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Abstract— In this paper, we propose a novel, effective and ef-
ficient probabilistic pruning criterion for probabilistic similarity
queries on uncertain data. Our approach supports a general
uncertainty model using continuous probabilistic density func-
tions to describe the (possibly correlated) uncertain attributes of
objects. In a nutshell, the problem to be solved is to compute
the PDF of the random variable denoted by the probabilistic
domination count: Given an uncertain database object B, an
uncertain reference object R and a set D of uncertain database
objects in a multi-dimensional space, the probabilistic domination
count denotes the number of uncertain objects in D that are
closer to R than B. This domination count can be used to answer
a wide range of probabilistic similarity queries. Specifically,
we propose a novel geometric pruning filter and introduce
an iterative filter-refinement strategy for conservatively and
progressively estimating the probabilistic domination count in an
efficient way while keeping correctness according to the possible
world semantics. In an experimental evaluation, we show that our
proposed technique allows to acquire tight probability bounds
for the probabilistic domination count quickly, even for large
uncertain databases.

I. INTRODUCTION

In the past two decades, there has been a great deal of
interest in developing efficient and effective methods for simi-
larity queries, e.g. k-nearest neighbor search, reverse k-nearest
neighbor search and ranking in spatial, temporal, multimedia
and sensor databases. Many applications dealing with such
data have to cope with uncertain or imprecise data.

In this work, we introduce a novel scalable pruning ap-
proach to identify candidates for a class of probabilistic
similarity queries. Generally spoken, probabilistic similarity
queries compute for each database object o ∈ D the proba-
bility that a given query predicate is fulfilled. Our approach
addresses probabilistic similarity queries where the query
predicate is based on object (distance) relations, i.e. the event
that an object B belongs to the result set depends on the
relation of its distance to the query object R and the distance
of another object A to the query object. Exemplarily, we apply
our novel pruning method to the most prominent queries of the
above mentioned class, including the probabilistic k-nearest
neighbor (PkNN) query, the probabilistic reverse k-nearest
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Fig. 1. A dominates B w.r.t. R with high probability.

neighbor (PRkNN) query and the probabilistic inverse ranking
query.

A. Uncertainty Model

In this paper, we assume that the database D consists
of multi-attribute objects o1, ..., oN that may have uncertain
attribute values. An uncertain attribute is defined as follows:

Definition 1 (Probabilistic Attribute). A probabilistic attribute
attr of object oi is a random variable drawn from a probability
distribution with density function fattri .

An uncertain object oi has at least one uncertain attribute
value. The function fi denotes the multi-dimensional probabil-
ity density distribution (PDF) of oi that combines all density
functions for all probabilistic attributes attr of oi.

Following the convention of uncertain databases [6], [8],
[9], [11], [14], [21], [24], we assume that fi is (minimally)
bounded by an uncertainty region Ri such that ∀x /∈ Ri :
fi(x) = 0 and ∫

Ri

fi(x)dx ≤ 1.

Specifically, the case
∫
Ri fi(x)dx < 1 implements existential

uncertainty, i.e. object oi may not exist in the database at all
with a probability greater than zero. In this paper we focus
on the case

∫
Ri fi(x)dx = 1, but the proposed concepts can



be easily adapted to existentially uncertain objects. Although
our approach is also applicable for unbounded PDF, e.g.,
Gaussian PDF, here we assume fi exceeds zero only within
a bounded region. This is a realistic assumption because the
spectrum of possible values of attributes is usually bounded
and it is commonly used in related work, e.g. [8], [9] and
[6]. Even if fi is given as an unbounded PDF, a common
strategy is to truncate PDF tails with negligible probabilities
and normalize the resulting PDF. In specific, [6] shows that
for a reasonable low truncation threshold, the impact on the
accuracy of probabilistic ranking queries is quite low while
having a very high impact on the query performance.

In this way, each uncertain object can be considered as a
d-dimensional rectangle with an associated multi-dimensional
object PDF (c.f. Figure 1). Here, we assume that uncertain
attributes may be mutually dependent. Therefore the object
PDF can have any arbitrary form, and in general, cannot
simply be derived from the marginal distribution of the un-
certain attributes. Note that in many applications, a discrete
uncertainty model is appropriate, meaning that the probability
distribution of an uncertain object is given by a finite number
of alternatives assigned with probabilities. This can be seen as
a special case of our model.

B. Problem Formulation

We address the problem of detecting for a given uncertain
object B the number of uncertain objects of an uncertain
database D that are closer to (i.e. dominate) a reference object
R than B. We call this number the domination count of B
w.r.t. R as defined below:

Definition 2 (Domination). Consider an uncertain database
D = {o1, ..., oN} and an uncertain reference object R. Let
A,B ∈ D. Dom(A,B,R) is the random indicator variable
that is 1, iff A dominates B w.r.t. R, formally:

Dom(A,B,R) =


1, if dist(a, r) < dist(b, r)

∀a ∈ A, b ∈ B, r ∈ R
0, otherwise

where a, b and r are samples drawn from the PDFs of A,B
and R, respectively and dist is a distance function on vector
objects.1

Definition 3 (Domination Count). Consider an uncertain
database D = {o1, ..., oN} and an uncertain reference object
R. For each uncertain object B ∈ D, let DomCount(B,R)
be the random variable of the number of uncertain objects
A ∈ D (A 6= B) that are closer to R than B:

DomCount(B,R) =
∑

A∈D,A 6=B

Dom(A,B,R)

DomCount(B,R) is the sum of N − 1 non-necessarily
identically distributed and non-necessarily independent

1We assume Euclidean distance for the remainder of the paper, but the
techniques can be applied to any Lp norm.

Bernoulli variables. The problem solved in this paper is to
efficiently compute the probability density distribution of
DomCount(B,R)(B ∈ D) formally introduced by means
of the probabilistic domination (cf. Section III) and the
probabilistic domination count (cf. Section IV).

