitions 
between the different states of a tree during storms. For 
example, the uprooted state and the stem breakage state are 
completely independent. However, in branch breakage state, 
the trunk of the tree is considered healthy. Thus, a tree which 

is in the branch breakage state may experience uprooted or 
stem breakage state in the continuation of a storm event. 

If a tree stays healthy in a time interval, the model resides 
in state 1, with a probability of p11. However, if the tree is 
uprooted by the windstorm, a transition from state 1 to state 
2 occurs with a probability of p12. The windstorm can also 
cause stem breakage, which makes a transition to state 3 with 
a probability of p13. Branch breakage is another possible 
failure mode of the tree, which takes the model to state 4. In 
this situation, there are three possibilities for the tree. If the 
wind causes uprooting, the model is taken from state 4 to 
state 2 with probability p42. In addition, if the tree 
experiences stem breakage, the model transfers to state 3. 
Otherwise, it resides in state 4 with probability p44. However, 
when the model transfers to state 2 (uprooted) or state 3 
(stem breakage), it remains in state 2/ state 3 with a 
probability of 1.  

2) MARKOV MODEL TRANSITION PROBABILITIES 
The probabilities of the transitions between the Markov 

states are a function of different parameters, such as wind 
speed. In this regard, the transition probabilities are 
determined for each time interval of the windstorm duration, 
and thus the stochastic transitional probability matrix is 
constructed for each time interval. On these bases, different 
transition probabilities of the proposed Markov model are 
calculated as follows: 

1 1 1 2 1 3 1 4 1p p p p     (1a) 

22 33 1p p   (1b) 

4 4 4 2 4 3 1p p p    (1c) 
Equations (1a)-(1c) account for the probabilities of 

residing in states 1, 2, and 3 of the proposed Markov model 
given in Fig. 4. These three equations are derived based on 
the fact that the summation of the transition probabilities 
from a Markov state must be equal to unity [35]. Thus, the 
relationships between the transition probabilities from state 
1 and state 4 are respectively expressed by (1a) and (1c). 
However, if the model enters states 2 or 3, it will remain 
there. Thus, the value of the corresponding transition 
probability is equal to unity, which is given by (1b). 

The probability of departure from state 1 due to uprooting 
(p12) and stem breakage (p13) can be calculated using the 
fragility curves of trees [38]. There are different methods for 
constructing the fragility curves of trees. In this study, the 
fragility curves of trees are supplied to the algorithm as 
inputs, and they can be derived based on the approach 
presented in [38]. Nonetheless, the proposed framework is 
general, and when it is difficult to construct such curves for 
all individual trees, logistic models can be used [39]. These 
models approximately estimate the windthrow defect 
(uprooting or stem breakage of trees during high wind 
speeds) probabilities of the trees.  

However, p12 and p13 depend on the critical wind speed for 
uprooting and the critical wind speed for stem breakage. 
When the wind speed is lower than both critical speeds, the 
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values of p12 and p13 are equal to zero [40]. If the wind speed 
in a time interval is higher than the critical speed and 

sb upCW CW , the tree is snapped, otherwise it will be 
uprooted [36]. The other possibility occurs when the wind 
speed exceeds these two critical wind speeds. In this 
situation, the tree is either uprooted or snapped. On these 
bases, p12 and p13 can be estimated [36]. It should be notified 
that when a tree is in the standing condition (state 1 or 4), the 
probabilities of leaving states 1 and 4 due to uprooting or 
stem breakage are the same. It is due to the fact that the main 
difference of states 1 and 4 is the broken branches, and the 
factors that affect the probability of uprooting and stem 
breakage are not influenced by the broken branches. 
Therefore, Eqs. (2a) and (2b) are considered. 

12 42p p  (2a) 

13 43p p  (2b) 
 

Subsequently, using (1) and (2), the stochastic transitional 
probability matrix,  , is constructed for a tree in each time 
interval of a storm. Finally, the time-dependent probability 
of being in each tree state after n time intervals is calculated 
as [35]: 

( ) (0) (1) (2) ... ( )n n        (3) 

In which, (0)  is the initial probability vector of the 

Markov states.  

3) LINE-TREE INTERACTION MODEL 
In this subsection, a model is developed for calculating 

tree-induced failure probability for overhead distribution 
lines during windstorm events. The model is based on the 
observations made of the tree-caused failures during several 
windstorms [41-43].  

d

Tl

Lh

vl

e
Th

(1 ) Th 


1d

2d

FIGURE 5.  Schematic representation of interaction between a damaged tree and 
its adjacent power line. 
 

The parameters of the line-tree interaction model are 
illustrated in Fig. 5. In practice, falling trees are in wind 
direction [36]. In addition, there are a few variations in the 

direction of windstorm at a region. With this in mind, the 
wind direction variation is incorporated into the model, 
which is specified by   (in degrees). In Fig. 5, d1 and d2 
indicate the borders of wind direction variation at tree 
location. In other words, they draw the area borders in which 
a tree may fall in, if uprooted or broken by wind. The 
intersection of d1 and d2 with the nearest overhead 
distribution line specifies a fictitious line that a tree may 
touch, which is represented by lv. In other words, this 
fictitious line represents the fraction of a line-section on 
which tree stem or branches can fall, regarding the direction 
of windstorms. This line is characterized by wind direction. 

Stem breakage occurs at the height of (1 ) Th   above 
the ground. However, in case of uprooting, the whole height 
of tree is toppled. In order to distinguish between uprooted 
and stem breakage states, the effective height (

e
Th ) is 

introduced in this model, which stands for the fraction of a 
tree height that is blown down by windstorms. The effective 
height for an uprooted tree is represented by ,

e
T uph  and for a 

snapped tree is represented by ,
e
T sbh  , which are defined 

through the following relations: 

,
e
T sb Th h   (4a) 

,
e
T up Th h  (4b) 

, 2 2( ) ( (1 ) )e im e
T T L Th h h h      (4c) 

In (4c), 
,e im

Th 
 stands for the image of the effective tree 

height on the ground. If the height of tree is shorter than that 
of distribution lines, the tree does not threaten its adjacent 
lines. In addition, if ,e im

Th   is shorter than horizontal distance 
d , the distribution line is not touched by the fallen trees. On 
these bases, line Tl  is introduced in the model. This line 
models the fraction of a line that can be touched by tree stem, 
considering the physical characteristics of the tree located 
near the tree. Thus, in contrast to vl , this fictitious line is 
characterized by both wind direction and effective tree 
height.   

