
Journal of Cloud Computing:
Advances, Systems and Applications

Wang et al. Journal of Cloud Computing: Advances, Systems

and Applications (2020) 9:36

https://doi.org/10.1186/s13677-020-00186-7

RESEARCH Open Access

A novel privacy-preserving speech
recognition framework using bidirectional
LSTM
Qingren Wang1, Chuankai Feng1, Yan Xu1* , Hong Zhong1 and Victor S. Sheng2

Abstract

Utilizing speech as the transmission medium in Internet of things (IoTs) is an effective way to reduce latency while

improving the efficiency of human-machine interaction. In the field of speech recognition, Recurrent Neural Network

(RNN) has significant advantages to achieve accuracy improvement on speech recognition. However, some of

RNN-based intelligence speech recognition applications are insufficient in the privacy-preserving of speech data, and

others with privacy-preserving are time-consuming, especially about model training and speech recognition.

Therefore, in this paper we propose a novel Privacy-preserving Speech Recognition framework using Bidirectional

Long short-term memory neural network, namely PSRBL. On the one hand, PSRBL designs new functions to construct

security activation functions by combing with an additive secret sharing protocol, namely a secure piecewise-linear

Sigmoid and a secure piecewise-linear Tanh respectively, to achieve privacy-preserving of speech data during speech

recognition process running on edge servers. On the other hand, in order to reduce the time spent on both the

training and the recognition of the speech model while keeping high accuracy during speech recognition process,

PSRBL first utilizes secure activation functions to refit original activation functions in the bidirectional Long

Short-TermMemory neural network (LSTM), and then makes full use of the left and the right context information of

speech data by employing bidirectional LSTM. Experiments conducted on the speech dataset TIMIT show that our

framework PSRBL performs well. Specifically compared with the state-of-the-art ones, PSRBL significantly reduces the

time consumption on both the training and the recognition of the speech model under the premise that PSRBL and

the comparisons are consistent in the privacy-preserving of speech data.

Keywords: Bidirectional LSTM, Privacy-preserving, Speech recognition, Edge-cloud computing, Internet of things

Introduction
Utilizing speech as the transmission medium in Internet

of things (IoTs) is an effective way to reduce latency while

improving the efficiency of human-machine interactions.

For example, the Siri from the Apple and the Cortana

from the Microsoft obtain instructions through speech

recognition and return the most matched results to users,

which greatly improves users’ work effectiveness. Due to

the advantages of speech, many applications of “IoTs +

*Correspondence: xuyan@ahu.edu.cn
1Key Laboratory of Intelligent Computing and Signal Processing of Ministry of

Education, School of Computer Science and Technology, Anhui University, 111

Jiulong Road, Hefei, China

Full list of author information is available at the end of the article

speech” in our daily life have been promoted and devel-

oped, such as smart home [1] and self-driving vehicles [2].

Studies have demonstrated that speech recognition appli-

cations based on Recurrent Neural Network (RNN) per-

form well in terms of improving accuracy of speech recog-

nition [3]. However, these RNN-based speech recognition

applications deployed on a centralized cloud challenge the

transmission performance of devices used in IoTs and the

computing performance of the centralized cloud, since

they are computation-intensive and require high capac-

ity memory. The global edge computing market size is

anticipated to reach USD 43.4 billion by 2027, exhibiting

a CAGR of 37.4% over the forecast period, according to

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://orcid.org/0000-0001-7723-8250
mailto: xuyan@ahu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 2 of 13

a new report by Grand View Research, Inc1. In addition,

the data traffic of these explosively increasing terminal

devices is transmitted to the cloud for processing, which

will eventually exceed the cloud’s computing and storage

capabilities. Thus, most of RNN-based speech recogni-

tion applications are deployed on edge servers to allevi-

ate challenges derived from computing-intensiveness and

insufficient storage capabilities of the clouds [4, 5]. How-

ever, in the era of big data with the explosive growth of

data volume, deploying a speech recognition application

on edge servers is not an effective solution since edge

computing suffers from capacity limitations. Hence, the

edge-cloud computing paradigm offers a tradeoff between

speech recognition applications’ requirements for com-

puting resources and low latency, and improves the usage

efficiency of the IoT devices [6].

It is no doubt that there is a lack of security technolo-

gies and privacy protection mechanisms for smart speech

facilitated by the edge-cloud computing paradigm [7, 8].

That is, the speech data involving private information

could be maliciously collected, transmitted and analyzed

during the process of speech recognition, which enables

criminals to grasp users’ daily behaviors and health sta-

tuses, etc. [9]. Secret Sharing [10], homomorphic encryp-

tion [11] and differential privacy [12] are three conven-

tional algorithms for data privacy-preserving. The homo-

morphic encryption-based privacy-preserving methods

are computation-intensive and require high capacity

memory, which reduces their commercial practicability.

In contrast, for privacy-preserving methods based on

differential privacy, the added noise usually results in

poor availability, which increases the occurrence proba-

bility of errors during the process of speech recognition.

Secure Multi-Party Computing (SMC) [13] is an excellent

method that could be well integrated with edge servers

to improve the performance of privacy-preserving while

ensuring high data availability. In addition, for speech

recognition, Long Short-Term Memory neural network

(LSTM) is a well-known method with high accuracy

and practicability. Therefore, Ma et al. [14] proposed an

outsourced privacy-preserving speech recognition frame-

work (namely OPSR) based on advantages of SMC and

LSTM.

Although OPSR greatly improves the commercial prac-

ticability of speech data and the accuracy of speech recog-

nition while realizing the privacy-preserving of speech

data, it still can be updated in terms of semantic depen-

dence and time consumption. On the one hand, since

studies [15, 16] showed that the accuracy of speech recog-

nition could be improved by extracting the bi-directional

semantic dependence of speech, the right context of

1https://www.grandviewresearch.com/press-release/global-edge-computing-
market

speech sequence data should not be neglected. For exam-

ple, due to the variety of noises coming from natural

environments, the recording devices may lose some infor-

mation of speech data, so that the thoughts of speakers

cannot be fully expressed. Utilizing both the left and the

right context information of the missing speech data is

a significant way to infer the missing speech informa-

tion, so as to achieve the accuracy improvement of speech

data prediction. On the other hand, the activation func-

tions used in OPSR require multiple iterations during the

process of speech recognition. Intuitively, more iterations

consumemore time. Hence, it is necessary to seek another

suitable ways instead of multiple iterations.

Therefore, this paper designs a novelPrivacy-preserving

Speech Recognition framework using the Bidirectional

Long short-termmemory neural network, namely PSRBL.