Determining domination is a central module for most types
of similarity queries in order to identify true hits and true
drops (pruning). In the context of probabilistic similarity
queries, knowledge about the PDF of DomCount(B,R)
can be used to find out if B satisfies the query predicate.
For example, for a probabilistic 5NN query with probabil-
ity threshold τ = 10% and query object Q, an object B
can be pruned (returned as a true hit), if the probability
P (DomCount(B,Q) < 5) is less (more) than 10%.

C. Overview

Given an uncertain database D = {o1, ..., oN} and an un-
certain reference object R, our objective is to efficiently derive
the distribution of DomCount(B,R) for any uncertain object
B ∈ D and use it in the computation of probabilistic similarity
queries. First (Section III), we build on the methodology of
[15] to efficiently find the complete set of objects in D that
definitely dominate (are dominated by) B w.r.t. R. At the same
time, we find the set of objects whose dominance relationship
to B is uncertain. Using a decomposition technique, for each
object A in this set, we can derive a lower and an upper bound
for PDom(A,B,R), i.e., the probability that A dominates B
w.r.t. R. In Section IV, we show that due to dependencies
between object distances to R, these probabilities cannot be
combined in a straightforward manner to approximate the
distribution of DomCount(B,R). We propose a solution that
copes with these dependencies and introduce techniques that
help to to compute the probabilistic domination count in
an efficient way. In particular, we prove that the bounds of
PDom(A,B,R) are mutually independent if they are com-
puted without a decomposition of B and R. Then, we provide a
class of uncertain generating functions that use these bounds to
build the distribution of DomCount(B,R). We then propose
an algorithm which progressively refines DomCount(B,R)
by iteratively decomposing the objects that influence its com-
putation (Section V). Section VI shows how to apply this
iterative probabilistic domination count refinement process to
evaluate several types of probabilistic similarity queries. In
Section VII, we experimentally demonstrate the effectiveness
and efficiency of our probabilistic pruning methods for various
parameter settings on artificial and real-world datasets.

II. RELATED WORK

The management of uncertain data has gained increasing
interest in diverse application fields, e.g. sensor monitoring
[12], traffic analysis, location-based services [27] etc. Thus,
modelling probabilistic databases has become very important
in the literature, e.g. [1], [23], [24]. In general, these models
can be classified in two types: discrete and continuous uncer-
tainty models. Discrete models represent each uncertain object
by a discrete set of alternative values, each associated with a



probability. This model is in general adopted for probabilistic
databases, where tuples are associated with existential proba-
bilities , e.g.[14], [19], [25], [16]. In this work, we concentrate
on the continuous model in which an uncertain object is
represented by a probability density function (PDF) within the
vector space. In general, similarity search methods based on
this model involve expensive integrations of the PDFs, hence
special approximation and indexing techniques for efficient
query processing are typically employed [13], [26].

Uncertain similarity query processing has focused on var-
ious aspects. A lot of existing work dealing with uncertain
data addresses probabilistic nearest neighbor (NN) queries for
certain query objects [11], [18] and for uncertain queries [17].
To reduce computational effort, [9] add threshold constraints
in order to retrieve only objects whose probability of being the
nearest neighbor exceeds a user-specified threshold to control
the desired confidence required in a query answer. Similar
semantics of queries in probabilistic databases are provided
by Top-k nearest neighbor queries [6], where the k most
probable results of being the nearest neighbor to a certain
query point are returned. Existing solutions on probabilistic k-
nearest neighbor (kNN) queries restrict to expected distances
of the uncertain objects to the query object [22] or also use
a threshold constraint [10]. However, the use of expected
distances does not adhere to the possible world semantics and
may thus produce very inaccurate results, that may have a
very small probability of being an actual result ([25], [19]).
Several approaches return the full result to queries as a ranking
of probabilistic objects according to their distance to a certain
query point [4], [14], [19], [25]. However, all these prior works
have in common that the query is given as a single (certain)
point. To the best of our knowledge, k-nearest neighbor queries
as well as ranking queries on uncertain data, where the query
object is allowed to be uncertain, have not been addressed
so far. Probabilistic reverse nearest neighbor (RNN) queries
have been addressed in [7] to process them on data based
on discrete and continuous uncertainty models. Similar to our
solution, the uncertainty regions of the data are modelled by
MBRs. Based on these approximations, the authors of [7] are
able to apply a combination of spatial, metric and probabilistic
pruning criteria to efficiently answer queries.

All of the above approaches that use MBRs as approxi-
mations for uncertain objects utilize the minimum/maximum
distance approximations in order to remove possible candi-
dates. However, the pruning power can be improved using
geometry-based pruning techniques as shown in [15]. In this
context, [20] introduces a geometric pruning technique that
can be utilized to answer monochromatic and bichromatic
probabilistic RNN queries for arbitrary object distributions.

The framework that we introduce in this paper can be
used to answer probabilistic (threshold) kNN queries and
probabilistic reverse (threshold) kNN queries as well as proba-
bilistic ranking and inverse ranking queries for uncertain query
objects.

III. SIMILARITY DOMINATION ON UNCERTAIN DATA

In this section, we tackle the following problem: Given
three uncertain objects A, B and R in a multidimensional
space Rd, determine whether object A is closer to R than
B w.r.t. a distance function defined on the objects in Rd. If
this is the case, we say A dominates B w.r.t. R. In contrast
to [15], where this problem is solved for certain data, in the
context of uncertain objects this domination relation is not a
predicate that is either true or false, but rather a (dichotomous)
random variable as defined in Definition 2. In the example
depicted in Figure 1, there are three uncertain objects A, B
and R, each bounded by a rectangle representing the possible
locations of the object in R2. The PDFs of A, B and R are
depicted as well. In this scenario, we cannot determine for
sure whether object A dominates B w.r.t. R. However, it is
possible to determine that object A dominates object B w.r.t.
R with a high probability. The problem at issue is to determine
the probabilistic domination probability defined as:

Definition 4 (Probabilistic Domination). Given three un-
certain objects A, B and R, the probabilistic domination
PDom(A,B,R) denotes the probability that A dominates B
w.r.t. R.