Based on the tree height as well as the location of a tree 
with respect to its adjacent line, four possibilities for Tl  are 
considered. Based on the parameters given in Fig. 5, the 
length of Tl  for these four possibilities is calculated as 
follows:  

,
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) 

The first possibility occurs when ,e im
Th   is smaller than the 

distance between the tree and the distribution line. In this 
situation, the length of Tl  is set to zero, because the fallen 

tree cannot touch the line. If ,e im
Th   exceeds the horizontal 

distance ( d ), it can touch and damage overhead lines. 
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Therefore, the second, third, and fourth possibilities are 
considered based on the length of 1d  and d2. In the fourth 

possibility, ,e im
Th   exceeds both 1d  and d2. In this condition, 

the fallen tree can touch any point of line between the 
intersections of the distribution line with d1 and d2, and the 
length of lT is equal to lv. Fig. 6 illustrates how the length lT 
is calculated, if the second set of inequalities in Eq. (5) are 
satisfied. In this condition, ,e im

Th   exceeds d. However, it is 

smaller than both d1 and d2. Thus, based on the Pythagorean 
theorem, the length of lT is computed by the second 
relationship in Eq. (5). Similar figures can be drawn for other 
relationships in Eq. (5).  



d
1d 2d

,e im
Th 

,
1 2,e im

Td h d d  

Tl

vl

FIGURE 6.  Top view of the tree in Fig. 5 for calculation of Tl . 

 
In order to compute the tree-caused failure probability for 

a distribution line, the concept of continuous probability 
theory is used [44]. Based on this concept, vl  is the 
continuous sample space, and Tl  represents the event of 
concern. In this case, the concerned event is “fall of the tree 
on distribution lines”. Thus, the failure probability of a line 
due to uprooting or stem breakage of tree T is determined 
based on the following definitions: 

.T T
fa T

v

lLength of concerned event
P

Length of sample space l

  
 

  
  (6a) 

,
,

,

.
T upT

fa up T
v up

l
P

l





  (6b) 

,
,

,

.T sbT
fa sb T

v sb

l
P

l





  (6c) 

In (6a), T  incorporates the effect of wind direction into 

the tree-induced failure probability of distribution lines. 
When the wind blows in a direction that a tree does not fall 
on the distribution lines, the value of T  is set to 0. 

Otherwise, it is set to 1. It can be estimated based on 
forecasted wind speed direction at each location. It should be 

notified that T
faP  is calculated for a line section. In (6b) and 

(6c), ,
T
fa upP  and ,

T
fa sbP  account for the failure probability 

induced by tree T due to uprooting and stem breakage, 
respectively. Thus, Eqs. (6b) and (6c) are derived from (6a) 
for uprooted and stem breakage states of the tree T, 
respectively. If tree T threatens more than one distribution 
line, Tl  is computed for each line section.  

The uprooted, stem breakage, and branch breakage states 
might contribute to distribution line failures. Likewise, 
broken tree branches can result in permanent faults on lines. 
Furthermore, it is experimentally demonstrated that as the 
distance between trees and distribution lines increases, the 
impact of broken tree branches on overhead line failure 
decreases, which can be modeled by an exponential function 
[45]. Therefore, the failure probability of a line section, given 
that some branches of tree T have been broken, is estimated 
by: 

( . )
,

T d
fa bb TP e       (7) 

In (7),   is a positive parameter that has correlation with 
the tree height [45]. In addition,   stands for the fraction of 
the falling tree branches that causes permanent faults, and 
can be estimated using the historical data. As mentioned 
earlier, each tree state has an occurrence probability that was 
calculated by (3). Therefore, the tree-induced failure 
probability of a distribution line due to the three failure 
modes of an individual tree (i.e. uprooting, stem breakage, 
and branch breakage) is expressed by:  

,
, , ,, ( ) ( ) ( )f ind T T T

fa up up fa sb sb fa bb bbl TP P P P          
(8
) 

When a distribution line is surrounded by Tn  trees, eq. (8) is 

reformed as follows: 

, ,
,

1

1 (1 )
Tn

f ind f ind
l l T

T

P P 


    (9) 

Next, the failure probability of a line-section, including 
both direct and indirect effects of windstorms, is calculated 
as follows: 

, , , ,( . )f f di f ind f di f ind
l l l l lP P P P P      (10) 

Finally, the failure probability of a distribution branch 
(with np poles) is calculated as: 

( . )f f f f f
B Line Linepole poleP P P P P      (11a) 

1

1 (1 )
pn

f f
ppole

p

P P


    (11b) 

1

1 (1 )

np

f f
Line l

p

P P


    (11c) 

Equations (11b) and (11c) respectively stand for the 
failure probability of distribution branch B due to failure of 
its poles and line-sections. 

C. ILLUSTRATIVE EXAMPLE FOR THE PROPOSED 
MODELS 

To clarify the application of the proposed models, they are 
established for the illustrative example shown in Fig. 2. It is 
assumed that the duration of the upcoming storm is divided 
into three time intervals. Therefore, three Markov models are 
constructed for tree T1. The Markov models indicate 34  
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possible combinations for the states of this tree during the 
storm. Some combinations are associated with tree damage 
states, in which the tree experiences at least one damage 
mode. Fig. 7 represents one of the combinations that the tree 
is uprooted. In this combination, tree T1 remains in the 
healthy state during the first interval of the storm. However, 
the tree is uprooted during the second interval, and it stays in 
the uprooted state during the continuation of the storm.  