Based on SMC and Bi-directional LSTM (BiLSTM in

short), PSRBL first divides the original speech data into

two encrypted parts randomly by combining with an

additive secret sharing protocol. Then it utilizes new

piecewise-linear functions proposed in this paper to

reconstruct the original activation functions in BiLSTM.

After that, PSRBL inputs the encrypted speech data into

BiLSTM. Finally, PSRBL achieves the privacy-preserving

of speech data based on collaborations between two

independent edge servers during the training and the

recognition of the speech recognition model. The exper-

imental results demonstrate that our PSRBL signif-

icantly reduces the time consumption in terms of

the training and the recognition of models, and also

improves the response speed while preserving the pri-

vacy information of the speech data on the edge servers.

The main contributions of this paper are summarized

as follows.

(1) We propose a novel speech recognition framework

with privacy-preserving based on SMC and BiLSTM,

namely PSRBL. The framework PSRBL can achieve

the privacy-preserving of speech data by running

SMC method on two independent edge servers.

(2) We design new piecewise-linear functions to refit the

original activation functions (i.e., Sigmoid and Tanh)

in BiLSTM. Compared with the state-of-the-art

OPSR framework, our PSRBL greatly reduces the

time consumption in terms of model training and

speech recognition while ensuring the consistency of

training error.

The remainder of this paper is organized as fol-

lows. “PSRBL framework” presents our PSRBL frame-

work. “Experiments” reports our experimental results.

In “Related work”, we overview recent work focusing

on edge-cloud computing and speech recognition with

privacy-preserving, and then we conclude the paper in

“Conclusion” sections.

https://www.grandviewresearch.com/press-release/global-edge-computing-market
https://www.grandviewresearch.com/press-release/global-edge-computing-market

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 3 of 13

PSRBL framework
In this section, we will first present the architecture of

PSRBL. Then the secure forward propagation and the

secure backward propagation of BiLSTM (the core of

PSRBL) will be introduced respectively. Finally, we will

analyze the correctness and the security capability of

BiLSTM.

The architecture of PSRBL

In this paper, we achieve improvement and optimization

based on OPSR and propose the framework PSRBL. The

architecture of PSRBL is shown in Fig. 1 (which will be

described in the next paragraphs). As can be seen in Fig.

1, our PSRBL consists of seven participants, which are

end-users, the smart audio devices that end-users use, two

edge servers, the trusted third party, the smart IoT devices

and the service providers.

Here, U denotes an end-user. AD denotes the smart

audio device that an end-user uses, and it can record and

preprocess the voice data of the end-user as well as receive

the results of speech recognition. Besides, AD randomly

divides the feature vector of the preprocessed data into

two participants, denoted as A1 and A2 respectively, and

sends them to the two edge servers, which are denoted

as S1 and S2 respectively. Note that for each edge server

there is a training system deployed. S1 and S2 employ BiL-

STM for speech recognition training and work together

to obtain the complete output, denoted as f . T denotes

the trusted third party who supports the collaborative

computing of S1 and S2. I denotes the smart IoT devices

receiving the original output results (which are denoted as

f1 and f2 respectively) from BiLSTM. I performs the sum-

mation verification on f1 and f2 to get f , so as to obtain

the speech recognition results that end-users require. SP

denotes the service providers.

1) Compared with OPSR, we use BiLSTM instead of

LSTM to perform the training of speech recognition

systems (as shown in black in Fig. 1). BiLSTM consists

of two unidirectional LSTMs (i.e., the forward LSTM

with a forward sequence
−→
A =(x0, x1,. . . ,xt ,. . .) and the

backward LSTM with a backward sequence
←−
A =(. . . ,xt , xt−1,. . . ,x0) that can be trained in parallel.

As we have stated above, utilizing both the left and

the right context information of the missed speech

data could achieve the accuracy improvement of

speech data prediction. Therefore, by combining the

context information of speech data, BiLSTM can

Fig. 1 The architecture of the framework PSRBL

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 4 of 13

perform effective prediction. The secure forward

propagation and the secure back propagation of

BiLSTM will be respectively introduced in

“Secure forward propagation” and “Secure backward

propagation” sections in detail.

2) New piecewise-linear functions, which are

respectively named PSigmoid and PTanh, are

proposed to refit the activation functions with

multiple iterations (i.e., Sigmoid and Tanh) for

reducing the time consumption. Compared with

Maclaurin polynomials, our piecewise-linear

functions can greatly reduce the time consumption.

The PSigmoid and PTanh are defined as (1) and (2)

respectively. The results of refitting Sigmoid by

respectively using the piecewise-linear function

PSigmoid and the activation functionMNSigmoid

used in OPSR are shown in Fig. 2a, and the results of

refitting Tanh by respectively using the

piecewise-linear function PTanh and the activation

functionMNTanh used in OPSR are shown in Fig. 2b.

PSigmoid(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 x ≤ −5

0.015078x + 0.085083 −5 < x ≤ −3.5

0.0599266667x + 0.239053333 −3.5 < x ≤ −2

0.164857143x + 0.448914286 −2 < x ≤ −0.6

0.25x + 0.5 −0.6 < x ≤ 0.6

0.164857143x + 0.551085714 0.6 < x ≤ 2

0.0599266667x + 0.7609466667 2 < x ≤ 3.5

0.015078x + 0.91791 3.5 < x ≤ 5

1 x > 5

(1)

PTanh(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 x ≤ −3

0.0311x − 0.9018 −3 < x ≤ −2

0.1178x − 0.7284 −2 < x ≤ −1.5

0.2708x − 0.4971 −1.5 < x ≤ −1

0.56975x + 0.19815 −1 < x ≤ −0.6

0.9x −0.6 < x ≤ 0.6

0.56975x + 0.19815 0.6 < x ≤ 1

0.2708x + 0.4971 1 < x ≤ 1.5

0.1178x + 0.7284 1.5 < x ≤ 2

0.0311x + 0.9018 2 < x ≤ 3

1 x > 3

(2)

After that, SP transmits the parameters of piecewise-

linear functions and a third-tuple (a, b,M) to T (as shown

in purple in Fig. 1), where a and b respectively denote the

variable coefficient and the constant term of piecewise-

linear functions, and M denotes the piecewise intervals.

T first sums the middle values transmitted from both

S1 and S2 to obtain the interval M, and then randomly

divides (a, b) into
(

a
′
, b

′
)

and
(

a
′′
, b

′′
)

. Finally,
(

a
′
, b

′
)

and
(

a
′′
, b

′′
)

are respectively sent back to S1 and S2 to support

their security two-party calculations (as shown in blue

in Fig. 1).

