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A NOVEL PRICING METHOD FOR EUROPEAN OPTIONS BASED
ON FOURIER-COSINE SERIES EXPANSIONS∗

F. FANG† AND C. W. OOSTERLEE‡

Abstract. Here we develop an option pricing method for European options based on the Fourier-
cosine series and call it the COS method. The key insight is in the close relation of the characteristic
function with the series coefficients of the Fourier-cosine expansion of the density function. In most
cases, the convergence rate of the COS method is exponential and the computational complexity is
linear. Its range of application covers underlying asset processes for which the characteristic function
is known and various types of option contracts. We will present the method and its applications in
two separate parts. The first one is this paper, where we deal with European options in particular.
In a follow-up paper we will present its application to options with early-exercise features.
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1. Introduction. In option pricing, it is the famous Feynman–Kac theorem that
relates the conditional expectation of the value of a contract payoff function under
the risk-neutral measure to the solution of a partial differential equation. In the
research areas covered by this theorem, various numerical pricing techniques can be
developed. In brief, existing numerical methods can be classified into three groups:
partial-(integro) differential equation (PIDE) methods, Monte Carlo simulation, and
numerical integration methods. The distinction between the PIDE and the integration
methods is, however, subtle: Given the option pricing PIDE, one can formally write
down the solution as a Green’s function integral. Often the Fourier transform of
the Green’s function is known; hence the problem reduces to evaluating the integral
numerically. The Green’s function, modulo a discounting term, is the risk-neutral
probability density in finance-speak.

Efficient numerical methods are required to rapidly price complex contracts and
calibrate financial models. During calibration, i.e., when fitting model parameters
of the stochastic asset processes to market data, we typically need to price Euro-
pean options at a single spot price, with many different strike prices, very quickly.
Particular examples of where this is important would be processes with several pa-
rameters, like the Heston model [14] or the infinite activity Lévy processes (see, for
example, [10]), since there the pricing problem (for many strikes) is used inside an
optimization method.

The integration methods are used for calibration purposes whenever the char-
acteristic function of the asset price process is known analytically. State-of-the-art
numerical integration techniques have in common that they rely on a transformation
to the Fourier domain [8, 20]. The Carr–Madan method [8] is one of the best known
examples of this class. The probability density function appearing in the integration
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in the original pricing domain is not known for many relevant asset processes. How-
ever, its Fourier transform, the characteristic function, is often available, for example
from the Lévy–Khinchine theorem for underlying Lévy processes or by other means,
as for the Heston model. In the Fourier domain it is then possible to price various
derivative contracts efficiently. By means of the fast Fourier transform (FFT), inte-
gration can be performed with a computational complexity of O(N log2 N), where N
represents the number of integration points. The computational speed, especially for
plain vanilla options, makes these integration methods state of the art for calibration
at financial institutions.

An important aspect of research in computational finance is to further increase
the performance of the pricing methods. Quadrature rule based techniques are not of
the highest efficiency when solving Fourier transformed integrals. As the integrands
are highly oscillatory, a relatively fine grid has to be used for satisfactory accuracy
with the FFT.

In this paper we will focus on Fourier-cosine expansions in the context of numeri-
cal integration as an alternative for the methods based on the FFT. We will show that
this novel method, called the COS method, can further improve the speed of pricing
plain vanilla and some exotic options. Its application to American-style products will
be covered in a follow-up paper. It is due to the impressive speed reported here for
the COS method that we devote a paper to the European-style products.

Other highly efficient techniques for pricing plain vanilla options include the fast
Gauss transform [6] and the double-exponential transformation [19, 25]. The COS
method can, however, handle more general dynamics for the underlying compared
to these methods. In fact, we can price a vector of strike prices simultaneously.
Furthermore, the COS method offers a highly efficient way to recover the density from
the characteristic function, which is of importance for several financial applications,
like calibration, the computation of forward starting options, or static hedging.

This paper is organized as follows. In section 2, we introduce the Fourier-cosine
expansion for solving inverse Fourier integrals. Based on this, we derive, in section 3,
the formulas for pricing European options and the Greeks. We focus on the Lévy and
the Heston processes for the underlying. An error analysis is presented in section 4,
and numerical results are given in section 5.

The results presented in this paper are the following:

• Options for many strikes can be priced highly efficiently in one computation
with the COS method.

• The method does not rely on artificial damping parameters for convergence.
• A detailed comparison with other FFT methods is presented.
• The COS method can exhibit exponential convergence.

2. Fourier integrals and cosine series. The point of departure for pricing
European options with numerical integration techniques is the risk-neutral valuation
formula:

(1) v(x, t0) = e−r∆tEQ [v(y, T )|x] = e−r∆t

∫

R

v(y, T )f(y|x)dy,

where v denotes the option value, ∆t is the difference between the maturity, T , and
the initial date, t0, and EQ[·] is the expectation operator under risk-neutral measure
Q. x and y are state variables at times t0 and T , respectively; f(y|x) is the probability
density of y given x, and r is the risk-neutral interest rate.
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828 F. FANG AND C. W. OOSTERLEE

In the Carr–Madan approach [8] and its variants, the Fourier transform of a
version of valuation formula (1) is taken with respect to the log-strike price. Damping
of the payoff is then necessary as, for example, a call option is not L1-integrable with
respect to the logarithm of the strike price. The method’s accuracy depends on the
correct value of the damping parameter. A closed-form expression for the resulting
integral is available in Fourier space. To return to the log-price domain, quadrature
rules have to be applied to the inverse Fourier integral for which the application of
the FFT algorithm is appropriate.

The range of applications of numerical integration methods in finance has recently
been increased by the presentation of efficient techniques for options with early exer-
cise features [20, 2, 3, 17]. Especially the CONV method [17] achieves almost linear
complexity, also with the help of the FFT algorithm, for Bermudan and American
options. This method can also be efficiently used for European options, and numer-
ical experiments in [17] show that the accuracy is not influenced by the choice of
the damping parameter. The difference with the Carr–Madan approach is that the
transform is with respect to the log-spot price in the CONV method instead of the
log-strike price (something which [15] and [22] also consider). In the derivation of the
CONV method the risk-neutral valuation formula is rewritten as a cross-correlation
between the option value and the transition density. The cross-correlation is handled
numerically by replacing the option value by its Fourier series expansion so that the
cross-correlation is transformed into an inner product of series coefficients. The coeffi-
cients are recovered by applying quadrature rules, combined with the FFT algorithm.
Error analysis and experimental results have demonstrated second order accuracy and
O(N log2(N)) computational complexity for European options.