FIGURE 7.  The results of the Markov and line-tree interaction models for tree 
T1 in Fig. 2. 

 
Now, three line-tree interaction models are constructed to 

investigate the possible outcomes of each tree state on its 
adjacent line, namely line 2-3. For the combination 
illustrated in Fig. 7, the tree named T1 is in healthy state in 
the first interval. Therefore, it does not threaten the line. 
However, using the line-tree interaction model for the second 
interval, the probability related to ‘‘line 2-3 is damaged due 

to uprooted tree T1 ( 1
,

T
fa upP )’’ is determined. Considering the 

direction of the storm as well as the height of this tree, the 
uprooted tree can cause a permanent fault on line 2-3.  

Using Eq. (8), the failure probabilities of other damaging 
states are added to the failure probability of this combination. 
As a result, the indirect failure probability of line 2-3 due to 

tree T1 is obtained ( ,
2 3, 1
f ind

TP   ). In order to calculate Eq. (8), it 

is required to compute the state probabilities of the tree at the 
end of each time interval. These probabilities are calculated 
based on Eq. (3) as follows: 

(1) (0) (1) 1n       (12a) 

(2) (0) (1) (2) 2n        (12b) 

(3) (0) (1) (2) (3) 3n         (12c) 
In this example, tree T1 is in healthy condition prior to the 

storm arrival. Thus, (0) [1 0 0 0]    . In addition, the 
stochastic transitional probability matrix for this tree in the 
first time interval is constructed as: 

11,1 12,1 13,1 14,1

22,1

33,1

42,1 43,1 44,1

0 1 0 0
(1) 1

0 0 1 0

0

p p p p

p
n

p

p p p

 
     
 
 
  

 (13) 

In a similar manner, this matrix can be constructed for this 
tree in the second and third intervals.  

D. IDENTIFYING THE VULNERABLE COMPONENTS 
Using the probabilities obtained in the previous subsection, 
the storm-vulnerable components are identified. To this end, 
if the failure probability of a distribution branch in a time 
interval exceeds the vulnerability threshold, the distribution 

branch is recognized as vulnerable [29]. However, if a 
distribution branch fails in any time interval, the status of the 
distribution branch over the scheduling horizon (with TN  
time intervals) is considered as damaged. This can be 
expressed in a compact form as follows: 

 
,0

1, 2,...,
1 . .

f
B

T
P Tr

N
o w

    



   (14) 

Equation (14) ensures that if the failure probability of a 
branch at any time interval exceeds the vulnerability 
threshold, the branch is considered as a vulnerable branch to 
the upcoming windstorm (i.e. 0  ). 

IV. PROBLEM FORMULATION 
In this section, the mathematical formulation for optimal 
formation of islands is provided. This section employs the 
isolation constraints developed in previous section. In the 
optimization problem, the linear version of DistFlow 
equations is utilized as power flow equations [46]. In order 
to measure the resilience level of DSs, the priority-weighted 
supplied energy is employed in this paper, which includes 
both the load lost and its duration. In addition, the analysis 
in this study is conducted in steady-state condition. 
However, there are several resilience measures [47], which 
address different aspects of power systems under extreme 
events.  

1) OBJECTIVE FUNCTION 
The objective function of the proposed deterministic 
framework consists of two terms as follows: 

1 , ,

,
2

. ( ).

. ( . ))T

obj D sh
cl t cl t cl

cl t

f Nb
ij ij

ij

F Max P P D

P




 

 



 

   

 




 (15) 

The objective of the optimization model is to maximize 
the priority-weighted value of the energy supplied to the 
critical loads, while the vulnerability of energized 
distribution branches during a storm is minimized. Each 
objective term is normalized by its maximum value, and the 
coefficients of objective terms are selected so that 2 1  . 

2) CONSTRAINTS 
The optimization problem satisfies five groups of 
constraints, namely component isolation, load curtailment 
limits, power flow equations, island radial operation, and 
island connectivity constraints, which are listed as follows: 
 

0 ,b
ij ij Bij t        (16a) 

0 ,b
j ij Bij t        (16b) 

, ,0 . ,D sh cl
i t i t i CLP P M i t        (16c) 

, ,0 . ,D sh cl
i t i t i CLQ Q M i t        (16d) 

, ,0 , ,sh sh
i t i t CLP Q i t      (16e) 
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i t i t i t ij t N

ij

P P P P i t


        (16f) 

, , , , ,G D sh
i t i t i t ij t N
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Q Q Q Q i t
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 (16h) 

min max
,. . ,n n

i i i t i i NV V V i t          (16i) 

max max
,. . ,b b

ij ij ij t ij ij BP P P ij t          (16j) 

max max
,. . ,b b

ij ij ij t ij ij BQ Q Q ij t          (16k) 

,min ,max
,t. . ,G g G G g

i i i i i DERP P P i t         (16l) 

,min ,max
,t. . ,G g G G g

i i i i i DERQ Q Q i t         (16m) 

Vulnerable branches are isolated by (16a). If branch ij is 
recognized as vulnerable, it must be de-energized during storm 

( 0b
ij  ). Likewise, constraint (16b) de-energizes the ending 

nodes of the vulnerable switchable branches that have 
sectionalizing switches at their sending end. Constraints (16c) 
and (16d) set the active/reactive value of load curtailment to 
the amount of active/reactive loads for de-energized loads (

cl
i =0). For the energized loads, these constraints ensure that 

the amount of active/reactive load curtailment must not exceed 
the total active/reactive load at each time interval. In (16c) and 
(16d), M is a large positive real number [48]. In addition, the 
active/reactive load shedding must be equal or greater than 
zero, which is ensured by (16e). Active and reactive power 
balances at each node are respectively enforced by equality 
constraints (16f) and (16g). In these two equations, the 
active/reactive load curtailments and the power generated by 
distributed energy resources (DERs) are taken into account. 