Naively, we can compute PDom(A,B,R) by simply in-
tegrating the probability of all possible worlds in which A
dominates B w.r.t. R exploiting inter-object independency:

PDom(A,B,R) =∫
a∈A

∫
b∈B

∫
r∈R

δ(a, b, r)·P (A = a)·P (B = b)·P (R = r)da db dr,

where δ(a, b, r) is the following indicator function:

δ(a, b, r) =

{
1, if dist(a, r) < dist(b, r)

0, else

The problem of this naive approach is the computational
cost of the triple-integral. The integrals of the PDFs of A,
B and R may in general not be representable as a closed-
form expression and the integral of δ(a, b, r) does not have
a closed-from expression. Therefore, an expensive numeric
approximation is required for this approach. In the rest of this
section we propose methods that efficiently derive bounds for
PDom(A,B,R), which can be used to prune objects avoiding
integral computations.

A. Complete Domination

First, we show how to detect whether A completely dom-
inates B w.r.t. R (i.e. if PDom(A,B,R) = 1) regardless
of the probability distributions assigned to the rectangular
uncertainty regions. The state-of-the-art criterion to detect
spatial domination on rectangular uncertainty regions is with
the use of minimum/maximum distance approximations. This
criterion states that A dominates B w.r.t. R if the minimum
distance between R and B is greater than the maximum
distance between R and A. Although correct, this criterion
is not tight (cf. [15]), i.e. not each case where A dominates



(a) Complete domination (b) Probabilistic domination

Fig. 2. Similarity Domination.

B w.r.t. R is detected by the min/max-domination criterion.
The problem is that the dependency between the two distances
between A and R and between B and R is ignored. Obviously,
the distance between A and R as well as the distance between
B and R depend on the location of R. However, since R can
only have a unique location within its uncertainty region, both
distances are mutually dependent. Therefore, we adopt the
spatial domination concepts proposed in [15] for rectangular
uncertainty regions.

Corollary 1 (Complete Domination). Let A,B,R be uncer-
tain objects with rectangular uncertainty regions. Then the
following statement holds:

PDom(A,B,R) = 1⇔
d∑
i=1

max
ri∈{Rmin

i ,Rmax
i }

(MaxDist(Ai, ri)p−MinDist(Bi, ri)p) < 0,

where Ai, Bi and Ri denote the projection interval of the
respective rectangular uncertainty region of A, B and R on
the ith dimension; Rmini (Rmaxi ) denotes the lower (upper)
bound of interval Ri, and p corresponds to the used Lp
norm. The functions MaxDist(A, r) and MinDist(A, r) denote
the maximal (respectively minimal) distance between the one-
dimensional interval A and the one-dimensional point r.

Corollary 1 follows directly from [15]; the inequality is true
if and only if for all points a ∈ A, b ∈ B, r ∈ R, a is closer
to r than b. Translated into the possible worlds model, this is
equivalent to the statement that A is closer to R than B for any
possible world, which in return means that PDom(A,B,R) =
1. In addition, it holds that

Corollary 2.

PDom(A,B,R) = 1⇔ PDom(B,A,R) = 0

In the example depicted in Figure 2(a), the grey region
on the right shows all points that definitely are closer to A
than to B and the grey region on the left shows all points
that definitely are closer to B than to A. Consequently, A
dominates B (B dominates A) if R completely falls into the
right (left) grey shaded half-space.2

2Note that the grey regions are not explicitly computed; we only include
them in Figure 2(a) for illustration purpose.

B. Probabilistic Domination

Now, we consider the case where A does not completely
dominate B w.r.t. R. In consideration of the possible world
semantics, there may exist worlds in which A dominates B
w.r.t. R, but not all possible worlds satisfy this criterion. Let
us consider the example shown in Figure 2(b) where the un-
certainty region of A is decomposed into five partitions, each
assigned to one of the five grey-shaded regions illustrating
which points are closer to the partition in A than to B. As
we can see, R only completely falls into three grey-shaded
regions. This means that A does not completely dominate B
w.r.t. R. However, we know that in some possible worlds (at
least in all possible words where A is located in A1, A2 or A3)
A does dominate B w.r.t. R. The question at issue is how to
determine the probability PDom(A,B,R) that A dominates
B w.r.t. R in an efficient way. The key idea is to decompose the
uncertainty region of an object X into subregions for which
we know the probability that X is located in that subregion
(as done for object A in our example). Therefore, if neither
Dom(A,B,R) nor Dom(B,A,R) holds, then there may still
exist subregions A′ ⊂ A, B′ ⊂ B and R′ ⊂ R such that
A′ dominates B′ w.r.t. R′. Given disjunctive decomposition
schemes A, B and R we can identify triples of subregions
(A′ ∈ A, B′ ∈ B, R′ ∈ R) for which Dom(A′, B′, R′) holds.
Let δ(A′, B′, R′) be the following indicator function:

δ(A′, B′, R′) =

{
1, if Dom(A′, B′, R′)

0, else

Lemma 1. Let A,B and R be uncertain objects with dis-
junctive object decompositions A,B and R, respectively. To
derive a lower bound PDomLB(A,B,R) of the probability
PDom(A,B,R) that A dominates B w.r.t. R, we can accu-
mulate the probabilities of combinations of these subregions
as follows:

PDomLB(A,B,R) =∑
A′∈A,B′∈B,R′∈R

P (a ∈ A′)·P (b ∈ B′)·P (r ∈ R′)·δ(A′, B′, R′),

where P (X ∈ X ′) denotes the probability that object X is
located within the region X ′.