These numerical integration methods have to numerically solve certain forward
or inverse1 Fourier integrals. The density and its characteristic function, f(x) and
φ(ω), form an example of a Fourier pair,

(2) φ(ω) =

∫

R

eixωf(x)dx,

(3) f(x) =
1

2π

∫

R

e−iωxφ(ω)dω.

Existing numerical integration methods in finance typically compute the Fourier in-
tegrals by applying equally spaced numerical integration rules and then employing
the FFT algorithm by imposing the Nyquist relation to the grid sizes in the x- and
ω-domains,

∆x · ∆ω ≡ 2π/N,

with N representing the number of grid points. The grid values can then be obtained
in O(N log2 N) operations. However, there are three disadvantages: The error con-
vergence of equally spaced integration rules, except for the Clenshaw–Curtis rule, is
not very high; N has to be a power of two; finally, the relation imposed on the grid
sizes prevents one from using coarse grids in both domains.

Remark 2.1. In principle we could use the fractional FFT algorithm (FrFT),
which does not require the Nyquist relation to be satisfied, as in [9]. However, nu-
merical tests for several options indicated that this advantage of the FrFT did not
outweigh the speed of the FFT in our applications.

1Here we use the convention of the Fourier transform definition often seen in the financial engi-
neering literature. Other conventions can also be used, and modifications to the methods are then
straightforward.
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Remark 2.2. Alternative methods for the forward Fourier integral, based on
replacing f(x) in (2) by its Chebyshev [21] or Legendre [11] polynomial expansion,
can achieve a high accuracy with only a limited number of terms in the expansion.
However, the resulting computational complexity is typically at least quadratic.

2.1. Inverse Fourier integral via cosine expansion. In this section, as a
first step, we present a different methodology for solving, in particular, the inverse
Fourier integral in (3). The main idea is to reconstruct the whole integral—not just the
integrand—from its Fourier-cosine series expansion (also called “cosine expansion”),
extracting the series coefficients directly from the integrand. Fourier-cosine series
expansions usually give an optimal approximation of functions with a finite support2

[5]. In fact, the cosine expansion of f(x) in x equals the Chebyshev series expansion
of f(cos−1(t)) in t.

For a function supported on [0, π], the cosine expansion reads

(4) f(θ) =

∞
∑′

k=0

Ak · cos (kθ) with Ak =
2

π

∫ π

0

f(θ) cos(kθ)dθ,

where
∑′

indicates that the first term in the summation is weighted by one-half. For
functions supported on any other finite interval, say [a, b] ∈ R, the Fourier-cosine
series expansion can easily be obtained via a change of variables:

θ :=
x − a

b − a
π, x =

b − a

π
θ + a.

It then reads

(5) f(x) =

∞
∑′

k=0

Ak · cos

(

kπ
x − a

b − a

)

,

with

(6) Ak =
2

b − a

∫ b

a

f(x) cos

(

kπ
x − a

b − a

)

dx.

Since any real function has a cosine expansion when it is finitely supported, the
derivation starts with a truncation of the infinite integration range in (3). Due to the
conditions for the existence of a Fourier transform, the integrands in (3) have to decay
to zero at ±∞ and we can truncate the integration range in a proper way without
losing accuracy.

Suppose [a, b] ∈ R is chosen such that the truncated integral approximates the
infinite counterpart very well, i.e.,

(7) φ1(ω) :=

∫ b

a

eiωxf(x)dx ≈
∫

R

eiωxf(x)dx = φ(ω).

By subscripts for variables, like i in φi, we denote subsequent numerical approxima-
tions (not to be confused with subscripted series coefficients, Ak and Fk).

Comparing (7) with the cosine series coefficients of f(x) on [a, b] in (6), we find
that

(8) Ak ≡ 2

b − a
Re

{

φ1

(

kπ

b − a

)

· exp

(

−i
kaπ

b − a

)}

,

2The usual Fourier series expansion is actually superior when a function is periodic.
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where Re{·} denotes taking the real part of the argument. It then follows from (7)
that Ak ≈ Fk with

(9) Fk ≡ 2

b − a
Re

{

φ

(

kπ

b − a

)

· exp

(

−i
kaπ

b − a

)}

.

We now replace Ak by Fk in the series expansion of f(x) on [a, b], i.e.,

(10) f1(x) =

∞
∑′

k=0

Fk cos

(

kπ
x − a

b − a

)

,

and truncate the series summation such that

(11) f2(x) =

N−1
∑′

k=0

Fk cos

(

kπ
x − a

b − a

)

.

The resulting error in f2(x) consists of two parts: a series truncation error from (10) to
(11) and an error originating from the approximation of Ak by Fk. An error analysis
that takes these different approximations into account is presented in section 4.

Since the cosine series expansion of entire functions (i.e., functions without any
singularities3 anywhere in the complex plane, except at ∞) exhibits an exponential
convergence [5], we can expect (11) to give highly accurate approximations to functions
that have no singularities on [a, b], with a small N .

To demonstrate this, here we evaluate (11), where

f(x) =
1√
2π

e−
1

2
x2

,

and determine the accuracy for different values of N . We choose [a, b] = [−10, 10],
and the maximum absolute error is measured at x = {−5,−4, . . . , 4, 5}.

Table 1 indicates that a very small error is obtained with only a small number
of terms, N , in the expansion. From the differences in the CPU times in the table,
defined as “time(N)-time(N/2),” we can observe a linear complexity. This technique
is thus highly efficient for the recovery of the density function; see also section 5.

Table 1
Maximum error when recovering f(x) from φ(ω) by Fourier-cosine expansion.

N 4 8 16 32 64
Error 0.25 0.11 0.0072 4.04e-07 3.33e-16

CPU time (msec.) 0.046 0.061 0.088 0.16 0.29
Diff. in CPU (msec.) – 0.015 0.027 0.072 0.13

3. Pricing European options. In this section, we derive the COS formula for
European-style options by replacing the density function by its Fourier-cosine series.
We make use of the fact that a density function tends to be smooth and therefore
only a few terms in the expansion may already give a good approximation.

Since the density rapidly decays to zero as y → ±∞ in (1), we truncate the
infinite integration range without losing significant accuracy to [a, b] ⊂ R, and we
obtain approximation v1:

(12) v1(x, t0) = e−r∆t

∫ b

a

v(y, T )f(y|x)dy.

We will give insight into the choice of [a, b] in section 5.

3By “singularity” we mean [5] poles, fractional powers, logarithms, other branch points, and
discontinuities in a function or in any of its derivatives.
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In the second step, since f(y|x) is usually not known whereas the characteristic
function is, we replace the density by its cosine expansion in y,

(13) f(y|x) =

+∞
∑′

k=0

Ak(x) cos

(

kπ
y − a

b − a

)

with

(14) Ak(x) :=
2

b − a

∫ b

a

f(y|x) cos

(

kπ
y − a

b − a

)

dy,

so that

(15) v1(x, t0) = e−r∆t

∫ b

a

v(y, T )

+∞
∑′

k=0

Ak(x) cos

(

kπ
y − a

b − a

)

dy.