Constraint (16h) expresses the relationship between the 
voltage magnitudes of two connected nodes. However, note 
that the energization status of nodes and branches has not been 
determined before solving the optimization problem. 
Therefore, the big-M approach [49] is utilized in (16h) to 
guarantee that (16h) is only applied to the nodes connected 
through an energized branch. However, when the branch is not 

energized ( 0b
ij  ), (16h) is relaxed for related nodes of i and 

j. In this constraint, 0V  stands for the reference voltage. 

Inequality constraint (16i) sets the voltage magnitude of a de-

energized node ( 0n
i  ) to zero and maintains the voltage 

magnitude within the acceptable bounds when the node is 
energized. Constraints (16j) and (16k) set the active/reactive 
flow of a de-energized line to zero, respectively. In addition, 
these constraints put limits on active/reactive power flow of 
each energized line. Constraints (16l) and (16m) ensure that 

only the committed DERs can inject power to the network. In 
addition, the active/reactive power outputs of the committed 
dispatchable DERs are respectively restricted by (16l) and 
(16m). The connectivity and island radial operation 
constraints, as configuration-related constraints, are taken into 
account in this paper. To this end, the connectivity and island 
radial operation constraints of [50] and [51] are utilized. 

By solving this optimization problem, the optimal values of 
the unknown variables are determined, which are the branch 
operational status, the node energization status, the load 
energization status, the node voltage magnitude, the 
active/reactive power flowing from node i to node j through 
branch ij, the active/reactive power generated by DERs, the 
commitment status of the dispatchable DERs, and the 
active/reactive amount of load shedding.  

V. An Approach for Uncertainty Modeling and MER 
Allocation 
The developed optimization model in (15) and (16) is 
deterministic, and it does not take uncertainties into account. 
To account for uncertain parameters in the developed model, 
a more complex formulation should be employed. Thus, a 
two-stage stochastic programming approach is employed in 
order to model the uncertainty associated with load demands. 
In addition, this framework allocates MERs before storm 
arrival. There are two groups of decisions to be taken in this 
problem, as summarized in the following: 

The first-stage (here-and-now) variables: The optimal 
values of these variables are determined prior to the 
realization of the scenarios, and accordingly the decisions are 
implemented before storm arrival. In/out status of branches, 
on/off status of dispatchable DERs and MERs, energization 
status of nodes, voltage magnitude of nodes, active/reactive 
power flowing through branches, amount of active/reactive 
load shedding at each load point, amount of active/reactive 
power generated by DERs and MERs, and the variables 
related to MER allocation are determined before a storm 
strikes. Thus, the configurations of the constructed islands 
are determined before the strike of an upcoming storm.  

The second-stage (wait-and-see) variables: After the 
uncertain parameters are revealed, the variables associated 
with the realized scenario are implemented. In this study, 
except for MER allocation variables, the second-stage 
variables are similar to the first-stage variables. Nonetheless, 
they are optimally determined for each scenario under study.  

A.  STOCHASTIC PROBLEM FORMULATION 
Based on the discussions presented in the last section, the 
general expression of the two-stage stochastic framework is 
as follows: 
 

aximize
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Constraints (16a)-(16m) combined with constraint (19) 

guarantee the feasibility of solutions in the first stage ( 1 
) of the two-stage stochastic optimization problem. In 
addition, constraints (20a)-(20p) are associated with the 
second stage ( 2  ) of the stochastic problem. The 
constraints (20o) and (20p) are related to the operational 
constraints of the allocated MERs in the second stage of the 
stochastic problem. 

1) OBJECTIVE FUNCTION 
Similar to (15), the objective function of the stochastic 
problem includes two terms. The first objective term aims at 
maximizing the expected value of the energy supplied to the 
critical loads. On the other hand, the second one tends to 
minimize the expected vulnerability of the energized 
branches during a storm. The objective function of this 
problem is given as: 
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 (18) 

In (18), s  accounts for the occurrence probability of 
scenario s. 

2) CONSTRAINTS 
First-stage constraints: This set of constraints 

encompasses two categories, namely constraints (16a)-
(16m) and constraint (19).  

 

,m i MER
i

m


    (19) 

Constraint (19) is related to MER allocation and specifies 
that each MER cannot be allocated to more than one 
candidate node.  

Second-stage constraints: the constraints of the second 
stage are imposed on each scenario, and they are expressed 
as follows: 
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,0 ,b s
j ij Bij s        (20b) 
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 (20h) 

min , max ,
,. . , ,n s s n s

i i i t i i NV V V i t s         (20i) 

max , max ,
,. . , ,b s s b s

ij ij ij t ij ij BP P P ij t s          (20j) 

max , max ,
,. . , ,b s s b s

ij ij ij t ij ij BQ Q Q ij t s          (20k) 

,min , , ,max ,
,t. . , ,G g s G s G g s

i i i i i DERP P P i t s         (20l) 

,min , , ,max ,
,t. . , ,G g s G s G g s

i i i i i DERQ Q Q i t s         (20m) 

,
, ,0 , ,g s

m i m i N MERi m s         (20n) 

,min , , ,max ,
, , ,t ,. . , , ,G gs Gs G gs

m mi mi m mi N MERP P P i m t s            (20o) 

,min , , ,max ,
, , ,t ,. . , , ,G gs Gs G gs

m mi mi m mi N MERQ Q Q i m t s            (20p) 

The explanation for constraints (20a)-(20m) is the same 
as (16a)-(16m). Constraint (20n) ensures that MER m can 
inject power to the network through node i if it is allocated 
to this node. The active and reactive output power of a 
committed MER ( ,

,
g s
m i  =1) are respectively restricted by 

(20o) and (20p). 

VI. NUMERICAL RESULTS 
In this section, the proposed framework is implemented on 
the 33- and 123-bus distribution test systems, as well as a 
practical feeder through nine case studies. Fig. 8 shows the 
schematic representation of the 33-bus test system. The 
information about this test system can be found in [52]. 