From Fig. 2a, we can see that the curve PSigmoid

excellently refits the curve Sigmoid, whereas the curve

MNSigmoid only performs well in an interval [-2, 2].

Figure 2b shows that the curve PTanh excellently refits the

curve Tanh, whereas the curve MNTanh only performs

well in an interval [-1, 1].

Fig. 2 The piecewise-linear functions PSigmoid and PTanh refit original activation functions Sigmoid and Tanh respectively

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 5 of 13

Secure forward propagation

For each edge server there is a BiLSTMdeployed, and each

BiLSTM contains a single Forward layer LSTM (F-LSTM

in short) and a single Backward layer LSTM (B-LSTM

in short). Each single F-LSTM (B-LSTM) handles histor-

ical information by deploying a nonlinear function and

a large number of linear functions and includes a single

forget gate, a single input gate and a single output gate.

Given a speech sequence data A=(x0, x1, . . . , xt ,. . .), S1 and

S2 perform the privacy-preserving calculations of the for-

get gate, the input gate and the output gate by employing

a security addition protocol and a secure multiplication

protocol. The symbols “→” and “←” respectively indicate

the calculation processes of F-LSTM and B-LSTM. The

superscript symbols “′” and “′′” indicate the calculation

processes of neural network on S1 and S2 respectively. The

symbols as well as the corresponding interpretations used

in the paper are shown in Table 1. The secure forward

propagation of BiLSTM is shown in Fig. 3.

We combine piecewise-linear functions PSigmoid(x)

and PTanh(x) with a security addition protocol and a

secure multiplication protocol to construct new secure

piecewise-linear functions SPSigmoid(x) and SPTanh(x)

respectively, which are treated as activation functions of

gates. Since the construction steps of SPSigmoid(x) and

SPTanh(x) are similar, we only take SPSigmoid(x) as an

example, which is defined as follows.

SPSigmoid(x) = a · x + b

= SecAdd
(

SecMul
(

a
′

, a
′′

, x
′

, x
′′
)

, b
′

, b
′′
)

(3)

where a
′
and b

′
respectively denote the coefficient and the

constant term of PSigmoid(x) running on S1; a
′′
and b

′′

respectively denote the coefficient and the constant term

of PSigmoid(x) running on S2.

Forget gate. The forget gate SPSigmoid(x) treats ht−1

(the output vector of the previous unit) and xt (the input

vector of the current unit) as input values. For each

item in ct−1 (the memory vector of the previous unit),

SPSigmoid(x) generates a value within [0, 1] to handle

the forgetting degree of the previous unit. The relevant

calculating processes are shown as follows.

F-LSTM:

−→uf =
−→
u

′

f +
−→
u

′′

f

= SecAdd

(

SecMul

(−→
W

′

f ,
−→
W

′′

f ,

[−−→
h

′

t−1, x
′

t

]

,

[−−→
h

′′

t−1, x
′′

t

])

,
−→
B

′

f +
−→
B

′′

f

)

(4)

−→
ft =

−→
f

′

t +
−→
f

′′

t

= SPSigmoid
(−→uf

)

= SecAdd

(

SecMul

(−→
a

′

,
−→
a

′′

,
−→
u

′

f ,
−→
u

′′

f

)

,
−→
b

′

+
−→
b

′′

)

(5)

B-LSTM:

←−uf =
←−
u

′

f +
←−
u

′′

f

= SecAdd

(

SecMul

(←−
W

′

f ,
←−
W

′′

f ,

[←−−
h

′

t+1, x
′

t

]

,

[←−−
h

′′

t+1, x
′′

t

])

,
←−
B

′

f +
←−
B

′′

f

)

(6)

←−
ft =

←−
f

′

t +
←−
f

′′

t

= SPSigmoid
(←−uf

)

= SecAdd

(

SecMul

(←−
a

′

,
←−
a

′′

,
←−
u

′

f ,
←−
u

′′

f

)

,
←−
b

′

+
←−
b

′′

)

(7)

Input gate. The input gate performs three steps. Step 1), it

utilizes SPSigmoid(x) to calculate it (which is the filtered

input vector of current unit). The relevant calculating

processes are defined as follows.

Table 1 Symbols as well as corresponding interpretations used in the paper

Symbol Interpretation Symbol Interpretation

→ The calculation process of F-LSTM Wkh Weight matrix of ht−1 , where k ∈
{

f , i, c̃, o
}

← The calculation process of B-LSTM Wkx Weight matrix of xt , where k ∈
{

f , i, c̃, o
}

′ Parameter running on the edge server S1 Bk Bias, where k ∈ {f , i, c̃, o}

′′ Parameter running on the edge server S1 uk uk=Wk ·
[

ht−1 , xt
]

+Bk , where k ∈
{

f , i, c̃, o
}

t Time node during speech recognition process. ct the neural cell state at time t

k k ∈
{

f , i, c̃, o
}

∇Wt The computational gradient of weight matrix

δk,t The calculation error of backward propagation at time t ∇Wkh The computational gradient of weight matrix of ht

ht The output of LSTM at time t ∇Wkx The computational gradient of weight matrix of xt

Wk Weight matrix ∇Bk The computational gradient of bias in back propagation

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 6 of 13

Fig. 3 The secure forward propagation and the secure backward propagation of BiLSTM on S1 and S2

F-LSTM:

−→ui =
−→
u

′

i +
−→
u

′′

i

= SecAdd

(

SecMul

(−→
W

′

i ,
−→
W

′′

i ,

[−−→
h

′

t−1, x
′

t

]

,

[−−→
h

′′

t−1, x
′′

t

])

,
−→
B

′

i +
−→
B

′′

i

)

(8)

−→
it =

−→
i
′

t +
−→
i
′′

t

= SPSigmoid
(−→ui

)

= SecAdd

(

SecMul

(−→
a

′

,
−→
a

′′

,
−→
u

′

i ,
−→
u

′′

i

)

,
−→
b

′

+
−→
b

′′

)

(9)

B-LSTM:

←−ui =
←−
u

′

i +
←−
u

′′

i

= SecAdd

(

SecMul

(←−
W

′

i ,
←−
W

′′

i ,

[←−−
h

′

t+1, x
′

t

]

,

[←−−
h

′′

t+1, x
′′

t

])

,
←−
B

′

i +
←−
B

′′

i

)

(10)

←−
it =

←−
i
′

t +
←−
i
′′

t

= SPSigmoid
(←−ui

)

= SecAdd

(

SecMul

(←−
a

′

,
←−
a

′′

,
←−
u

′

i ,
←−
u

′′

i

)

,
←−
b

′

+
←−
b

′′

)

(11)

Step 2), the input gate uses SPTanh(x) to calculate c̃t
(which is the candidate unit state vector of current unit)

for handling how much new information required to be

added. The relevant calculating processes are listed as

follows.