We interchange the summation and integration, and insert the definition

(16) Vk :=
2

b − a

∫ b

a

v(y, T ) cos

(

kπ
y − a

b − a

)

dy,

resulting in

(17) v1(x, t0) =
1

2
(b − a)e−r∆t ·

+∞
∑′

k=0

Ak(x)Vk.

Note that the Vk are the cosine series coefficients of payoff function v(y, T ) in y. Thus,
from (12) to (17) we have transformed the product of two real functions, f(y|x) and
v(y, T ), into that of their Fourier-cosine series coefficients.

Due to the rapid decay rate of these coefficients, we further truncate the series
summation to obtain approximation v2:

(18) v2(x, t0) =
1

2
(b − a)e−r∆t ·

N−1
∑′

k=0

Ak(x)Vk .

Similar to section 2, coefficients Ak(x) defined in (14) can be approximated by
Fk(x) as defined in (9). Replacing Ak(x) in (18) by Fk(x), we obtain

(19) v(x, t0) ≈ v3(x, t0) = e−r∆t

N−1
∑′

k=0

Re

{

φ

(

kπ

b − a
; x

)

e−ikπ a
b−a

}

Vk,

with characteristic function φ. This is the COS formula for general underlying pro-
cesses. We will show that the Vk can be obtained analytically for plain vanilla and
digital options, and that (19) can be simplified for the Lévy and the Heston models,
so that many strikes can be handled simultaneously.

The key step in obtaining this semianalytic formula (19) for option pricing is the
replacement of the probability density function by its Fourier-cosine series expansion.
The advantage is that the product of the density and the payoff is transformed into a
linear combination of products of cosine basis functions and a (payoff) function which
is known analytically.

Important for convergence is therefore the convergence of the density function’s
cosine series, not the cosine series of the payoff, which appears only because we inter-
changed the summation and the integration in (17).

Heuristically speaking, we decompose the probability density into a weighted
sum of many “density-like basis functions” with which option values can be obtained
analytically. What matters for the accuracy and the computational speed is how well
this probability density function is approximated.
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3.1. Coefficients Vk for plain vanilla options. Before we can use (19) for
pricing options, the payoff series coefficients, Vk, have to be recovered. We can find
analytic solutions for Vk for several contracts.

As we assume here that the characteristic function of the log-asset price is known,
we represent the payoff as a function of the log-asset price. Let us denote the log-asset
prices by

x := ln(S0/K) and y := ln(ST /K),

with St the underlying price at time t and K the strike price. The payoff for European
options, in log-asset price, reads

v(y, T ) ≡ [α · K(ey − 1)]+ with α =

{

1 for a call,
−1 for a put.

Before deriving Vk from its definition in (16), we need two mathematical results.
Result 3.1. The cosine series coefficients, χk, of g(y) = ey on [c, d] ⊂ [a, b],

(20) χk(c, d) :=

∫ d

c

ey cos

(

kπ
y − a

b − a

)

dy,

and the cosine series coefficients, ψk, of g(y) = 1 on [c, d] ⊂ [a, b],

(21) ψk(c, d) :=

∫ d

c

cos

(

kπ
y − a

b − a

)

dy,

are known analytically.
Proof. Basic calculus shows that

χk(c, d) :=
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
d − a

b − a

)

ed − cos

(

kπ
c − a

b − a

)

ec

+
kπ

b − a
sin

(

kπ
d − a

b − a

)

ed − kπ

b − a
sin

(

kπ
c − a

b − a

)

ec

]

(22)

and

(23) ψk(c, d) :=

⎧

⎪

⎨

⎪

⎩

[

sin
(

kπ d−a
b−a

)

− sin
(

kπ c−a
b−a

)]

b−a
kπ

, k 	= 0,

(d − c), k = 0.

Focusing, for example, on a call option, we obtain

(24) V call
k =

2

b − a

∫ b

0

K(ey − 1) cos

(

kπ
y − a

b − a

)

dy =
2

b − a
K (χk(0, b) − ψk(0, b)) ,

where χk and ψk are given by (22) and (23), respectively. Similarly, for a vanilla put,
we find

(25) V put
k =

2

b − a
K (−χk(a, 0) + ψk(a, 0)) .

Analytic expressions of Vk can also be obtained for some exotic options.
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3.2. Coefficients Vk for digital and gap options. Whereas for European
products (19) always applies, the coefficients Vk are different for different payoff func-
tions. With analytic expressions for these coefficients, the convergence of the COS
does not depend on the continuity of the payoff.

Digital options are popular in the financial markets for hedging and speculation.
They are also important to financial engineers as building blocks for constructing
more complex option products. Here we consider the payoff of a cash-or-nothing call
option as an example, which is 0 if ST ≤ K and K if ST > K. For this contract the
cash-or-nothing call coefficients, V cash

k , can be obtained analytically:

V cash
k =

2

b − a
K

∫ b

0

cos

(

kπ
y − a

b − a

)

dy =
2

b − a
Kψk(0, b).

We also give the formula for a so-called gap call option [13], whose payoff reads

v(y, T ) = [K(ey − 1)+ − Rb] · 1{ST <H} + Rb,

where 1Ψ equals 0 if Ψ is empty and 1 otherwise, and Rb is a so-called rebate and is
paid if the barrier is hit. The time-dependent version of this payoff represents a barrier
option, which will be discussed in the follow-up paper. The integral that defines V gap

k

for such payoff functions can be split into two parts:

V gap
k =

2

b − a

∫ h

0

K(ey − 1) cos

(

kπ
y − a

b − a

)

dy +
2

b − a

∫ b

h

Rb · cos

(

kπ
y − a

b − a

)

dy,

where h := ln(H/K). It then follows that

(26) V gap
k =

2

b − a
K (χk(0, h) − ψk(0, h)) +

2

b − a
Rb · ψk(h, b).

For those contracts, however, for which the Vk can be obtained only numerically, the
error convergence is dominated by the numerical rules employed.

3.3. Formula for exponential Lévy processes and the Heston model.
It is worth mentioning that (19) is greatly simplified for the Lévy and the Heston
models, so that options for many strike prices can be computed simultaneously. Here
we use boldfaced values to distinguish vectors.

For Lévy processes, whose characteristic functions can be represented by

(27) φ(ω;x) = ϕlevy(ω) · eiωx with ϕlevy(ω) := φ(ω; 0),

the pricing formula is simplified to

(28) v(x, t0) ≈ e−r∆t

N−1
∑′

k=0

Re

{

ϕlevy

(

kπ

b − a

)

eikπ x−a
b−a

}

Vk.