 
FIGURE 8.  The 33-bus test system. 
 
 

A.  TEST SYSTEMS AND ASSUMPTIONS 
33-bus distribution system: Six types of critical loads are 

considered in the test system. The critical loads are located 
at nodes 1, 2, 4, 15, 18, 21, and 30. Hourly load variations of 
these critical loads can be observed in [53]. As can be traced 
in Fig. 8, the grid includes four dispatchable DERs. The 
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DERs are rated at 100 kW and 60 kVAr.  
Trees: Ten trees are located adjacent to the distribution 

branches of the 33-bus test system. The proposed framework 
is general, and different types of trees can be considered in 
this framework. However, for the sake of simplicity, it is 
assumed that all of the trees are of the spruce species type 
(which is common in some countries, such as Finland and 
Norway). In addition, it is assumed that each tree has grown 
adjacent to the middle of its adjacent line-section. Tree 
height and distance from the distribution lines are listed in 
Table I [54]. It is assumed that height of all distribution lines 
is 10.5 m. The critical wind speeds for the uprooting and 
stem breakage of the spruce are assumed to be 37 and 46 m/s, 
respectively [55]. In the simulations, it is assumed that the 
values of   and   are 0.3 and 0.6, respectively [36].  

TABLE I 
GENERAL INFORMATION ON TREES AND THEIR LOCATIONS 

Tree # Adjacent 
Branch 

Tree 
Height (m) 

Distance 
(m) T  

T1 1-2 18.5 14 1 
T2 20-21 16 6 1 
T3 5-6 18 14 1 
T4 6-26 17 12 0 
T5 6-26 17 10 1 
T6 24-25 15 12 1 
T7 24-25 15 12 1 
T8 21-22 12 8 1 
T9 13-14 11 6 1 
T10 16-17 21 9 1 

 
Windstorm: It is assumed that the windstorm hits the 

distribution system for three hours, and the duration of the 
windstorm is divided into three equal intervals. The 
maximum wind speed and wind direction for each interval 
are listed in Table II. To identify the vulnerable branches, the 
vulnerability threshold of distribution branches is assumed to 
be 0.25. 

TABLE II 
MAXIMUM WIND-SPEED AND DIRECTION OF STORM IN EACH INTERVAL 

Interval # Wind Speed (m/s) Direction (deg) 
1 35 259 22  
2 47 259 22  
3 40 259 22  

B.  RESULTS AND DISCUSSION 
Nine case studies are defined in order to explore the 
effectiveness of the proposed models. Without loss of 
generality, it is assumed that the upstream network is faulty 
during windstorm. The results of the simulations are 
expressed in terms of the priority-weighted supplied energy 
(SE) and vulnerable branches. In these simulations, the 
values of 1  and 2  are assumed to be 0.99 and 0.01, 
respectively. 

Case Study I: Impacts of tree fall/breakage on island 
formation (considering tree-caused failures) 

In this case study, both direct and indirect effects of 
windstorms on lines are considered, and islands are 
constructed prior to storm arrival. The islands are formed 
such that the priority-weighted curtailed energy is 

maximized. At the same time, the vulnerability of energized 
branches is minimized. Fig. 9 depicts the constructed islands. 

FIGURE 9.  The constructed islands developed in Case Study I. 

 
The CNG station is not supplied by any DERs. It is due to 

the presence of tree T1 which is located adjacent to branch 
1-2. Although tree T1 has not been identified vulnerable to 
the approaching storm, this configuration of island A1 is less 
vulnerable to the storm. Thus, branch 1-2 remains un-
energized. Likewise, the gas station at bus 18 is isolated due 
to two vulnerable branches connected to it. The vulnerable 
branch 16-17 is threatened by tree T10. On the other hand, 
vulnerable branch 18-33 can directly be damaged by the 
windstorm. As a consequence, the gas station is not supplied 
through the formed islands.  

As can be seen in Fig. 9, although tree T2 is not labeled as 
a storm-vulnerable tree, it may damage branch 20-21 during 
storm. However, the proposed framework serves the water 
station through island A1, and energizes this branch. The 
reason for this lies in the importance of the water facility in 
satisfying the basic needs of human life. As can be traced in 
Table I, the fallen stem or branches of tree T4 would not 
touch branch 6-26 due to the wind direction. As a note, the 
computation time of this case study is 18 s. 

 
Case Study II: Island formation where the tree-caused 

failures are ignored, and comparison of the results with Case 
Study I. 

In this case study, the proposed framework is compared 
with a model in which the tree-caused failures are neglected. 
In other words, only direct effects of windstorms on 
distribution lines are considered. Obviously, the number of 
distribution branches recognized as vulnerable prior to 
windstorm in this case study is lower than case study I. In 
fact, two branches 7-8 and 18-33 are recognized as 
vulnerable, and the five tree-caused failures are neglected. 
The formed islands before and after the windstorm are shown 
in Fig. 10.  
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FIGURE 10.  The constructed islands before and after windstorms in Case Study 
II. 

 
However, when the windstorm hits the DS, seven 

distribution branches are damaged in this case. The tree-
induced faults occur at the beginning of the second time 
interval. In this condition, the protection systems of the 
DERs detect the faults, and the DERs are put out of service. 
Consequently, the critical loads are de-energized. In this 
condition, the repair crews are dispatched to the DS. They 
will find the fault locations first. Subsequently, the faulty 
branches are isolated form the rest of the DS. In doing so, the 
initially formed island is divided into two islands that are 
shown via the hatched area in Fig. 10. In the first island, DER 
4 supplies hospital 2. Likewise, the water facility, lighting, 
CNG station, and hospital 1 are energized through DERs 2 
and 3. Therefore, pre-storm formed island B1 cannot 
properly deal with the windstorm. The value of SE and 
vulnerable branches for case studies I and II are listed in 
Table III. The value of SE in case study I is 53.3 percent 
higher than SE in case study II. It should be notified that the 
faulty branches after the windstorm onset are the same for 
case studies I and II, and are equal to the vulnerable branches 
in case study I.  The only difference lies in the pre-windstorm 
actions, which can prevent some post-windstorm load 
interruptions. 