F-LSTM:

−→uc̃ =
−→
u

′

c̃ +
−→
u

′′

c̃

= SecAdd

(

SecMul

(−→
W

′

c̃ ,
−→
W

′′

c̃ ,

[−−→
h

′

t−1, x
′

t

]

,

[−−→
h

′′

t−1, x
′′

t

])

,
−→
B

′

c̃ +
−→
B

′′

c̃

)

(12)

−→
c̃t =

−→
c̃

′

t +
−→
c̃

′′

t

= SPmoid
(−→uc̃

)

= SecAdd

(

SecMul

(−→
a

′

,
−→
a

′′

,
−→
u

′

c̃ ,
−→
u

′′

c̃

)

,
−→
b

′

+
−→
b

′′

)

(13)

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 7 of 13

B-LSTM:

←−uc̃ =
←−
u

′

c̃ +
←−
u

′′

c̃

= SecAdd

(

SecMul

(←−
W

′

c̃ ,
←−
W

′′

c̃ ,

[←−−
h

′

t+1, x
′

t

]

,

[←−−
h

′′

t+1, x
′′

t

])

,
←−
B

′

c̃ +
←−
B

′′

c̃

)

(14)

←−
c̃t =

←−
c̃

′

t +
←−
c̃

′′

t

= SPmoid
(←−uc̃

)

= SecAdd

(

SecMul

(←−
a

′

,
←−
a

′′

,u
′

c̃,u
′′

c̃

)

,
←−
b

′

+
←−
b

′′

)

(15)

and Step 3), by combining with a secure addition func-

tion and a secure multiplication function, the input gate

employs c̃t−1, it and c̃t to update the unit state, which are

calculated as follows.

F-LSTM:

−→ct =
−→
c

′

t +
−→
c

′′

t

= SecAdd

(

SecMul

(−→
f

′

t ,
−→
f

′′

t ,
−−→
c

′

t−1,
−−→
c

′′

t−1

)

,

SecMul

(−→
i
′

t ,
−→
i
′′

t ,
−→
c̃

′

t ,
−→
c̃

′′

t

))

(16)

B-LSTM:

←−ct =
←−
c

′

t +
←−
c

′′

t

= SecAdd

(

SecMul

(←−
f

′

t ,
←−
f

′′

t ,
←−−
c

′

t+1,
←−−
c

′′

t+1

)

,

SecMul

(←−
i
′

t ,
←−
i
′′

t ,
←−
c̃

′

t ,
←−
c̃

′′

t

))

(17)

Output gate. The input values of the output gate are

the calculated results coming from the input gate and

the forget gate, which means the output of BiLSTM is

influenced by both long-term memory and the current

input value. The output gate first utilizes Wo (the output

weight matrix) and Bo (the output bias term) to calculate

ot (the current output vector of the output gate) by using

following equations.

F-LSTM:

−→uo =
−→
u

′

o +
−→
u

′′

o

= SecAdd

(

SecMul

(−→
W

′

o,
−→
W

′′

o ,

[−−→
h

′

t−1, x
′

t

]

,

[−−→
h

′′

t−1, x
′′

t

])

,
−→
B

′

o +
−→
B

′′

o

)

(18)

−→ot =
−→
o

′

t +
−→
o

′′

t

= SPSigmoid
(−→uo

)

=

SecAdd

(

SecMul

(−→
a

′

,
−→
a

′′

,
−→
u

′

o ,
−→
u

′′

o

)

,
−→
b

′

+
−→
b

′′

)

(19)

B-LSTM:

←−uo =
←−
u

′

o +
←−
u

′′

o

= SecAdd

(

SecMul

(←−
W

′

o,
←−
W

′′

o ,

[←−−
h

′

t+1, x
′

t

]

,

[←−−
h

′′

t+1, x
′′

t

])

,
←−
B

′

o +
←−
B

′′

o

)

(20)

←−ot =
←−
o

′

t +
←−
o

′′

t

= SPSigmoid
(←−uo

)

= SecAdd

(

SecMul

(←−
a

′

,
←−
a

′′

,
←−
u

′

o ,
←−
u

′′

o

)

,
←−
b

′

+
←−
b

′′

)

(21)

Then by combining with SPSigmoid(x) and SPTanh(x),

ht (the output vector of current unit) of BiLSTM is cal-

culated according to ot and ct . The relevant calculating

processes are defined by following equations.

F-LSTM:

−→
ht =

−→

h
′

t +

−→

h
′′

t = −→ot · SPTanh
(−→ct

)

= SecMul

(−→

o
′

t ,
−→

o
′′

t , SecAdd

(

SecMul

(−→

a
′
,
−→

a
′′
,
−→

c
′

t ,
−→

c
′′

t

)

,
−→

b
′
,
−→

b
′′
))

(22)

B-LSTM:

←−
ht =

←−

h
′

t +

←−

h
′′

t = ←−ot · SPTanh
(←−ct

)

= SecMul

(

←−

o
′

t ,
←−

o
′′

t , SecAdd

(

SecMul

(

←−

a
′
,
←−

a
′′
,
←−

c
′

t ,
←−

c
′′

t

)

,
←−

b
′
,
←−

b
′′
)) (23)

In the entire process of secure forward propagation of BiL-

STM,
[−→
ht ,

←−
ht

]

is the input vector of the output layer at

time t, where
−→
ht =

−→
h

′

t +
−→
h

′′

t and
←−
ht =

←−
h

′

t +
←−
h

′′

t . Note that
−→
ht and

←−
ht are calculated by using F-LSTM and B-LSTM

respectively.

Secure backward propagation

The basis of the secure backward propagation of BiLSTM

is Back Propagation Trough Time (BPTT) algorithm, and

there is no complex derivative calculation in the secure

backward propagation of BiLSTM in this paper, since

the original activation functions Sigmoid(x) and Tanh(x)

are refitted by SPSigmoid(x) and SPTanh(x) respectively,

where SPSigmoid
′
(x)=a and SPTanh

′
(x)=a. That is, the

training process of the secure backward propagation of

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 8 of 13

Table 2 Comparison of error and time according to different sigmoid piecewise-linear functions

The number of piecewises 3 5 7 8 9 10

The error of forward fropagation 3.43 × 10−2 5.74 × 10−8 7.95 × 10−12 2.36 × 10−14 2.11 × 10−14 1.94 × 10−14

Time(ms) 52.936 65.167 82.728 97.539 113.185 125.479

BiLSTM can be performed by directly utilizing the secure

addition protocol and the secure multiplication protocol,

which is similar to that of its secure forward propagation.