Recalling the Vk-formulas for vanilla European options in (24) and (25), we can now
present them as a vector multiplied by a scalar,

Vk = UkK,

where

(29) Uk =

{

2
b−a

(χk(0, b) − ψk(0, b)) for a call,

2
b−a

(−χk(a, 0) + ψk(a, 0)) for a put.
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As a result, the pricing formula reads4

(30) v(x, t0) ≈ Ke−r∆t · Re

⎧

⎨

⎩

N−1
∑′

k=0

ϕlevy

(

kπ

b − a

)

Uk · eikπ x−a
b−a

⎫

⎬

⎭

,

where the summation can be written as a matrix-vector product if K (and therefore
x) is a vector. In the section with numerical results, we will show that with very small
N we can achieve highly accurate results.

Remark 3.1. Equation (30) is an expression with independent variable x. It
is therefore possible to obtain the option prices for different strikes in one single
numerical experiment, by choosing a K-vector as the input vector (the same is true
for the Carr–Madan formula).

Next, we give some details of the characteristic functions for the Lévy processes
and refer the reader to the literature [10, 7, 14] for background information on these
processes. In particular, for the CGMY/KoBol model, which encompasses the geo-
metric Brownian motion (GBM) and variance gamma (VG) models, the characteristic
function of the log-asset price is of the form

ϕlevy(ω) = exp

(

iω(r − q)∆t − 1

2
ω2σ2∆t

)

· exp (∆tCΓ(−Y )[(M − iω)Y − MY + (G + iω)Y − GY ]),(31)

where r is the risk-free interest rate, q is a continuous dividend yield, and Γ(·) rep-
resents the gamma function. In the CGMY model, the parameters should satisfy
C ≥ 0, G ≥ 0, M ≥ 0, and Y < 2. When σ = 0 and Y = 0 we obtain the VG model;
for C = 0 the Black–Scholes model is obtained.

In the Heston model [14], the volatility, denoted by
√

ut, is modeled by an addi-
tional stochastic differential equation,

(32)
dxt =

(

µ − 1
2ut

)

dt +
√

utdW1t,

dut = λ(ū − ut)dt + η
√

utdW2t,

where xt denotes the log-asset price variable and ut the variance of the asset price
process. Parameters λ ≥ 0, ū ≥ 0, and η ≥ 0 are called the speed of mean reversion,
the mean level of variance, and the volatility of volatility, respectively. Furthermore,
the Brownian motions W1t and W2t are assumed to be correlated with correlation
coefficient ρ.

For the Heston model, the COS pricing equation is also simplified, since

(33) φ(ω;x, u0) = ϕhes(ω; u0) · eiωx,

with u0 the volatility of the underlying at the initial time and ϕhes(ω; u0) := φ(ω; 0, u0).
We then find

(34) v(x, t0, u0) ≈ Ke−r∆t · Re

⎧

⎨

⎩

N−1
∑′

k=0

ϕhes

(

kπ

b − a
; u0

)

Uk · eikπ x−a
b−a

⎫

⎬

⎭

.

The characteristic function of the log-asset price, ϕhes(ω; u0), reads

4Although the Uk values are real, we keep them in the curly brackets. This allows us to inter-
change Re {·} and

∑′, and it simplifies the implementation in MATLAB.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COSINE EXPANSIONS FOR OPTION PRICING 835

ϕhes(ω; u0) = exp

(

iωµ∆t +
u0

η2

(

1 − e−D∆t

1 − Ge−D∆t

)

(λ − iρηω − D)

)

· exp

(

λū

η2

(

∆t(λ − iρηω − D) − 2 log

(

1 − Ge−D∆t

1 − G

)))

,

with

D =
√

(λ − iρηω)2 + (ω2 + iω)η2 and G =
λ − iρηω − D

λ − iρηω + D
.

This characteristic function is uniquely specified, since we take
√

(x + yi) such that
its real part is nonnegative, and we restrict the complex logarithm to its principal
branch. In this case the resulting characteristic function is the correct one for all
complex ω in the strip of analycity of the characteristic function, as proven in [18].

Remark 3.2 (the Greeks). Series expansions for the Greeks, e.g., ∆ and Γ, can
be derived similarly. Since

∆ =
∂v

∂S0
=

∂v

∂x

∂x

∂S0
=

1

S0

∂v

∂x
, Γ =

∂2v

∂S2
0

=
1

S2
0

(

− ∂v

∂S0
+

∂2v

∂S2
0

)

,

it then follows that

(35) ∆ ≈ e−r∆t

N−1
∑′

k=0

Re

{

ϕ

(

kπ

b − a
; u0

)

eikπ x−a
b−a

ikπ

b − a

}

Vk

S0

and

(36) Γ ≈ e−r∆t

N−1
∑′

k=0

Re

{

ϕ

(

kπ

b − a
; u0

)

eikπ x−a
b−a

[

− ikπ

b − a
+

(

ikπ

b − a

)2
]}

Vk

S2
0

.

It is also easy to obtain the formula for Vega, ∂v
∂u0

, for example, for the Heston
model (34), as u0 appears only in the coefficients:

(37)
∂v(x, t0, u0)

∂u0
≈ e−r∆t

N−1
∑′

k=0

Re

⎧

⎨

⎩

∂ϕhes

(

kπ
b−a

; u0

)

∂u0
eikπ x−a

b−a

⎫

⎬

⎭

Vk.

4. Error analysis. In the derivation of the COS formula there are three steps
that introduce errors: the truncation of the integration range in the risk-neutral
valuation formula, the substitution of the density by its cosine series expansion on the
truncated range, and the substitution of the series coefficients by the characteristic
function approximation. Therefore, the overall error consists of three parts:

1. The integration range truncation error:

(38) ǫ1 := v(x, t0) − v1(x, t0) =

∫

R\[a,b]

v(y, T )f(y|x)dy.

2. The series truncation error on [a, b]:

(39) ǫ2 := v1(x, t0) − v2(x, t0) =
1

2
(b − a)e−r∆t

+∞
∑

k=N

Ak(x) · Vk,

where Ak(x) and Vk are defined in (14) and (16), respectively.
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3. The error related to approximating Ak(x) by Fk(x) in (9):

ǫ3 := v2(x, t0) − v3(x, t0)

= e−r∆t

N−1
∑′

k=0

Re

{

∫

R\[a,b]

eikπ
y−a

b−a f(y|x)dy

}

Vk.(40)

We do not have to take any error in the coefficients Vk into account here, as we have
a closed-form solution, at least for the plain vanilla options considered in this paper.