Proof: The probability of a combination (A′, B′, R′)
can be computed by P (a ∈ A′) · P (b ∈ B′) · P (r ∈ R′)
due to the assumption of mutually independent objects. These
probabilities can be aggregated due to the assumption of
disjunctive subregions, which implies that any two different
combinations of subregions (A′ ∈ A, B′ ∈ B, R′ ∈ R)
and (A′′ ∈ A, B′′ ∈ B, R′′ ∈ R, A′ 6= A′′ ∨ B′ 6=
B′′ ∨ R′ 6= R′′ must represent disjunctive sets of possi-
ble worlds. It is obvious that all possible worlds defined
by combinations (A′, B′, R′) where δ(A′, B′, R′) = 1, A
dominates B w.r.t. R. But not all possible worlds where A
dominates B w.r.t. R are covered by these combinations and,
thus, do not contribute to PDomLB(A,B,R). Consequently,
PDomLB(A,B,R) lower bounds PDom(A,B,R).
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Fig. 3. A1 and A2 dominate B w.r.t. R with a probability of 50%,
respectively.

Analogously, we can define an upper bound of
PDom(A,B,R):

Lemma 2. An upper bound PDomUB(A,B,R) of
PDom(A,B,R) can be derived as follows:

PDomUB(A,B,R) = 1− PDomLB(B,A,R)

Naturally, the more refined the decompositions are, the
tighter the bounds that can be computed and the higher the
corresponding cost of deriving them. In particular, starting
from the entire MBRs of the objects, we can progressively
partition them to iteratively derive tighter bounds for their
dependency relationships until a desired degree of certainty
is achieved (based on some threshold). However, in the next
section, we show that the derivation of the domination count
DomCount(B,R) of a given object B (cf. Definition 3),
which is the main module of prominent probabilistic queries
cannot be straightforwardly derived with the use of these
bounds and we propose a methodology based on generating
functions for this purpose.

IV. PROBABILISTIC DOMINATION COUNT

In Section III we described how to conservatively and
progressively approximate the probability that A dominates B
w.r.t. R. Given these approximations PDomLB(A,B,R) and
PDomUB(A,B,R), the next problem is to cumulate these
probabilities to get an approximation of the domination count
DomCount(B,R) of an object B w.r.t. R (cf. Definition
3). To give an intuition how challenging this problem is, we
first present a naive solution that can yield incorrect results
due to ignoring dependencies between domination relations in
Section IV-A. To avoid the problem of dependent domination
relations, we first show in Section IV-B how to exploit object
independencies to derive domination bounds that are mutually
independent. Afterwards, in Section IV-C, we introduce a new
class of uncertain generating functions that can be used to
derive bounds for the domination count efficiently, as we show
in Section IV-D. Finally, in Section IV-E, we show how to
improve our domination count approximation by considering
disjunct subsets of possible worlds for which a more accurate
approximation can be computed.

A. The Problem of Domination Dependencies

To compute DomCount(B,R), a straightforward solution
is to first approximate PDom(A,B,R) for all A ∈ D
using the technique proposed in Section III. Then, given
these probabilities we can apply the technique of uncertain
generating functions (cf. Section IV-C) to approximate the

probability that exactly 0, exactly 1, ..., exactly n−1 uncertain
objects dominate B. However, this approach ignores possible
dependencies between domination relationships. Although we
assume independence between objects, the random variables
Dom(A1, B,R) and Dom(A2, B,R) are mutually dependent
because the distance between A1 and R depends on the
distance between A2 and R because object R can only appear
once. Consider the following example:

Example 1. Consider a database of three certain objects B,
A1 and A2 and the uncertain reference object R, as shown
in Figure 3. For simplicity, objects A1 and A2 have the
same position in this example. The task is to determine the
domination count of B w.r.t. R. The domination half-space for
A1 and A2 is depicted here as well. Let us assume that A1

(A2) dominates B with a probability of PDom(A1, B,R) =
PDom(A2, B,R) = 50%. Recall that this probability can
be computed by integration or approximated with arbitrary
precision using the technique of Section III. However, in this
example, the probability that both A1 and A2 dominate B
is not simply 50% · 50% = 25%, as the generating function
technique would return.

The reason for the wrong result in this example, is that
the generating function requires mutually independent random
variables. However, in this example, it holds that if and only if
R falls into the domination half-space of A1, it also falls into
the domination half-space of A2. Thus we have the dependency
dom(A1, B,R) ↔ dom(A2, B,R) and the probability for R
to be dominated by both A1 and A2 is

P (dom(A1, B,R)) · P (dom(A2, B,R)|dom(A1, B,R))

= 0.5 · 1 = 0.5.

B. Domination Approximations Based on Independent Objects

In general, domination relations may have arbitrary correla-
tions. Therefore, we present a way to compute the domination
count DomCount(B,R) while accounting for the dependen-
cies between domination relations.

Complete Domination: In an initial step, complete dom-
ination serves as a filter which allows us to detect those
objects A ∈ D that definitely dominate a specific object B
w.r.t. R and those objects that definitely do not dominate
B w.r.t. R by means of evaluating PDom(A,B,R). It is
important to note that complete domination relations are
mutually independent, since complete domination is evaluated
on the entire uncertainty regions of the objects. After applying
complete domination, we have detected objects that dominate
B in all, or no possible worlds. Consequently, we get a first
approximation of the domination count DomCount(B,R),
obviously, it must be higher than the number N of objects
that dominate B and lower than |D| −M , where M is the
number of objects that dominate B in no possible world, i.e.
P (DomCount(B,R) = k) = 0 for k ≤ N and k ≥ |D|−M .
Nevertheless, for N < k < |D − M | we still have a very
bad approximation of the domination count probability of
0 ≤ P (DomCount(B,R) = k) ≤ 1.