Based on the trusted third party T , the secure BTPP is

performed by utilizing the results from security forward

propagation to obtain the error of the loss function. After

that, sending the error back to edge servers to update the

corresponding weightmatrix and bias items. BiLSTM iter-

atively runs the process until the error converges. Since

the calculation process of back propagation in B-LSTM is

the same as those of F-LSTM, we only take F-LSTM as an

example to introduce details below.

F-LSTM:

−−→
δt−1 =

−−→
δ(o,t)

−−→
Woh +

−−→
δ(f ,t)

−→
Wfh

+
−−→
δ(i,t)

−→
Wih +

−−→
δ(c̃,t)

−→
Wih = f

(−−→
ht−1

)

(24)

where
−−→
δt−1 denotes the total error vector at time t-1,

−−→
δ(o,t),

−−→
δ(f ,t),

−−→
δ(i,t)and

−−→
δ(c̃,t) are partial error vectors, which are

respectively calculated as follows.

−−→
δ

′

(o,t),
−−→
δ

′′

(o,t) =
−→
δt · SPTanh

(−→ct
)

· −→ot ·
(

1 − −→ot
)

(25)

−−→
δ

′

(f ,t),
−−→
δ

′′

(f ,t) =
−→
δt · −→ot · SPTanh

′ (−→ct
)

·
−→
ft ·

(

1 −
−→
ft

)

(26)

−−→
δ

′

(i,t),
−−→
δ

′′

(i,t) =
−→
δt · −→ot ·SPTanh

′ (−→ct
)

·
−→
c̃t ·

−→
it ·

(

1 −
−→
it

)

(27)

−−→
δ

′

(c̃,t),
−−→
δ

′′

(c̃,t) =
−→
δt · −→ot · SPTanh

′ (−→ct
)

·
−→
it ·

(

1 −
−→
c̃2t

)

(28)

SPTanh
′ (−→ct

)

= 1 − SPTanh
(−→ct

)2
(29)

Initializing the total error vector at time t to 1, i.e.,
−→
δt =1,

and the total error vector before time t can be obtained by

(24). Given the partial error vectors at each time,
−−→
ht−1,

−→
Wk

and
−→
Bk . Meanwhile, by using the symbol ∇ to denote the

gradient, we can obtain an equation:

−−→
∇Wk =

[−−−→
∇Wkh,

−−−→
∇Wkx

]

=

[−−−→
∇W

′

kh +
−−−→
∇W

′′

kh,
−−−→
∇W

′

kx +
−−−→
∇W

′′

kx

]

(30)

In addition, the corresponding derivations are shown as

follows.

−−−→
∇W

′

kh,
−−−→
∇W

′′

kh =

t
∑

j=1

SecMul
(

−−→
δ(k,j),

−−→
ht−1

)

(31)

−−−→
∇W

′

kx,
−−−→
∇W

′′

kx = SecMul
(

−−→
δ(k,j),

−→xt

)

(32)

−−→
∇B

′

k ,
−−→
∇B

′′

k =

t
∑

j=1

−−→
δ(k,j) (33)

Using α to denote the learning rate of BiLSTM, and sup-

posing that α is public and available, the weightmatrix and

the bias term can be updated by using the gradient values,

which are calculated as follows.

−−−−−→
W

′

(new,k),
−−−−−→
W

′′

(new,k) =
−−−−→
W(old,k) −

−−→
∇Wk · α (34)

−−−−→
B

′

(new,k),
−−−−→
B

′′

(new,k) =
−−−−→
B(old,k) −

−−→
∇Bk · α (35)

Analyses for correctness and security analysis

Correctness. As shown in Fig. 2, the piecewise-linear

functions PSigmoid(x) and PTanh(x) perform well.

Theoretically, PSigmoid(x) and PTanh(x) can infinitely

approach the original activation functions Sigmoid(x) and

Tanh(x). In addition, the foundations of secure piecewise-

linear functions SPSigmoid(x) and SPTanh(x) are the

secure addition protocol and the secure multiplication

protocol of the addition secret sharing protocol whose

correctness has been proved in [14].

Security Analysis. In the processes of forward propa-

gation and back propagation, on the one hand, all input

vectors of secure piecewise-linear functions SPSigmoid(x)

and SPTanh(x) are the calculated results of the secure

Table 3 Comparison of error and time according to different tanh piecewise-linear functions

The number of piecewises 3 5 7 9 11 12

The error of forward fropagation 1.14 × 10−2 5.47 × 10−8 8.51 × 10−12 2.37 × 10−14 2.26 × 10−14 2.16 × 10−14

Time(ms) 43.573 54.947 67.695 82.421 97.647 112.193

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 9 of 13

Fig. 4 The computation errors of forward propagation and backward propagation

addition protocol and the secure multiplication proto-

col. On the other hand, all output vectors of the forget

gate, the input gate and the output gate are calculated

by SPSigmoid(x) and SPTanh(x). Since the security of the

secure addition protocol and the secure multiplication

protocol has been demonstrated in [14], the processes of

forward propagation and back propagation are secure.

Experiments
In this section, we conduct multiple experiments to evalu-

ate the performance of our PSRBL.We focus in answering

the following two research questions.

(1) Question 1. Can the proposed piecewise-linear

activation functions achieve the accuracy

improvement of our PSRBL?

(2) Question 2. Compared with existing state-of-the-art

peers, does our PSRBL perform better?