The key to bound the errors lies in the decay rate of the cosine series coefficients.
The convergence rate of the Fourier-cosine series depends on the properties of the
functions on the expansion interval. We first give the definitions classifying the rate
of convergence of the series for different classes of functions, taken from [5].

Definition 4.1 (algebraic index of convergence). The algebraic index of conver-
gence n(≥ 0) is the largest number for which

lim
k→∞

|Ak| kn < ∞, k ≫ 1,

where the Ak are the coefficients of the series. An alternative definition is that if the
coefficients of a series, Ak, decay asymptotically as

Ak ∼ O(1/kn), k ≫ 1,

then n is the algebraic index of convergence.
Definition 4.2 (exponential index of convergence). If the algebraic index of

convergence n(≥ 0) is unbounded—in other words, if the coefficients, Ak, decrease
faster than 1/kn for any finite n—the series is said to have exponential convergence.
Alternatively, if

Ak ∼ O(exp(−γkr)), k ≫ 1,

with γ, the constant, being the “asymptotic rate of convergence,” for some r > 0, then
the series shows exponential convergence. The exponent r is the index of convergence.

For r < 1, the convergence is called subgeometric.
For r = 1, the convergence is either called supergeometric with

Ak ∼ O(k−n exp(−(k/j) ln(k)))

(for some j > 0) or geometric with

(41) Ak ∼ O(k−n exp(−γk)).

The density of the GBM process is a typical function that has a geometrically
converging cosine series expansion.

Proposition 4.1 (convergence of Fourier-cosine series [5, pp. 70–71]). If g(x) is
infinitely differentiable with nonzero derivatives, then its Fourier-cosine series expan-
sion on [a, b] has geometric convergence. The constant γ in (41) is then determined by
the location in the complex plane of the singularities nearest to the expansion interval.
Exponent n is determined by the type and strength of the singularity.

Otherwise, the convergence is algebraic. Integration by parts shows that the alge-
braic index of convergence, n, is at least as large as n′, with n′ denoting the highest
order of derivative that exists or is nonzero.
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If the function g(x) has a discontinuity in [a,b], say at x0, then at the discontinuity
the series value converges to 1

2 (g(x+
0 ) + g(x−

0 )), as the Fourier-cosine series has in
essence the same properties as a Fourier series.

References to the proof of this proposition are available in [5]. Note that in the
case of a discontinuous probability density function, we will encounter a very low alge-
braic convergence order, which can be related to the well-known Gibbs phenomenon
observed in Fourier series expansions of discontinuous functions.

The following proposition further bounds the series truncation error of an alge-
braically converging series.

Proposition 4.2 (series truncation error of algebraically converging series). It
can be shown that the series truncation error of an algebraically converging series
behaves like

∞
∑

k=N+1

1

kn
∼ 1

(n − 1)Nn−1
.

The proof can be found in [4].
With the two propositions above, we can state the following lemmas.
Lemma 4.1. Error ǫ3 merely consists of integration range truncation errors, and

can be bounded by

(42) |ǫ3| < |ǫ1| + Q |ǫ4| ,
where Q is some constant independent of N and

ǫ4 :=

∫

R\[a,b]

f(y|x)dy.

Proof. Assuming f(y|x) to be a real function, we rewrite (40) as

ǫ3 = e−r∆t

N−1
∑′

k=0

Vk

∫

R\[a,b]

cos

(

kπ
y − a

b − a

)

f(y|x)dy.

After interchanging the summation and integration, we rewrite
∑′N−1

k=0 as (
∑′+∞

k=0 −
∑+∞

k=N ) and replace the cosine expansion of v(y, T ) in y by v(y, T ):

ǫ3 = e−r∆t

∫

R\[a,b]

[

v(y, T )−
+∞
∑

k=N

cos

(

kπ
y − a

b − a

)

· Vk

]

f(y|x)dy

= ǫ1 − e−r∆t

∫

R\[a,b]

[

+∞
∑

k=N

cos

(

kπ
y − a

b − a

)

· Vk

]

f(y|x)dy.(43)

According to Propositions 4.1 and 4.2, the Vk exhibit at least algebraic convergence,
and we can therefore bound the expression as follows:

∣

∣

∣

∣

∣

+∞
∑

k=N

cos

(

kπ
y − a

b − a

)

· Vk

∣

∣

∣

∣

∣

≤
+∞
∑

k=N

|Vk| ≤
Q∗

(N − 1)n−1
≤ Q∗, for N ≫ 1, n ≥ 1,

for some positive constant Q∗. It then follows from (43) that

|ǫ3| < |ǫ1| + Q |ǫ4|

with Q := e−r∆tQ∗ and ǫ4 :=
∫

R\[a,b]
f(y|x)dy, which depends on the size of

[a, b].
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Thus, two of the three error components are truncation range related. When the
truncation range is sufficiently large, the overall error is dominated by ǫ2.

Equation (39) indicates that ǫ2 depends on both Ak(x) and Vk, the series coeffi-
cients of the density and that of the payoff, respectively. We assume that the density
is typically smoother than the payoff functions in finance and that the coefficients Ak

decay faster than Vk. Consequently, the product of Ak and Vk converges faster than
either Ak or Vk, and we can bound this product as follows:

(44)

∣

∣

∣

∣

∣

+∞
∑

k=N

Ak(x) · Vk

∣

∣

∣

∣

∣

≤ C
+∞
∑

k=N

|Ak(x)| ,

with C some constant. Error ǫ2 is thus dominated by the series truncation error of
the density function.

Proposition 4.3 (series truncation error of geometrically converging series [5,
p. 48]). If a series has geometrical convergence, then the error after truncation of the
expansion after (N + 1) terms, ET (N), reads

ET (N) ∼ P ∗ exp(−Nν).

Here constant ν > 0 is called the asymptotic rate of convergence of the series, which
satisfies

ν = lim
n→∞

(− log |ET (n)|/n) ,

and P ∗ denotes a factor which varies less than exponentially with N .
Lemma 4.2. Error ǫ2 converges exponentially in the case of density functions

g(x) ∈ C∞([a, b]) with nonzero derivatives:

(45) |ǫ2| < P exp(−(N − 1)ν),

where ν > 0 is a constant and P is a term that varies less than exponentially with N .
The proof of this is straightforward, applying Proposition 4.3 to (44).
Based on Proposition 4.2, we can prove the following lemma.
Lemma 4.3. Error ǫ2 for densities having discontinuous derivatives can be bounded

as follows:

(46) |ǫ2| <
P̄

(N − 1)β−1
,

where P̄ is a constant and β ≥ n ≥ 1 (n the algebraic index of convergence of Vk).
The proof of this lemma is straightforward. Note that β ≥ n because the density

function is usually smoother than a payoff function.
Collecting the results (38), (42), (45), and (46), we can summarize that, with a

properly chosen truncation of the integration range, the overall error converges either
exponentially for density functions, with nonzero derivatives, belonging to C∞([a, b] ⊂
R), i.e.,

(47) |ǫ| < 2 |ǫ1| + Q |ǫ4| + Pe−(N−1)ν,

or algebraically for density functions with a discontinuity in one of its derivatives, i.e.,
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(48) |ǫ| < 2 |ǫ1| + Q |ǫ4| +
P̄

(N − 1)β−1
.