TABLE III 
COMPARISON BETWEEN RESULTS OF CASE STUDIES I AND II 
 Case I (considering tree-

caused failures) 
Case II (ignoring tree-

caused failures) 
SE(p.u.) 3.6379 2.3729 

Vulnerable 
Branches 

5-6, 7-8, 16-17, 21-22, 24-
25, 6-26, 18-33 

7-8, 18-33 

 
Case Study III: Sensitivity analysis on  . 

In this case study, the impact of various values of   
(fraction of tree stem that is broken by storm and falls down 
on the ground) is investigated. For a tree, this parameter is 
impacted by different factors, such as tree height and 
diameter [36]. Thus, the value of   is increased from zero to 
one. It means that a larger fraction of tree trunk is blown 
down by the windstorm. Thus, the probability that a branch 
is damaged by its adjacent tree trunk increases. In this 

situation, ‘‘stem breakage’’ makes greater contribution to 
tree-induced failure probability of distribution branches. The 
results of this study in terms of SE and the number of 
vulnerable branches are shown in Fig. 11.  

 

 
FIGURE 11.  SE and number of vulnerable branches. 

 
When the value of   increases from 0 to 0.6, the amount 

of supplied energy and the number of vulnerable branches do 
not change. However, once it reaches 0.8 or higher, branch 
1-2 is considered vulnerable, and it is added to the vulnerable 
branches. In this situation, eight feeders can be damaged 
during the upcoming storm, and the value of supplied energy 
decreases from 3.6379 to 3.3737 pu. Despite the variation of 
, the obtained results show low sensitivity to the value of 
this parameter. This observation can be justified as follows: 
for the spruce species, the critical wind speed for uprooting 
(37 m/s) is lower than that for stem breakage (46 m/s). Thus, 
it is highly probable that the trees are uprooted during storms. 
Indeed, the observations made during different storms 
confirm this observation [43]. In particular, when the value 
of   is equal to zero, only uprooted trees or broken branches 
can touch the lines. Thus, five lines are vulnerable under 
these failure modes of trees during the storm (in addition to 
two lines that can directly be damaged by the storm, as 
discussed in Case Study II). Regarding the tree heights and 
the distances given in Table I, branch 1-2 is considered 
vulnerable if   exceeds 0.8. Thus, only for tree T1, stem 
breakage state can contribute to making branch 1-2 
vulnerable to the approaching storm, and tree-caused failures 
will mainly occur due to uprooting. 

 
Case Study IV: Impacts of the distances between the trees 

and their adjacent branches. 
This case study investigates the impacts of the distances 

between the trees and distribution branches. To this end, all 
the distances given in Table I are decreased by 3 m. Other 
assumptions remain the same as Case Study I. Consequently, 
the number of vulnerable branches to the upcoming storm 
increases. Fig. 12 shows the constructed islands in this case.  
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FIGURE 12.  Constructed islands prior to the upcoming storm in Case Study IV. 

 
As can be traced in Fig. 12, the distribution network is 

divided into four islands prior to storm arrival. Compared to 
Case Study I, branches 1-2 and 13-14 are added to the 
vulnerable branches, and they are de-energized. As a 
consequence of de-energization of these branches, island A1 
(in Case Study I) is split into two islands C1 and C4. 
Furthermore, in island C2, the fire station is served via a 
longer path compared to island A2. This is because branch 
13-14 is recognized as vulnerable to the upcoming storm. 
The amount of supplied energy as well as the number of 
vulnerable branches are listed in Table IV. The results of this 
study imply that the characteristics and locations of trees can 
considerably impact the network fault locations in 
distribution systems during wind storms, and they should be 
considered in proactive scheduling of islands against 
windstorms.  

TABLE IV 
THE RESULTS OF CASE STUDY IV 

SE (pu) Vulnerable Branches 
3.3737 1-2, 5-6, 7-8, 13-14, 16-17, 21-22, 

24-25, 6-26, 18-33 

 
Case Study V: Impacts of the duration of time intervals. 
In order to investigate the impacts of windstorm dynamic 

behavior, a sensitivity analysis in terms of the duration of 
storm time intervals is conducted. In fact, as the number of 
storm time intervals increases, more data on the storm speed 
variations and storm movement can be incorporated into the 
framework. As mentioned earlier, the upcoming storm will 
hit the region for 3 hours. In this case study, the duration of 
the storm time intervals is changed. As the number of time 
intervals increases, their duration decreases. In each interval, 
the maximum forecasted wind speed is used. Subsequently, 
these wind speeds along with other required data are fed as 
inputs into the proposed framework. Table V shows the 
maximum wind speeds during the storm, considering four 
conditions for the number of time intervals during the storm. 

 
TABLE V 

MAXIMUM WIND SPEEDS FOR DIFFERENT TIME INTERVALS 

Interval 

Number 
Maximum Wind Speeds (m/s) 

1 47 

3 35 47 40 

6 32 35 40 47 40 39 

12 32 25 35 30 38 40 47 43 40 35 38 39 

 
The obtained results of this analysis in terms of SE, 

number of vulnerable branches, computation time, and 
number of constraints for each condition are reported in 
Table VI.  