Experimental dataset and environment

We utilize the state-of-the-art framework OPSR as com-

parison. OPSR is implemented in Python3 and Numpy

in [14]. The adopted speech dataset is a part of

TIMIT corpus, which has 123 features coming from the

Fourier transform-based filter library [17]. To make fair

Fig. 5 The computation time of frameworks PSRBL and OPSR

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 10 of 13

Table 4 Runtime of privacy-preserving LSTM for each training sample

State
Our Scheme(ms) OPSR Scheme(ms)

Initialization Computation Initialization Computation

Forward Propagation 2.88 24.85 2.11 107.11

Backward Propagation 1.02 26.95 1.10 60.06

comparisons, the performance of our PSRBL is also eval-

uated on the same dataset. Given a data length l=64,

2000 processed speech sequence data with 123 features

applied on a neural network with 80 neurons, and the

time step is set to 8. Therefore, the size of the weight

matrixWk is 203×80, where k ∈
{

f , i, c̃, o
}

, and the output

matrix and the offset terms are 8 ×80 and 1 ×80 respec-

tively. In addition, PSRBL is also implemented by Python3

and Numpy, and follows the same experimental param-

eter settings that OPSR used. Note that OPSR uses the

McLaughlin polynomial and theNewton iterationmethod,

where the number of iterations is set to 10. However, our

PSRBL does not need iterations, since its activation func-

tions are refitted by the piecewise-linear functions. In our

experiments, edge servers have the same configuration,

which are Inter(R)Core(TM) i5-7500 CPU@3.40GHz and

8.00GB of memory.

Performance of the piecewise-linear activation functions

(Question 1)

Since the piecewise-linear activation functions achieve an

accuracy improvement of framework PSRBL, we first con-

duct multiple experiments to evaluate the performance of

piecewise-linear activation functions with different num-

bers.

The experimental results of Sigmoid piecewise-linear

fitting activation function PNSigmoid are shown in Table

2. With the increment of the piecewise number, the error

values of the forward propagation of both original and

secure LSTMs continuously reduce. When the piecewise

number is 8, the error value reached 10−14, which can be

ignored. That is, as the piecewise number increases con-

tinuously, the change of the error value can be ignored

but the time consumption significantly increases. There-

fore, the piecewise number of fitting Sigmoid activation

function is set to 8.

The results of Tanh piecewise-linear fitting activa-

tion function PNTanh are shown in Table 3. When the

piecewise number is 11, the error value reaches 10−14,

which can be ignored. After that, as the piecewise num-

ber continuously increases, the time consumption signif-

icantly increases, so as to the piecewise number of fitting

Tanh activation function is set to 11.

Performance comparisons (Question 2)

The experimental comparisons are shown in Figs.

4 and 5. Note that PSRBL-F and PSRBL-B in

the figures respectively correspond to F-LSTM

and B-LSTM of BiLSTM (the key component of

our PSRBL).

From Fig. 4, we can see that with the increment of the

number of samples, 1) the calculation errors of the for-

ward propagation of PSRBL-F, PSRBL-B and OPSR are all

as low as 10−14 (as shown in Fig. 4a); and 2) the calculation

errors of the backward propagation of PSRBL-F, PSRBL-B

and OPSR are all as low as 10−14 too (as shown in Fig. 4b).

Therefore, we can conclude that the frameworks PSRBL

and OPSR have the same performance in the training

process of the neural network with privacy-preserving.

As shown in Fig. 5, with the increment of the number

of samples, the time consumptions of PSRBL-F, PSRBL-

B and OPSR increase too. However, both PSRBL-F and

PSRBL-B are much more efficient than OPSR. In the case

where the number of samples is less than 100, the time

consumptions of both PSRBL-F and PSRBL-B is half of

that of OPSR (as shown in Fig. 5a). In the case where the

number of samples is between 100 and 1000, OPSR takes

one and a half times as long as both PSRBL-F and PSRBL-

B do (as shown in Fig. 5b). In the case where the number of

samples is between 1000 and 2000, OPSR still takes more

time consumption as long as both PSRBL-F and PSRBL-B

do (as shown in Fig. 5c).

To sum up, we can conclude that PSRBL significantly

reduces the time of both the training and the recogni-

tion of the speech model. The reason is that the secure

activation functions in PSRBL do not require iterations.

Table 5 Forward propagation runtime of each LSTM gate for each training sample

Gate
Our Scheme(ms) OPSR Scheme(ms)

Initialization Computation Initialization Computation

Forget Gate 0.76 7.52 0.63 23.89

Input Gate 1.39 10.92 1.05 44.02

Output Gate 0.72 6.41 0.43 39.20

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 11 of 13

Table 6 Message size of multiplication and addition using homomorphic encryption

Homomorphic encryption Additive homomorphic encryption Multiplicative homomorphic encryption

Plaintext(Byte) 8 8

Ciphertext(Byte) 154 307

The time spent on a single iteration of a single secure

activation function in OPSR, denoted as ts, is the sum

of the time of running one-time secure addition protocol

and one-time secure multiplication protocol. In the exper-

iments, the number of iterations that secure activation

functions required in OPSR is 10, which means the total

time spent on a single secure activation function is 10ts.

PSRBL uses piecewise-linear functions instead of secure

activation functions to avoid iterations. Supposes that T

needs tp to construct the piecewise intervals, the total

time spent on a single secure activation function is ts+tp,

which means the time consumption of PSRBL depends on

tp.

Table 4 shows the time consumptions (including ini-

tialization time and calculation time of a single sample)

of forward and backward calculations. The initialization

time refers to 1) the initialization of weight matrix and

calculation vectors for each bias term, and 2) the initial-

ization of three gates of LSTM. It can be seen that the

initialization time of PSRBL is roughly the same as that of

OPSR. However, for the time consumption of forward cal-

culation, OPSR takes 4.5 times as long as PSRBL does, and

for the time consumption of backward calculation, OPSR

takes 2.3 times as long as PSRBL does.

Table 5 shows the time consumptions of three gates of

forward and backward calculations. It can be seen that the

initialization time of PSRBL is roughly the same as that of

OPSR. For the time consumptions of the forget gate, the

input gate and the output gate, OPSR respectively takes 3,

4 and 6 times as long as PSRBL does.

As shown in Table 6, the privacy-preserving homo-

morphic encryption-based scheme needs to encrypt the

data at first, which extends the data size, so as to greatly

increase the overhead of communication storage dur-

ing the training process of BiLSTM and applications of

intelligent voice.

Table 7 shows that the framework based on additive

secret sharing performs better than the homomorphic

encryption-based framework. In order to process one

frame of audio, the homomorphic encryption-based

privacy protection Gaussian mixture model (GMM)

scheme [11] requires 616.759 ms, the time consump-

tion is almost 6 times that of PSRBL, and the overhead

of communication storage is more than 40 times that

of PSRBL. In addition, compared with Hidden Markov

Model (HMM) [10] and OPSR based on the addition

secret sharing, BiLSTM-based models achieve higher

accuracy. Compared with OPSR based on the addition

secret sharing, PSRBL can significantly reduce the time

consumption, which means it can not only save the train-

ing time for the entire model, but also improve the

response time during speech recognition.