Probabilistic Domination: In order to refine this prob-
ability distribution, we have to take the set of influence
objects influenceObjects = {A1, ..., AC}, which nei-
ther completely prune B nor are completely dominated
by B w.r.t. R. For each Ai ∈ influenceObjects, 0 <
PDom(Ai, B,R) < 1. For these objects, we can com-
pute probabilities PDom(A1, B,R), ..., PDom(AC , B,R)
according to the methodology in Section III. However, due
to the mutual dependencies between domination relations
(cf. Section IV-A), we cannot simply use these probabilities
directly, as they may produce incorrect results. However, we
can use the observation that the objects Ai are mutually inde-
pendent and each candidate object Ai only appears in a sin-
gle domination relation Dom(A1, B,R), ..., Dom(AC , B,R).
Exploiting this observation, we can decompose the objects
A1, ..., AC only, to obtain mutually independent bounds for
the probabilities PDom(A1, B,R), ..., PDom(AC , B,R), as
stated by the following lemma:

Lemma 3. Let A1, ...AC be uncertain objects with dis-
junctive object decompositions A1, ...,AC , respectively. Also,
let B and R be uncertain objects (without any decom-
position). The lower (upper) bound PDomLB(Ai, B,R)
(PDomUB(Ai, B,R)) as defined in Lemma 1 (Lemma 2) of
the random variable Dom(Ai, B,R) is independent of the
random variable Dom(Aj , B,R) (1 ≤ i 6= j ≤ C).

Proof: Consider the random variable Dom(Ai, B,R)
conditioned on the event Dom(Aj , B,R) = 1. Using
Equation 1, we can derive the lower bound probability of
Dom(Ai, B,R) = 1|Dom(Aj , B,R) = 1 as follows:

PDomLB(Ai, B,R|Dom(Aj , B,R) = 1) =∑
A′

i∈Ai,B′∈B,R′∈R

[P (ai ∈ A′i|Dom(Aj , B,R) = 1)·

P (b ∈ B′|Dom(Aj , B,R) = 1)·

P (r ∈ R′|Dom(Aj , B,R) = 1) · δ(A′i, B′, R′)]

Now we exploit that B and R are not decomposed, thus B′ =
B and R′ = R, and thus P (B ∈ B′|Dom(Aj , B,R) = 1) =
1 = P (B ∈ B′) and P (R ∈ R′|Dom(Aj , B,R) = 1) = 1
= P (R ∈ R′). We obtain:

PDomLB(Ai, B,R|Dom(Aj , B,R) = 1) =∑
A′

i∈Ai,B′∈B,R′∈R

[P (ai ∈ A′i|Dom(Aj , B,R) = 1)·

P (b ∈ B′) · P (r ∈ R′) · δ(A′i, B′, R′)]

Next we exploit that P (ai ∈ A′i|Dom(Aj , B,R) = 1)
= P (ai ∈ A′i) since Ai is independent from Dom(Aj , B,R)
and obtain:

PDomLB(Ai, B,R|Dom(Aj , B,R) = 1) =∑
A′

i∈Ai,B′∈B,R′∈R

[P (ai ∈ A′i)·P (b ∈ B′)·P (r ∈ R′)·δ(A′i, B′, R′)]

= PDomLB(Ai, B,R)

Analogously, it can be shown that

PDomUB(Ai, B,R|Dom(Aj , B,R) = 1) = PDomUB(Ai, B,R).

In summary, we can now derive, for each object Ai a lower
and an upper bound of the probability that Ai dominates B
w.r.t. R. However, these bounds may still be rather loose,
since we only consider the full uncertainty region of B
and R so far, without any decomposition. In Section IV-
E, we will show how to obtain more accurate, still mutual
independent probability bounds based on decompositions of
B and R. Due to the mutual independency of the lower and
upper probability bounds, these probabilities can now be used
to get an approximation of the domination count of B. In
order to do this efficiently, we adapt the generating functions
technique which is proposed in [19]. The main challenge here
is to extend the generating function technique in order to
cope with probability bounds instead of concrete probability
values. It can be shown that a straightforward solution based
on the existing generating functions technique applied to the
lower/upper probability bounds in an appropriate way does
solve the given problem efficiently, but overestimates the
domination count probability and thus, does not yield good
probability bounds. Rather, we have to redesign the generating
functions technique such that lower/upper probability bounds
can be handled correctly.

C. Uncertain Generating Functions (UGFs)

In this subsection, we will give a brief survey on the existing
generating function technique (for more details refer to [19])
and then propose our new technique of uncertain generating
functions.

Generating Functions: Consider a set of N mutually inde-
pendent, but not necessarily identically distributed Bernoulli
{0, 1} random variables X1, ..., XN . Let P (Xi) denote the
probability that Xi = 1. The problem is to efficiently compute
the sum

N∑
i=1

Xi =

N∑
i=1

Dom(Ai, B,R)

of these random variables. A naive solution would be to
count, for each 0 ≤ k ≤ N , all combinations with exactly
k occurrences of Xi = 1 and accumulate the respective
probabilities of these combinations. This approach, however,
shows a complexity of O(2N ). In [5], an approach was
proposed that achieves an O(N) complexity using the Poisson
Binomial Recurrence. Note that O(N) time is asymptotically
optimal in general, since the computation involves at least
O(N) computations, namely P (Xi), 1 ≤ i ≤ N . In the
following, we propose a different approach that, albeit having
the same linear asymptotical complexity, has other advantages,
as we will see. We apply the concept of generating functions
as proposed in the context of probabilistic ranking in [19].
Consider the function F(x) =

∏n
i=1(ai+bix). The coefficient

of xk in F(x) is given by:
∑
|β|=k

∏
i:βi=0 ai

∏
i:βi=1 bi,



where β = 〈β1, ..., βN 〉 is a Boolean vector, and |β| denotes
the number of 1’s in β.

Now consider the following generating function:

F i =
∏
Xi

(1− P (Xi) + P (Xi) · x) =
∑
j≥0

cjx
j .

The coefficient cj of xj in the expansion of F i is the
probability that for exactly j random variables Xi it holds
that Xi = 1. Since F i contains at most i+ 1 non-zero terms
and by observing that

F i = F i−1 · (1− P (Xi) + P (Xi) · x),

we note that F i can be computed in O(i) time given F i−1.
Since F0 = 1x0 = 1, we conclude that FN can be computed
in O(N2) time. If only the first k coefficients are required
(i.e. coefficients cj where j < k), this cost can be reduced
to O(k · N), by simply dropping the summands cjxj where
j ≥ k.