5. Numerical results. In this section, we perform a variety of numerical tests
to evaluate the efficiency and accuracy of the COS method. Implementation of the
COS formula is straightforward. We focus on the plain vanilla European options
and consider different processes for the underlying asset from GBM to the Heston
stochastic volatility process and the infinite activity Lévy processes VG and CGMY. In
the latter case we choose a value for parameter Y close to 2, representing a distribution
with very heavy tails. We will choose long and short maturities in the tests.

The underlying density function for each individual experiment is also recovered
with the help of the cosine series based inversion technique presented in section 2.
This may help the reader to get some insight into the relationship between the error
convergence and the properties of the densities.

We compare our results with the COS method to two of its competitors, the Carr–
Madan method [8] and the CONV method [17]. However, contrary to the common
implementations of these methods we use the Simpson rule for the Fourier integrals in
order to achieve fourth order accuracy. The FFT has been used for the Carr–Madan
as well as for the CONV method.

By these numerical experiments and comparisons with the other methods, we aim
to demonstrate the stability and robustness of the COS method, also under extreme
conditions.

It should be noted that parameter N in the experiments to follow denotes, for
the COS method, the number of terms in the Fourier-cosine expansion, and it denotes
the number of grid points for the other two methods.

All CPU times presented, in milliseconds, are determined after averaging the com-
puting times obtained from 104 experiments. The computer used for all experiments
has an Intel Pentium 4 CPU, 2.80GHz with cache size 1024 KB; the code is written
in MATLAB 7-4.

Remark 5.1. Some experience is helpful when choosing the correct truncation
range and damping factor α in the Carr–Madan method. A suitable choice appears
to be α = 0.75 from [23] for the experiments based on GBM as well as on the Heston
model. This is the parameter used in the experiments to follow. However, many
α-values have been suggested in the literature for optimal convergence, even α = 25
in [22]. Optimal values are determined numerically in [16].

The CONV method can be used without any form of damping for the option
parameters here.

5.1. Truncation range for COS method. To determine the interval of inte-
gration [a, b] within the COS method, we propose the following:

(49) [a, b] :=

[

c1 − L
√

c2 +
√

c4, c1 + L
√

c2 +
√

c4

]

with L = 10.

Here cn denotes the nth cumulant of ln(ST /K). The cumulants for the models em-
ployed are presented in Appendix A.

Cumulant c4 is included in (49), because the density functions of many Lévy
processes for short maturity, T , have sharp peaks and fat tails (correctly indicated
via c4).
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Formula (49) is accurate5 in the range T = 0.1 to T = 10. It then defines
a truncation range which gives a truncation error around 10−12. Larger values of
parameter L would require larger N to reach the same level of accuracy.

Remark 5.2. When pricing call options, the method’s accuracy exhibits some sen-
sitivity regarding the choice of parameter L in (49). A call payoff grows exponentially
with the log-stock price which may introduce a significant cancellation error for large
values of L. Put options do not suffer from this, as their payoff value is bounded by
the value K. For pricing call options, one can therefore either stay with L ∈ [7.5, 10]
or rely on the well-known put-call parity,

(50) vcall(x, t0) = vput(x, t0) + S0e
−qT − Ke−rT .

In the experiments to follow, we use (50) when pricing calls, which gives a slightly
higher accuracy than directly applying (28) with (49).

5.2. GBM. The first set of call option experiments is performed under the GBM
process with a short time to maturity. Parameters selected for this test are

(51) S0 = 100, r = 0.1, q = 0, T = 0.1, σ = 0.25.

The convergence behavior at three different strike prices, K = 80, 100, and 120,
is checked.
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T=0.1 year

Fig. 1. Recovered density function of the GBM model involved in the experiments; K = 100,
with other parameters as in (51).

Figure 1 shows that the recovered density function with the small maturity time
T does not have fat tails, as is commonly known. This, however, implies that the tails
of the characteristic function in the Fourier domain are fat. As a result, the truncation
range for the Carr–Madan method in the Fourier domain has to be selected relatively
large, requiring a significantly larger value of N compared to the other two methods
to achieve the same level of accuracy.

As shown in Figure 2, the error convergence of the COS method is exponential
(geometric) and superior to that of the fourth order CONV and Carr–Madan methods.
With N = 26, the COS results already coincide with the reference values. Further, we

5A truncation rule which includes cumulant c6, such as [a, b] :=
[

c1−L
√

c2 +
√

c4 +
√

c6, c1 +

L
√

c2 +
√

c4 +
√

c6
]

, is more accurate for extremely short maturities, like T = 0.001. The sixth

cumulant is, however, relatively difficult to derive for many models.
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Carr−Madan CONV COS

Fig. 2. COS versus Carr–Madan and CONV in error convergence for pricing European call

options under the GBM model.

observe that the error convergence rate is basically the same for the different strike
prices.

In Table 2, CPU time and error convergence information, comparing the COS and
the Carr–Madan method, are displayed for pricing the options at K = 80, 100, and
120. The maximum error of the option values over the three strike prices is presented.
The results for these strikes are obtained in one single computation for both methods.

To get the same level of accuracy, the COS method uses significantly less CPU
time, which becomes more prominent when the desired accuracy is high. For the
Carr–Madan computation we have used a truncation range of size [0, 100] in this
latter experiment.6

Remark 5.3. In all numerical experiments we observe a linear computational
complexity for the COS method. By doubling N , performing the computations, and
checking the differences between subsequent timings, we can distinguish the linear
complexity from the computational overhead.

Table 2
Error convergence and CPU time comparing the COS and Carr–Madan methods for European

calls under GBM, with parameters as in (51); K = 80, 100, 120; reference val. = 20.799226309 . . . ,
3.659968453 . . . , and 0.044577814 . . . , respectively.

N 16 32 64 128 256
COS msec. 0.33 0.38 0.50 0.73 1.30

max. abs. err. 6.66e-03 7.17e-08 3.91e-14 3.91e-14 3.91e-14
Carr–Madan msec. 2.45 2.57 2.74 3.18 3.85

max. abs. err. 2.45e+07 1.76e+06 1.62e+03 1.62e+01 7.95e-02

5.2.1. Cash-or-nothing option. We confirm that the convergence of the COS
method does not depend on a discontinuity in the payoff function, provided we have an
analytic expression for the coefficients V cash

k by pricing a cash-or-nothing call option
here. The underlying process is GBM, so that an analytic solution exists. Parameters
selected for this test are

(52) S0 = 100, K = 120, r = 0.05, q = 0, T = 0.1, σ = 0.2.