Related work
Edge computing is a popular computing paradigm with

the aim to minimize the delay between end-users and the

cloud, and many applications in our daily life have been

promoted and developed, such as QoS prediction [18, 19].

However, it is well known that edge computing suffers

from capacity limitations. Thus, the edge-cloud comput-

ing paradigm is proposed to balance computing resources

and low latency. Speech recognition [3] is one of the most

important applications.

In the early days, speech recognition research mainly

used Hidden Markov Model (HMM) [20, 21]. Lee et

al. [22] proposed a co-occurrence smoothing algorithm

that enables accurate speech recognition on a minimal

training dataset. Nevertheless, HMM neglects the long-

term dependence relations between speech data. Lip-

ton et al. [23] showed that Recurrent Neural Networks

(RNN) could effectively solve the above problem. Dif-

fer from the sequential structure of Convolutional Neural

Network (CNN) [24], RNN forms a complex recurrent

chain structure through input layer, hidden layer and

output layer. Gers et al. [25] improved the LSTM net-

work structure by adding a forget gate and peepholes,

since RNN becomes unreliable under complex applica-

tion environments because of the long-term dependencies

Table 7 Comparison of runtime and message size with other schemes

Runtime Per Sample(ms) Message Size per Sample(MB)

Our Scheme 97.647 4.617

OPSR Scheme 227.576 4.873

GMM with HE [11] 616.759 95.2

HMM with 2PC [10] 502.351 13.22

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 12 of 13

problem [26]. However, LSTM neglects the right context

information of speech data, which results in loss of seman-

tic information. Hence, Alex Graves et al. [27] proposed

a bidirectional long-term and short-term memory neu-

ral network. Unlike the way of training from left to right

that used in LSTM, Alex Graves et al. made the use of

the left and the right context information to train the

speech recognition model. Bin et al. [28] proposed a video

captioning framework based on bidirectional long-term

memory and soft attention mechanisms to enhance the

ability of recognizing persistent motion in the video.

In the development of speech recognition technology,

most speech recognition systems are deployed on cloud

and (or) edge servers, and meanwhile the speech data

is stored and transmitted in cleartext. That is, speech

data with private information can be maliciously col-

lected and analyzed [9]. Therefore, it is a feasible solu-

tion to protect speech data by using encryption algo-

rithms. CryptoNets [29] is a neural network that can

be trained by ciphertext. Some studies use Homomor-

phic Encryption (HE) to protect data privacy, such as

MiniONN [30]. For example, Zhang et al. used BGV

to achieve the encryption of the private data [31]; Yil-

maz et al. utilized a partially homomorphic cryptosys-

tem as the element of the proposed privacy-preserving

solutions [32]. HE-based methods are time-consuming

and require high capacity memory. Differential privacy

is another data privacy-preserving method. However, it

decreases the accuracy of speech recognition because

of low data availability [11, 17]. SMC can effectively

improve the availability of encrypted data by combining

edge servers [4]. Huang et al. [33] proposed a SMC-

based lightweight framework to protect data privacy. Ma

et al. [14] proposed a privacy-preserving speech recog-

nition framework based on LSTM and SMC to achieve

privacy-preserving.

Conclusion
This paper proposes a novel Privacy-preserving Speech

Recognition framework using the Bidirectional Long

short-term memory neural network (PSRBL). PSRBL

makes full use of the left and the right context

of speech data to improve the accuracy of speech

recognition, and employs piecewise-linear functions

to refit the original activation functions for reduc-

ing training and recognition time. In addition, PSRBL

achieves the privacy-preserving of speech data during

speech recognition based on SMC. The experimen-

tal results show that PSRBL outperforms the existing

approaches.

Abbreviations

RNN: Recurrent Neural Network; CNN: Convolutional Neural Network; BiLSTM:

Bidirectional Long Short-Term Memory; IoTs: Internet of things; SMC: Secure

Multi-Party Computing; LSTM: Long Short-Term Memory; F-LSTM: forward

layer LSTM; B-LSTM: backward layer LSTM; BPTT: Back Propagation Trough Time

Acknowledgements

The author is grateful to the Key Laboratory of Intelligent Computing and

Signal Processing of Ministry of Education for funding this research.

Authors’ contributions

All authors take part in the discussion of the work described in this paper. All

authors have worked equally when writing this paper. All author(s) read and

approved the final manuscript.

Authors’ information

Qingren Wang is a lecturer at the School of Computer Science and

Technology at the Anhui University of China. Chuankai Feng is a master

candidate at the School of Computer Science and Technology at the Anhui

University of China. Yan Xu is an associate professor at the School of Computer

Science and Technology at the Anhui University of China. Hong Zhong is a

professor at the School of Computer Science and Technology at the Anhui

University of China. Victor S Sheng is an associate professor of the Department

of Computer Science with the Texas Tech University.

Funding

This work is partially supported by the National Natural Science Foundation of

China under Grant (U1936220,61702005), the National Key R&D Program of

China under Grant (2019YFB1704101), the Natural Science Foundation of

Anhui Province (1808085MF197, 2008085QF307), the Anhui Foundation for

Science and Technology Major Project under Grant (18030901034), and the

2019 Anhui University Collaborative Innovation Project (GXXT-2019-013).

Availability of data andmaterials

The data has been gathered from published research papers and articles that

are mentioned in “Experiments” section.

Competing interests

The authors declare no conflict of interest.

Author details
1Key Laboratory of Intelligent Computing and Signal Processing of Ministry of

Education, School of Computer Science and Technology, Anhui University, 111

Jiulong Road, Hefei, China. 2Department of Computer Science, Texas Tech

University, 1508 Knoxville Avenue, Lubbock, USA.

Received: 15 January 2020 Accepted: 25 June 2020

References

1. Alaa M, Zaidan A, Zaidan B, Talal M, Mat Kiah M (2017) A review of smart

home applications based on internet of things. J Netw Comput Appl

97:48–65

2. Paden B, Cap M, Yong S, Yershov D, Frazzoli E (2016) A survey of motion

planning and control techniques for self-driving urban vehicles. IEEE

Trans Intell Veh 1(1):33–55

3. Graves A, Mohamed A, Hinton G (2013) Speech recognition with deep

recurrent neural networks. In: Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing: 26-31 May 2013.

IEEE, Vancouver

4. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and

challenges. IEEE Internet Things J 3(5):637–646

5. Zhang Y, Cui G, Deng S, Chen F, Wang Y, He Q Efficient query of quality

correlation for service composition. IEEE Trans Serv Comput. https://doi.

org/10.1109/TSC.2018.2830773 (in press)

6. Zhou J, Sun J, Cong P, Liu Z, Wei T, Zhou X, Hu S (2019) Security-critical

energy-aware task scheduling for heterogeneous real-time mpsocs in iot.

IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2019.2963301 (in

press)

7. Gong W, Qi L, Xu Y (2018) Privacy-aware multidimensional mobile service

quality prediction and recommendation in distributed fog environment.

Wirel Commun Mob Comput 2018:1–8

https://doi.org/10.1109/TSC.2018.2830773
https://doi.org/10.1109/TSC.2018.2830773
https://doi.org/10.1109/TSC.2019.2963301

Wang et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:36 Page 13 of 13

8. Xu Y, Qi L, Dou W, Yu J (2017) Privacy-preserving and scalable service

recommendation based on simhash in a distributed cloud environment.

Complexity 2017:1–9

9. Hossain M (2016) Patient state recognition system for healthcare using

speech and facial expressions. J Med Syst 40(12):272

10. Smaragdis P, Shashanka M (2007) A framework for secure speech

recognition. IEEE Trans Audio Speech Lang Process 15(4):1404–1413

11. Pathak M, Raj B (2012) Privacy-preserving speaker verification and

identification using gaussian mixture models. IEEE Trans Audio Speech

Lang Process 21(2):397–406

12. Abadi M, Chu A, Goodfellow I, McMahan H, Mironov I, Talwar K, Zhang L

(2016) Deep learning with differential privacy. In: Proceedings of ACM

SIGSAC Conference on Computer and Communications Security: 24-28

October 2016. ACM, Vienna

13. Cramer R, Damgard I, Nielsen J (2015) Secure Multiparty Computation

and Secret Sharing. Cambridge University Press, New York, NY, United

States. https://doi.org/10.1017/CBO9781107337756

14. Ma Z, Liu Y, Liu X, Ma J, Li F (2019) Privacy-preserving outsourced speech

recognition for smart iot devices. IEEE Internet Things J 6(5):8406–8420

15. Graves A, Jaitly N, Mohamed A (2013) Hybrid speech recognition with

deep bidirectional lstm. In: Proceedings of IEEE Workshop on Automatic

Speech Recognition and Understanding 8- 12 Dec. 2013. IEEE, Olomouc.

pp 8–12

16. Bin Y, Yang Y, Shen F, Xie N, Shen H, Li X (2018) Describing video with

attention-based bidirectional lstm. IEEE Trans Dependable Secure

Comput 49(7):2631–2641

17. Zhu T, Li G, Zhou W, Y P (2017) Differentially private data publishing and

analysis: A survey. IEEE Trans Knowl Data Eng 29(8):1619–1638

18. Zhang Y, Yin C, Wu Q, He Q, Zhu H Location-aware deep collaborative

filtering for service recommendation. Trans Syst I Man Cybernet. https://

doi.org/10.1109/TSMC.2019.2931723 (In press)

19. Zhang Y, Wang K, He Q, Chen F, Deng S, Zheng Z, Yang Y Covering-based

web service quality prediction via neighborhood-aware matrix

factorization. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2019.

2891517 (in press)

20. Juang B, Rabiner L (1991) Hidden markov models for speech recognition.

Technometrics 33(3):251–272

21. Schuller B, Rigoll G, Lang M (2003) Hidden markov model-based speech

emotion recognition. In: Proceedings of IEEE International Conference on

Acoustics, Speech, and Signal Processing: 6-10 April 2003. IEEE, Hong Kong

22. Lee K, Hon H (1989) Speaker-independent phone recognition using

hidden markov models. IEEE Trans Acoust Speech Signal Process

37(11):1641–1648

23. Lipton Z, Berkowitz J, Elkan C (2015) A critical review of recurrent neural

networks for sequence learning. arXiv preprint arXiv:1506.00019

24. Ren S, He K, Girshick R, Sun J (2017) Faster r-cnn: towards real-time object

detection with region proposal networks. IEEE Trans Pattern Anal Mach

Intell 39(6):1137–1149

25. Gers F, Schmidhuber J, Cummins F (2000) Learning to forget: Continual

prediction with lstm. Neural Computation 12(10):2451–2471

26. Kolen J, Kremer S (2001) A Field Guide to Dynamical Recurrent Networks.

Wiley-IEEE Press, New York

27. Graves A, Jaitly N (2014) Towards end-to-end speech recognition with

recurrent neural networks. In: Proceedings of International Conference on

Machine Learning: 3-6 Dec. 2014. Journal of Machine Learning Research

(JMLR), Detroit

28. Bin Y, Yang Y, Shen F, Xie N, Shen H, Li X (2018) Describing video with

attention-based bidirectional lstm. IEEE Trans Cybern 49(7):2631–2641

29. Dowlin N, Gilad-Bachrach R, Laine K, Lauter K, Naehring M, Wernsing J

(2016) Cryptonets: Applying neural networks to encrypted data with high

throughput and accuracy. In: Proceedings of International Conference on

Machine Learning: 19-24 June 2016. Journal of Machine Learning

Research (JMLR), New York City

30. Liu J, Juuti M, Lu Y, Asokan N (2017) Oblivious neural network predictions

via minionn transformations. In: Proceedings of ACM SIGSAC Conference

Computer and Communications Security: Oct. 30-Nov. 03 2017. ACM,

Dallas

31. Zhang Q, Yang L, Chen Z (2015) Privacy preserving deep computation

model on cloud for big data feature learning. IEEE Trans Comput

65(5):1351–1362

32. Yilmaz E, Ferhatosmanoglu H, Ayday E, Aksoy R (2019) Privacy-preserving

aggregate queries for optimal location selection. IEEE Trans Dependable

Secure Comput 16(2):329–343

33. Huang K, Liu X, Fu S, Guo D, Xu M A lightweight privacy-preserving cnn

feature extraction framework for mobile sensing. IEEE Trans Dependable

Secure Comput. https://doi.org/10.1109/TDSC.2019.2913362 (In press)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1109/TSMC.2019.2931723
https://doi.org/10.1109/TSMC.2019.2931723
https://doi.org/10.1109/TSC.2019.2891517
https://doi.org/10.1109/TSC.2019.2891517
https://doi.org/10.1109/TDSC.2019.2913362

	Abstract
	Keywords

	Introduction
	PSRBL framework
	The architecture of PSRBL
	Secure forward propagation
	Secure backward propagation
	Analyses for correctness and security analysis

	Experiments
	Experimental dataset and environment
	Performance of the piecewise-linear activation functions (Question 1)
	Performance comparisons (Question 2)

	Related work
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