Example 2. As an example, consider three independent ran-
dom variables X1, X2 and X3. Let P (X1) = 0.2, P (X2) =
0.1 and P (X3) = 0.3, and let k = 2. Then:

F1 = F0 · (0.8 + 0.2x) = 0.2x1 + 0.8x0

F2 = F1·(0.9+0.1x) = 0.02x2+0.26x1+0.72x0
∗
= 0.26x1+0.72x0

F3 = F2 · (0.7 + 0.3x) = 0.078x2 + 0.418x1 + 0.504x0
∗
= 0.418x1 + 0.504x0

Thus, P (DomCount(B) = 0) = 50.4% and
P (DomCount(B) = 1) = 41.8%. We obtain
P (DomCount(B) < 2) = 92.2%. Thus, B can be
reported as a true hit if τ is not greater than 92.2%.
Equations marked by * exploit that we only need to compute
the cj where j < k = 2.

Uncertain Generating Functions: Given a set of N indepen-
dent but not necessarily identically distributed Bernoulli {0, 1}
random variables Xi, 1 ≤ i ≤ N . Let PLB(Xi) (PUB(Xi))
be a lower (upper) bound approximation of the probability
P (Xi = 1). Consider the random variable

N∑
i=1

Xi.

We make the following observation: The lower and upper
bound probabilities PLB(Xi) and PUB(Xi) correspond to the
probabilities of the three following events:
• Xi = 1 definitely holds with a probability of at least
PLB(Dom(Ai, B,R)).

• Xi = 0 definitely holds with a probability of at least
1− PUB(Xi).

• It is unknown whether Xi = 0 or
Xi = 1 with the remaining probability of
PUB(Dom(Ai, B,R)) − PLB(Dom(Ai, B,R))
= PDomUB(Ai, B,R)− PDomLB(Ai, B,R).

Based on this observation, we consider the following un-
certain generating function (UGF):

FN =
∏

i∈1,...,N
[(PLB(Xi) · x+ (1− PUB(Xi)) · y+

(PUB(Xi)− PLB(Xi)))] =
∑
i,j≥0

ci,jx
iyj .

The coefficient ci,j has the following meaning: With a
probability of ci,j , B is definitely dominated at least i times,
and possibly dominated another 0 to j times. Therefore, the
minimum probability that

∑N
i=1Xi = k is ck,0, since that is

the probability that exactly k random variables Xi are 1. The
maximum probability that

∑N
i=1Xi = k is

∑
i≤k,i+j≥k ci,j ,

i.e. the total probability of all possible combinations in
which

∑N
i=1Xi = k, may hold. Therefore, we obtain an

approximated PDF of
∑N
i=1Xi. In the approximated PDF

of
∑N
i=1Xi, each probability

∑N
i=1Xi = k is given by a

conservative and a progressive approximation.

Example 3. Let PLB(X1) = 20%, PUB(X1) = 50%,
PLB(X2) = 60% and PUB(X2) = 80%. The generating
function for the random variable

∑2
i=1Xi is the following:

F2 = (0.2x+ 0.5y + 0.3)(0.6x+ 0.2y + 0.2)

= 0.12x2 + 0.34x+ 0.1 + 0.22xy + 0.16y + 0.06y2

That implies that, with a probability of at least 12%,∑2
i=1Xi = 2. In addition, with a probability of 22% plus 6%,

it may hold that
∑2
i=1Xi = 2, so that we obtain a probability

bound of 12% − 40% for the random event
∑2
i=1Xi = 2.

Analogously,
∑2
i=1Xi = 1 with a probability of 34%− 78%

and
∑2
i=1Xi = 0 with a probability of 10% − 32%. The

approximated PDF of
∑2
i=1Xi is depicted in Figure 4.
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Fig. 4. Approximated PDF of
∑2

i=1Xi.

Each expansion F l can be obtained from the expansion of
F l−1 as follows:

F l = F l−1·
[PLB(Xl) · x+ (1−PUB(Xl)) + (PUB(Xl)−PLB(Xl)) · y].

We note that F l contains at most
∑l+1
i=1 i non-zero terms

(one ci,j for each combination of i and j where i + j ≤ l).
Therefore, the total complexity to compute F l is O(l3).



D. Efficient Domination Count Approximation using UGFs

We can directly use the uncertain generating functions pro-
posed in the previous section to derive bounds for the proba-
bility distribution of the domination count DomCount(B,R).
Again, let D = A1, ..., AN be an uncertain object database and
B and R be uncertain objects in Rd. Let Dom(Ai, B,R), 1 ≤
i ≤ N denote the random Bernoulli event that Ai dominates
B w.r.t. R.3 Also recall that the domination count is defined as
the random variable that is the sum of the domination indicator
variables of all uncertain objects in the database (cf. Definition
3).

Considering the generating function

FN =
∏

i∈1,...,N
[(PLB(Dom(Ai, B,R)) · x+

(PUB(Dom(Ai, B,R))− PLB(Dom(Ai, B,R))) · y)+

(1− PUB(Dom(Ai, B,R)))] =
∑
i,j≥0

ci,jx
iyj , (1)

we can efficiently compute lower and upper bounds of the
probability that DomCount(B,R) = k for 0 ≤ k ≤ |D|, as
discussed in Section IV-C and because the independence prop-
erty of random variables required by the generating functions
is satisfied due to Lemma 3.