6To produce the Carr–Madan results from Figure 2 with the very small errors, we needed a larger
truncation range, i.e., [0, 1200].
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Table 3
Error and CPU time for a cash-or-nothing call option with the COS method, with parameters

as in (52); reference val. = 0.273306496 . . ..

N 40 60 80 100 120 140
Error 2.46e-02 1.64e-02 6.35e-04 6.85e-06 2.44e-08 2.79e-11

CPU time (msec.) 0.330 0.334 0.38 0.43 0.49 0.50

Table 3 presents the exponential convergence of the COS method. Since the payoff is
bounded here, we apply the COS formula (30) directly.

5.3. The Heston model. As a second test we choose the Heston model and
price calls with the following parameters:

S0 = 100, K = 100, r = 0, q = 0, λ = 1.5768, η = 0.5751,

ū = 0.0398, u0 = 0.0175, ρ = −0.5711.(53)

Two maturities, T = 1 and T = 10, are considered. Since the analytic formula for c4 is
involved (it can be obtained using Maple, but it is lengthy), we define the truncation
range, instead of (49), by

[a, b] := [c1 − 12
√

|c2|, c1 + 12
√

|c2|].

Cumulant c2 may become negative for sets of Heston parameters that do not satisfy
the Feller condition, i.e., 2ūλ > η2. We therefore use the absolute value of c2.
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Fig. 3. Recovered density functions of the Heston experiments, with parameters as in (53).

Figure 3 presents the recovered density functions. It shows that T = 1 gives rise
to a sharper-peaked density than T = 10, as expected.

In this test, we compare the COS method with the Carr–Madan method, which
is often used for the calibration of the Heston model in industry. The option price
reference values are obtained by the Carr–Madan method using N = 217 points, and
the truncated Fourier domain is set to [0, 1200] for the experiment with T = 1 and to
[0, 500] for T = 10.

Tables 4 and 5 illustrate the high efficiency of the COS method compared to the
Carr–Madan method.

Note the very different values of N that the two methods require for satisfactory
convergence. All CPU times are given in milliseconds. The COS method appears to
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Table 4
Error convergence and CPU times for the COS and Carr–Madan methods for calls under the

Heston model with T = 1, with parameters as in (53); reference val. = 5.785155450 . . ..

COS Carr–Madan
N Error Time (msec.) N Error Time (msec.)
64 −4.92e-03 0.61 256 −2.29e+06 4.70
96 −2.99e-04 0.78 512 2.31e+01 6.94
128 1.94e-05 0.94 1024 −2.61e-01 11.30
160 2.99e-06 1.11 2048 −2.14e-03 20.29
192 −3.17e-07 1.27 4096 3.76e-07 38.54

Table 5
Error convergence and CPU time for the COS and Carr–Madan methods for calls under the

Heston model with T = 10, with parameters as in (53); reference val. = 22.318945791 . . ..

COS Carr–Madan
N Error Time (msec.) N Error Time (msec.)
32 7.40e-03 0.46 128 −1.99e+06 3.64
64 −5.02e-05 0.62 256 1.36e+05 4.78
96 1.40e-07 0.81 512 3.27e+01 7.08
128 4.92e-10 0.98 1024 −2.61e-01 11.38
160 −1.85e-10 1.36 2048 −2.15e-03 20.93

be approximately a factor 20 faster than the Carr–Madan method for the same level
of accuracy. The convergence rate of the COS method is somewhat slower for the
short maturity example, as compared to the 10 year maturity. This is due to the fact
that the density function for the latter case is smoother, as seen in Figure 3. The
COS convergence rate for T = 1 is, however, still exponential in the Heston model.

Additionally, for a fair comparison, we mimic the calibration situation, in which
around 20 strikes are priced simultaneously. We repeat the experiment for T = 1
but now with 21 consecutive strikes, K = 50, 55, 60, . . . , 150; see the results in Table
6. The maximum error over all strike prices is presented. With N = 160, the COS
method can price all options for 21 strikes highly accurately, within 3 milliseconds.

Table 6
Error convergence and CPU time for calls under the Heston model by the COS and Carr–Madan

method, pricing 21 strikes, with T = 1, with parameters as in (53).

N 32 64 96 128 160
COS CPU time (msec.) 0.85 1.45 2.04 2.64 3.22

max. abs. err. 1.43e-01 6.75e-03 4.52e-04 2.61e-05 4.40e-06
N 512 1024 2048 4096 8192

Carr–Madan CPU time (msec.) 7.44 12.84 20.36 37.69 76.02
max. error 4.70e+06 6.69e+01 2.61e-01 2.15e-03 2.08e-07

5.4. VG. As a next example we price call options under the VG process, which
belongs to the class of infinite activity Lévy processes. The VG process is usually
parameterized with parameters σ, θ, and ν related to C, G, and M in (31) through

(54) C =
1

ν
, G =

θ

σ2
+

√

θ2

σ4
+

2

νσ2
, M = − θ

σ2
+

√

θ2

σ4
+

2

νσ2
.

The parameters selected in the numerical experiments are

(55) K = 90, S0 = 100, r = 0.1, q = 0, σ = 0.12, θ = −0.14, ν = 0.2, L = 10.
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(b) Zoom in

Fig. 4. Recovered density functions for the VG model and two maturity dates; K = 90, with

other parameters as in (55).

Table 7
Convergence of the COS method for a call under the VG model with K = 90 and other param-

eters as in (55).

COS method
T = 0.1; Reference val. = 10.993703187 . . . T = 1; Reference val. = 19.099354724 . . .
N Error Time (msec.) N Error Time (msec.)
64 −1.66e-03 0.46 32 −6.57e-04 0.35
128 4.35e-04 0.65 64 2.10e-06 0.47
256 4.55e-05 1.03 96 −3.32e-08 0.56
512 −1.13e-06 1.79 128 4.19e-10 0.64
1024 2.52e-08 3.40 160 −1.88e-11 0.75

This case has been chosen because a relatively slow convergence was reported for the
CONV method for very short maturities in [17]. Here we compare the convergence
for T = 1 year and for T = 0.1 year.

Figure 4 presents the difference in shape of the two recovered density functions.
For T = 0.1, the density is much more peaked. Results are summarized in Table 7.
Note that for T = 0.1 the error convergence of the COS method is algebraic instead
of exponential. This is in agreement with the recovered density function in Figure
4, which is clearly not in C∞([a, b]). In the extreme case, we would observe a delta
function-like function for T → 0.