TABLE VI 
THE RESULTS OF CASE STUDY V 

Interval Number 1 3 6 12 
Interval Duration 

(min) 
180 60 30 15 

Number of 
Vulnerable Branches 

7 7 8 8 

Number of 
Constraints 

606 1434 2676 5164 

Computation Time (s) 21 25 37 60 
SE (pu) 3.6379 3.6379 3.5663 3.5663 

 
The results demonstrate that by decreasing the duration 

of time intervals, more information about storm dynamic is 
utilized by the framework. Thus, in this case, the size of 
problem increases. Nonetheless, as can be traced in Table VI, 
the computation time does not significantly rise. In addition, 
when the duration of interval is decreased from 180 to 15 
min, the SE and number of vulnerable branches indicate 
small variation. This is because the maximum wind speeds 
are associated with storm-caused damages, and they are also 
included in the problem when the number of time intervals 
is low. Using the results of this analysis, the decision makers 
can divide the storm duration into a desired number of storm 
time intervals based on the available data, computational 
burden, and desired accuracy.   

Case Study VI: Considering MER allocation and the 
uncertainty associated with load demands. 

In this case study, the proposed stochastic framework in 
Section V is implemented on the 33-bus test system. The 
uncertainty associated with load demands is considered, and 
200 initial scenarios for load demands are generated using 
the Monte Carlo simulation method [56]. To this end, it is 
assumed that load prediction errors follow normal 
distribution [57]. Their standard deviations are equal to 10% 
of the predicted values at each time interval. Subsequently, 
in order to reduce the computational complexity of the 
optimization problem, the initial scenarios are reduced to 10 
final scenarios using the backward reduction algorithm [58]. 
It is assumed that there are two MER units available. The 
rated power for both MERs is 20 kW and 15 kVAr. The 
proposed two-stage stochastic framework is applied to the 
33-bus test system, and the optimal values of the first- and 
second-stage variables are determined. Fig. 13 shows the 
constructed islands in the first stage of the proposed 
framework (i.e. ahead of coming storm).  
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FIGURE 13.  Constructed islands prior to the upcoming storm in Case Study VI. 

 
As shown in Fig. 13, the two MERs are allocated to the 

nodes 28 and 29. The special reason for this allocation is the 
location of the two hospitals with respect to this distribution 
network. The electricity demand of the hospitals is relatively 
high if compared with the other critical loads of this system. 
However, the capacity of DER 4 is not sufficient to supply 
hospital 2, and even the curtailed load of hospital 2 is high. 
Furthermore, these hospitals have the highest priority factor 
among the existing critical loads in the system. On these 
bases, the two available MERs are allocated to the buses of 
island D3.The configurations of the pre-storm constructed 
islands in this case study is the same as Case Study I. 
Because, the characteristics of the storm, DS components, 
and the trees are the same for both case studies, and these 
factors determine the locations of vulnerable branches. In 
contrast, the optimal values of other variables differ in these 
two case studies.  

To determine the impact of MER allocation, the proposed 
stochastic framework is run another time without MER 
allocation. The results of this comparison in terms of the 
expected supplied energy (ESE) and vulnerable branches are 
presented in Table VII. 

TABLE VII 
THE RESULTS OF CASE STUDY VI 

 Stochastic Model without 
MER Allocation 

Stochastic Model with 
MER Allocation 

ESE(p.u.) 3.6089 4.1098 
Vulnerable 
Branches 

5-6, 7-8, 16-17, 21-22, 24-
25, 6-26, 18-33 

5-6, 7-8, 16-17, 21-22, 
24-25, 6-26, 18-33 

 
The results for the case with MER allocation show the 

great advantages of MER allocation in the face of storms. In 
this study, although the capacity of MERs is small (20 kW), 
the ESE is improved by 13.87 percent. The reason is that the 
available MERs are allocated to the nodes (28 and 29) that 
make greater contribution to the value of priority-weighted 
supplied energy after storm onset.  

Case Study VII: Implementing the framework on the 123-
node distribution test feeder. 

In order to implement the proposed deterministic 
framework on a large practical system, the IEEE 123-bus test 
system is employed [59]. There are five DERs in the test 

system. For the sake of simplicity, the characteristics of trees 
T11-T20 are respectively assumed similar to those of trees 
T1-T10 (i.e. T11 is identical to T1, T12 is identical to T2, 
etc). Other assumptions are the same as Case Study I. By 
implementing the proposed framework on the test system, 
four islands are constructed before storm arrival, which are 
shown in Fig. 14. 

 

FIGURE 14.  Constructed islands prior to the upcoming storm in Case Study 
VII. 

In addition, 14 distribution branches are identified as 
vulnerable, and they are proactively de-energized, which can 
be observed in Table VIII. The value of SE is also reported 
in this table. 

 
TABLE VIII 

THE RESULTS OF CASE STUDY VII 
SE (pu) Vulnerable Branches 
3.3296 1-7, 13-18, 18-19, 19-20, 15-34, 26-27, 

35-40, 57-58, 57-60, 81-84, 86-87, 105-
108, 112-113, 13-152  

 
As can be seen in Fig. 14, DER1 is isolated from the grid 

and cannot inject power into the DS. The reason is the 
vulnerability of branch 15-34. Similarly, the fire station, 
lighting, and CNG station are isolated from the rest of the 
system, and they are not supplied by any DERs. The 
computation time for this case study is 42 s, which confirms 
the computation time efficiency of the proposed model for 
large distribution grids. 

Case Study VIII: Implementing the framework on an 
existing distribution feeder. 

In this part, in order to explore the performance of the 
proposed framework on a practical distribution network, a 
large feeder of a distribution utility company in Iran is 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3179973, IEEE
Access

 

VOLUME XX, 2022 1 

utilized. The single line diagram of the feeder under study is 
shown in Fig. 15. 

 
FIGURE 15.  Single-line diagram of the practical distribution feeder under 

study in Case Study VIII (pink circles denote 20/0.4 kV substations). 
This feeder includes 279 load points. In addition, 1656 

trees have grown near the overhead lines. The tree heights 
range from 6 m to 31.6 m. The species of the trees are 
Platanus, locust, and white poplar. There are three DERs in 
the feeder. Other assumptions and information are similar to 
Case study I. The proposed framework is tested on the 
distribution network. The results in terms of SE and number 
of vulnerable lines are given in Table IX.  