Lemma 4. A lower bound DomCountkLB(B,R) of the prob-
ability that DomCount(B,R) = k is given by

DomCountkLB(B,R) = ck,0

and an upper bound DomCountkUB(B,R) of the probability
that DomCount(B,R) = k is given by

DomCountkUB(B,R) =
∑

i≤k,i+j≥k

ci,j

Example 4. Assume a database containing
uncertain objects A1, A2, B and R. The task
is to determine a lower (upper) bound of the
domination count probability DomCountkLB(B,R)
(DomCountkUB(B,R)) of B w.r.t. R. Assume that, by
decomposing A1 and A2 and using the probabilistic
domination approximation technique proposed in Section
III-B, we determine that A1 has a minimum probability
PDomLB(A1, B,R) of dominating B of 20% and a
maximum probability PDomUB(A1, B,R) of 50%. For A2,
PDomLB(A2, B,R) is 60% and PDomUB(A2, B,R) is
80%. By applying the technique in the previous subsection,
we get the same generating function as in Example 3 and
thus, the same approximated PDF for the DomCount(B,R)
depicted in Figure 4.

To compute the uncertain generating function and thus the
probabilistic domination count of an object in an uncertain
database of size N , the total complexity is O(N3). The reason
is that the maximal number of coefficients of the generating

3That is, X[Dom(Ai, B,R)] = 1 iff Ai dominates B w.r.t. R and
X[Dom(Ai, B,R)] = 0 otherwise.

function Fx is quadratic in x, since Fx contains coefficients
ci,j where i+ j ≤ x, that is at most x

2

2 coefficients. Since we
have to compute Fx for each (x < N ), the total time complex-
ity is O(N3). Note that only candidate objects c ∈ Cand for
which a complete domination cannot be detected (cf. Section
III-A) have to be considered in the generating functions. Thus,
the total runtime to compute DomCountkLB(B,R) as well
as DomCountkUB(B,R) is O(|Cand|3). In addition, we will
show in Section VI how to reduce, specifically for kNN and
RkNN queries, the total time complexity to O(k2 · |Cand|).

Discussion: In the extended version of this paper ([3]), we
show that instead of applying the uncertain generating function
to approximate the domination count of B, two regular gen-
erating functions can be used; one generating function that
uses the progressive (lower) bounds PUB(Dom(Ai, B,R))
and one that uses the conservative (upper) probability bounds
PUB(Dom(Ai, B,R)). However, we give an intuition and a
formal proof that using regular generating functions yields
looser bounds for the approximated domination.

E. Efficient Domination Count Approximation Based on Dis-
junctive Worlds

Since the uncertain objects B and R appear in each dom-
ination relation PDom(A1, B,R), ..., PDom(AC , B,R) that
is to evaluate, we cannot split objects B and R independently
(cf. Section IV-A). The reason for this dependency is that
knowledge about the predicate Dom(Ai, B,R) may impose
constraints on the position of B and R. Thus, for a partition
B1 ⊂ B, the probability PDom(Aj , B1, R) may change given
Dom(Ai, B,R) (1 ≤ i, j ≤ C, i 6= j). However, note:

Lemma 5. Given fixed partitions B′ ⊆ B and R′ ⊆ R,
then the random variables Dom(Ai, B

′, R′) are mutually
independent for 1 ≤ i, j ≤ C, i 6= j.

Proof: Similar to the proof of Lemma 3.
This allows us to individually consider the subset of

possible worlds where b ∈ B′ and r ∈ R′ and
use Lemma 5 to efficiently compute the approximated
domination count probabilities DomCountkLB(B

′, R′) and
DomCountkUB(B

′, R′) under the condition that B falls into
a partition B′ ⊆ B and R falls into a partition R′ ⊆ R. This
can be performed for each pair (B′, R′) ∈ B × R, where B
and R denote the decompositions of B and R, respectively.
Now, we can treat pairs of partitions (B′, R′) ∈ B × R
independently, since all pairs of partition represent disjunctive
sets of possible worlds due to the assumption of a disjunctive
partitioning. Exploiting this independency, the PDF of the
domination count DomCount(B,R) of the total objects B
and R can then be obtained by creating an uncertain generating
function for each pair (B′, R′) to derive a lower and an upper
bound of P (DomCount(B′, R′) = k) and then computing
the weighted sum of these bounds as follows:

DomCountkLB(B,R) =∑
B′∈B,R′∈R

DomCountkLB(B
′, R′) · P (B′) · P (R′).



The complete algorithm of our domination count approxima-
tion approach can be found in the next Section.

V. IMPLEMENTATION

Algorithm 1 is a complete method for iteratively com-
puting and refining the probabilistic domination count for
a given object B and a reference object R. The algorithm
starts by detecting complete domination (cf. Section III-A).
For each object that completely dominates B, a counter
CompleteDominationCount is increased and each object
that is completely dominated by B is removed from further
consideration, since it has no influence on the domination
count of B. The remaining objects, which may have a proba-
bility greater than zero and less than one to dominate B, are
stored in a set influenceObjects. The set influenceObjects
is now used to compute the probabilistic domination count
(DomCountLB , DomCountUB)4: The main loop of the
probabilistic domination count approximation starts in line
14. In each iteration, B, R, and all influence objects are
partitioned. For each combination of partitions B′ and R′,
and each database object Ai ∈ influenceObjects, the prob-
ability PDom(Ai, B

′, R′) is approximated (cf. Section IV-
B). These domination probability bounds are used to build
an uncertain generating function (cf. Section IV-D) for the
domination count of B′ w.r.t. R′. Finally, these domination
counts are aggregated for each pair of partitions B′, R′ into
the domination count DomCount(B,R) (cf. Section IV-E).
The main loop continues until a domain- and user-specific stop
criterion is satisfied. For example, for a threshold kNN query,
a stop criterion is to decide whether the lower (upper) bound
that B has a domination count of less than (at least) k, exceeds
(falls below) the given threshold.