We also plot the errors in Figure 5, comparing the convergence of the COS method
to that of the CONV method.7 The convergence rate of the COS method for T = 1 is
significantly faster than that of the CONV method, but for T = 0.1 the convergence
is comparable.

5.5. CGMY process. Finally, we evaluate the method’s convergence for calls
under the CGMY model. It has been reported in [1, 24] that PIDE methods have
difficulty solving the cases for which parameter Y ∈ [1, 2]. Therefore we evaluate
the COS method with Y = 0.5, Y = 1.5, and Y = 1.98, respectively. The other
parameters are selected as follows:

(56) S0 = 100, K = 100, r = 0.1, q = 0, C = 1, G = 5, M = 5, T = 1.

In Figure 6, the recovered density functions for the three cases are plotted. For
large values of Y , the tails of the density function are fatter and the center of the

7The Simpson rule did not improve the convergence rate here.
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Fig. 5. Convergence of the COS method for the VG model.
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Fig. 6. Recovered density functions for the CGMY model with different values of Y ; other

parameters are as in (56).

distribution shifts.
Reference values for the numerical experiments are computed by the COS method

with N = 214, as there are no reference values available for the latter cases. The
numerical results are presented in Tables 8 and 9 for Y = 0.5 and Y = 1.5, respectively.

Again, the COS method converges exponentially, which is faster than the fourth
order convergence of the CONV method. With a relatively small value of N , i.e.,
N ≤ 100, the COS results are accurate up to seven digits. The computational time
spent is less than 0.1 millisecond. Comparing Tables 8 and 9, we notice that the
convergence rate with Y = 1.5 is faster than that of Y = 0.5, because density functions
from fat-tailed distributions can often be well represented by cosine basis functions.
In Table 10, for example, with Y = 1.98 we need very small values of N for highly
accurate call option prices. No other pricing method, to our knowledge, can price
options for very large Y ≈ 2 accurately in a robust way.

6. Conclusions and discussion. In this paper we have introduced an option
pricing method based on Fourier-cosine series expansions, the COS method, for pricing
European-style options. The method can be used as long as a characteristic function
for the underlying price process is available. The COS method is based on the insight
that the series coefficients of many density functions can be accurately retrieved from
their characteristic functions. As such, one can decompose a density function into
a linear combination of cosine functions. It is this decomposition that makes the
numerical computation of the risk-neutral valuation formula easy and highly efficient.

Derivation of the COS method has been accompanied by an error analysis. In
several numerical experiments, the convergence rate of the COS method has shown to
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Table 8
Comparison of the COS and CONV methods in accuracy and speed for CGMY with Y = 0.5

and other parameters as in (56); reference val. = 19.812948843 . . ..

COS CONV
N Error Time (msec.) N Error Time (msec.)
32 1.36e-02 0.61 64 1.53e-02 0.66
48 5.61e-04 0.69 128 5.31e-04 0.94
64 3.32e-05 0.78 256 3.15e-05 1.49
80 2.57e-06 0.89 512 1.62e-06 2.89
96 2.44e-07 0.95 1024 −1.82e-07 4.90
128 3.11e-09 1.11 2048 −2.71e-07 9.64

Table 9
Comparison of the COS and CONV methods in accuracy and speed for CGMY with Y = 1.5

and other parameters from (56); reference val. = 49.790905469 . . ..

COS CONV
N Error Time (msec.) N Error Time (msec.)
8 2.40e-01 0.53 64 1.21e-02 0.70
16 −4.92e-02 0.56 128 7.12e-04 1.13
24 −1.73e-03 0.58 256 4.37e-05 1.79
32 −1.23e-05 0.63 512 2.81e-06 3.13
40 −2.16e-08 0.68 1024 1.49e-07 5.32
48 −3.60e-11 0.72 2048 6.49e-10 9.98

Table 10
The COS method for CGMY model with Y = 1.98 and other parameters as in (56); reference

val. = 99.999905510 . . ..

N 8 16 24 32 40 48
Msec. 0.52 0.55 0.61 0.63 0.66 0.70
Error −6.36e-01 2.65e-02 1.00e-04 4.29e-06 3.25e-09 1.18e-11

be exponential, in accordance with the analysis. When the density function of the un-
derlying process has a discontinuity in one of its derivatives an algebraic convergence
is expected and was observed. The computational complexity of the COS method is
linear in the number of terms, N , chosen in the Fourier-cosine series expansion. Very
fast computing times were reported here for the Heston and the Lévy models. With
N < 150, all numerical results (except for the VG model with very short maturities)
are accurate up to eight digits, in less than 1 millisecond of CPU time. By recover-
ing the density function we can estimate the convergence behavior of our numerical
method.

The generalization of the COS method for options with early-exercise features,
like Bermudan and American options, is on its way; see [12].

The generalization to high dimensional option pricing problems is not trivial,
because an analytic formula for the coefficients Vk cannot easily be obtained. The Vk

should then be recovered numerically, which has an impact on the convergence rate
of the COS method. This is part of our future research.

Appendix A. Cumulants of ln(St/K). The cumulants, cn, are defined by
the cumulant-generating function g(t):

g(t) = log(E(et·X))

for some random variable X . The cumulants are given by the derivatives, at zero,
of g(t). We present the cumulants c1, c2, and c4 needed to determine the truncation
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Table 11
Cumulants, cn, of ln(St/K) for different models of the underlying; and w, the drift correction

term, which satisfies exp(−wt) = ϕ(−i, t).

GBM c1 = µT

c2 = σ2T

c4 = 0

w = 0

Heston c1 = µT + (1 − e−λT ) ū−u0

2λ
− 1

2
ūT

c2 = 1
8λ3

(

ηTλe−λT (u0 − ū)(8λρ − 4η)

+λρη(1 − e−λT )(16ū − 8u0)

+2ūλT (−4λρη + η2 + 4λ2)

+η2((ū − 2u0)e−2λT + ū(6e−λT − 7) + 2u0)

+8λ2(u0 − ū)(1 − e−λT )
)

w = 0

VG c1 = (µ + θ)T

c2 = (σ2 + νθ2)T

c4 = 3(σ4ν + 2θ4ν3 + 4σ2θ2ν2)T

w = 1
ν

ln(1 − θν − σ2ν/2)

CGMY c1 = µT + CTΓ(1 − Y )
(

MY −1 − GY −1
)

c2 = σ2T + CTΓ(2 − Y )
(

MY −2 + GY −2
)

c4 = CTΓ(4 − Y )
(

MY −4 + GY −4
)

w = −CΓ(−Y )[(M − 1)Y − MY + (G + 1)Y − GY ]

range in (49). They are given, for the price processes discussed in this paper, in
Table 11.
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