TABLE IX 
THE RESULTS OF CASE STUDY VIII 

 Considering tree-caused 
failures 

Ignoring tree-caused 
failures 

SE(p.u.) 2.232 1.259 
Number of 
Vulnerable 

Lines 

29 6 

 
The results imply that when the tree-caused failures are 

considered, 29 line sections are vulnerable to the upcoming 
storm. In addition, the value of SE is 77.3 percent higher than 
the condition in which only direct effects of storms are taken 
into account. When the trees are ignored, the distribution 
company predicts six power outages in the feeder. However, 
once the storm strikes the feeder, 29 distribution lines are 
damaged by the storm and the trees. Thus, the distribution 
company cannot properly supply the critical loads based on 
its restoration strategy. Nonetheless, the proposed 
framework predicts all the storm-related outages, and 
accordingly constructs the islands. Thus, the value of SE is 
improved. 

Although the species of the trees in this case study have 
larger branches with respect to the spruce, the tree trimming 
programs are regularly performed by the company, in 
particular in autumns and springs. Thus, tree-caused failures 
due to branch breakage can be controlled. The trees may 
mainly threaten their adjacent lines via uprooting and stem 
breakage damage modes. In addition, the constructed islands 
serve the local critical loads after the storm strikes. The 
computation time for the distribution network is 223 s, which 

clearly verifies the computational tractability of the proposed 
framework for large DSs with a large number of trees. This 
is because the trees and their characteristics do not impact 
the size of the optimization problem. However, they 
determine the vulnerable lines, and these lines are used as 
inputs of the optimization problem for island formation. 
Furthermore, this computation time is significantly smaller 
than the time available for making decisions before storm 
arrival.  

Case Study IX: Impacts of different wind speed profiles. 
In this case study, four different wind speed profiles are 

employed for the storm. Subsequently, the maximum wind 
speed at each time interval is determined and is used as the 
input to the proposed deterministic framework. Table X 
shows the maximum wind speeds for each scenario. 

TABLE X 
DIFFERENT SCENARIOS FOR THE MAXIMUM WIND SPEED AT EACH TIME 

INTERVAL OF THE STORM (M/S) 
 t=1 t=2 t=3 

Scenario 1 29 36 34 
Scenario 2 29 38 34 
Scenario 3 35 47 40 
Scenario 4 39 51 44 

 
Using the data of Table X, the proposed deterministic 

framework is implemented on the IEEE 123-bus test system 
for each of the wind speed scenarios, while the other 
assumptions are the same as those in the Case Study VII. The 
results of the simulation, in terms of the supplied energy and 
the number of storm-vulnerable branches, are determined 
and reported in Table XI. 

TABLE XI 
THE RESULTS FOR DIFFERENT WIND SPEED SCENARIOS 

 SE (pu) Number of Vulnerable 
Branches 

Scenario 1 5.6485 0 
Scenario 2 4.5 8 
Scenario 3 3.3296 14 
Scenario4 2.1 29 

 
As can be seen in Table XI, maximum wind speeds have 

considerable impacts on the results. Thus, the wind speed 
profile is an important input parameter of the models. In this 
regard, forecasting the weather features of the approaching 
windstorms plays a significant role in the preparedness 
measures in DSs. For example, in scenario 2, eight 
distribution branches are recognized as vulnerable to the 
upcoming storm, and accordingly the suitable islands are 
constructed, which are different from the islands constructed 
under scenario 3 (Case Study VII). The configurations of the 
islands developed under scenario 2 are depicted in Fig. 16. 
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FIGURE 16.  Constructed islands prior to the upcoming storm for scenario 2 of 
wind speed profile. 

As can be traced in Fig. 16, island B1 in this case study 
includes islands A1, A2, and A4 of Case Study VII. In 
addition, the street lighting is supplied via island B1. 
Therefore, the amount of SE is increased to 4.5 pu. Based on 
the results of this case study, the decision-makers can explore 
the impacts of different wind speed profiles on the required 
preparedness measures, and how to form the islands based 
on preferred conservativeness level.  

VII. SUMMARY AND CONCLUSION 
This paper proposes a new framework for incorporating 

tree failure modes into the restoration of critical loads in the 
case of windstorms. A new discrete Markov chain is 
developed that simulates the response of a tree during a time 
interval of storm duration. In addition, a novel line-tree 
interaction model is proposed for quantifying the impacts of 
each tree failure mode on its adjacent distribution lines. The 
proactive island formation was modeled as a MILP 
optimization problem. Subsequently, a two-stage stochastic 
framework is proposed in order to characterize the 
uncertainty associated with load demands. This stochastic 
framework considers MER allocation problem as well.  

The proposed models are implemented on two distribution 
test systems and a practical distribution feeder through nine 
case studies. In each case study, storm-vulnerable branches 
are identified, and they are de-energized. Thus, the systems 
are sectionalized into a number of islands prior to 
windstorms. Moreover, the results of the proposed 
framework are compared with a model in which the effects 
of tree fall and breakage are ignored. The comparison shows 
53.3 percent improvement in the amount of supplied energy 
to the critical loads. A sensitivity analysis was conducted in 
order to explore the impact of   on the results. These results 

and comparison demonstrate how trees contribute to the 
distribution line failures during windstorms through different 
mechanisms. In addition, a sensitivity analysis on the 
number of storm intervals was performed to determine how 
the simulation results and complexity will change if more 
data about storms are available. Based on the results of this 
analysis, the decision makers can make a tradeoff between 
computational burden and solution accuracy. Furthermore, 
the simulation results indicate that using the proposed 
models for characterizing tree failure modes, the decision 
makers can more realistically evaluate the vulnerability of 
overhead distribution lines to windstorms. Thus, operation-
oriented measures, such as MER allocation, can be done in a 
way that the supplied energy is maximized. Future work will 
focus on planning strategies for DS resilience enhancement. 
In particular, optimal sectionalizing switch placement in DSs 
and optimal expansion of DSs will be studied when the tree-
caused failures are taken into account. 
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