The progressive decomposition of objects (line 15) can be
facilitated by precomputed split points at the object PDFs.
More specifically, we can iteratively split each object X by
means of a median-split-based bisection method and use a kd-
tree [2] to hierarchically organize the resulting partitions. The
kd-tree is a binary tree. The root of a kd-tree represents the
complete region of an uncertain object. Every node implicitly
generates a splitting hyperplane that divides the space into
two subspaces. This hyperplane is perpendicular to a chosen
split axis and located at the median of the node’s distribution
in this axis. The advantage is that, for each node in the kd-
tree, the probability of the respective subregion X ′ is simply
given by 0.5X

′.level−1, where X ′.level is the level of X ′. In
addition, the bounds of a subregion X ′ can be determined by
backtracking to the root. In general, for continuously parti-
tioned uncertain objects, the corresponding kd-tree may have
an infinite height, however for practical reasons, the height h
of the kd-tree is limited. The choice of h is a trade-off between
approximation quality and efficiency: for a very large h,
considering each leaf node is similar to applying integration on
the PDFs, which yields an exact result; however, the number

4DomCountLB and DomCountUB are lists containing, at each position
i, a lower and an upper bound for P (DomCount(B,R) = i), respectively.
This notation is equivalent to a single uncertain domination count PDF.

of leaf nodes, and thus the worst case complexity increases
exponentially in h. Note that our experiments (c.f. Section
VII) show that a low h value is sufficient to yield reasonably
tight approximation bounds. Yet it has to be noted, that in the
general case of continuous uncertainty, our proposed approach
may only return an approximation of the exact probabilistic
domination count. However, such an approximation may be
sufficient to decide a given predicate as we will see in Section
VI and even in the case where the approximation does not
suffice to decide the query predicate, the approximation will
give the user a confidence value, based on which a user may
be able decide whether to include an object in the result.

Algorithm 1 Probabilistic Inverse Ranking
Require: : Q, B, D
1: influenceObjects = ∅
2: CompleteDominationCount = 0
3: //Complete Domination
4: for all Ai ∈ D do
5: if DDCOptimal(Ai, B,R) then
6: CompleteDominationCount++
7: else if ¬DDCOptimal(B,Ai, R) then
8: influenceObjects = influenceObjects ∩Ai

9: end if
10: end for
11: //probabilistic domination count
12: DomCountLB= [0,...,0] //length |D|
13: DomCountUB= [1,...,1] //length |D|
14: while ¬ stopcriterion do
15: split(R), split(B), split(Ai ∈ D)
16: for all B′ ∈ B, R′ ∈ R do
17: candLB= [0,...,0] //length |uncertainObjects|
18: candUB= [1,...,1] //length |uncertainObjects|
19: for all (0 < i < |influenceObjects|) do
20: Ai = influenceObjects[i]
21: for all A′i ∈ Ai do
22: if DDCOptimal(A

′
i, B
′, R′) then

23: candLB [i]+=(P (A′i))
24: else if DDCOptimal(B

′, A′i, R
′) then

25: candUB [i]-=(P (A′i))
26: end if
27: end for
28: end for
29: compute DomCountLB(B′, R′) and DomCountUB(B′, R′)

using UGFs.
30: for all (0 < i < D) do
31: DomCountLB [i]+=DomCount(B′, R′)LB · P (B′) · P (R′)
32: DomCountUB [i]+=DomCount(B′, R′)UB · P (B′) · P (R′)
33: end for
34: end for
35: ShiftRight(DomCountLB ,CompleteDominationCount)
36: ShiftRight(DomCountUB ,CompleteDominationCount)
37: end while
38: return (DomCountLB , DomCountUB)

VI. APPLICATIONS

In this section, we outline how the probabilistic domination
count can be used to efficiently evaluate a variety of proba-
bilistic similarity query types, namely the probabilistic inverse
similarity ranking query [21], the probabilistic threshold k-NN
query [10], the probabilistic threshold reverse k-NN query and
the probabilistic similarity ranking query [4], [14], [19], [25].
We start with the probabilistic inverse ranking query, because
it can be derived trivially from the probabilistic domination



count introduced in Section IV. In the following, let D =
{A1, ..., AN} be an uncertain database containing uncertain
objects A1, ..., AN .

Corollary 3. Let B and R be uncertain objects. The task is to
determine the probabilistic ranking distribution Rank(B,R)
of B w.r.t. to similarity to R, i.e. the distribution of the position
Rank(B,R) of object B in a complete similarity ranking of
A1, ..., AN , B w.r.t. the distance to an uncertain reference
object R. Using our techniques, we can compute Rank(B,R)
as follows:

P (Rank(B,R) = i) = P (DomCount(B,R) = i− 1)

The above corollary is evident, since the proposition “B has
rank i” is equivalent to the proposition “B is dominated by
i− 1 objects”.

The most prominent probabilistic similarity search query is
the probabilistic threshold kNN query.

Corollary 4. Let Q = R be an uncertain query ob-
ject and let k be a scalar. The problem is to find
all uncertain objects kNNτ (Q) that are the k-nearest
neighbors of Q with a probability of at least τ . Us-
ing our techniques, we can compute the probability
P kNN (B,Q) that an object B is a kNN of Q as follows:

P kNN (B,Q) =

k−1∑
i=0

P (DomCount(B,Q) = i)

The above corollary is evident, since the proposition “B is a
kNN of Q” is equivalent to the proposition “B is dominated by
less than k objects”. To decide whether B is a kNN of Q, i.e.
if B ∈ kNNτ (Q), we just need to check if P kNN (B,Q) > τ .

Next we show how to answer probabilistic threshold RkNN
queries.

Corollary 5. Let Q = R be an uncertain query ob-
ject and let k be a scalar. The problem is to find
all uncertain objects Ai that have Q as one of their
kNNs with a probability of at least τ , that is, all ob-
jects Ai for which it holds that Q ∈ kNNτ (Ai).
Using our techniques, we can compute the probability
PRkNN (B,Q) that an object B is a RkNN of Q as follows:

PRkNN (B,Q) =

k−1∑
i=0

P (DomCount(Q,B) = i)

The intuition here is that an object B is a RkNN of Q if
and only if Q is dominated less than k times w.r.t. B.

For kNN and RkNN queries, the total complexity to
compute the uncertain generating function can be im-
proved from O(|Cand|3) to O(|Cand| · k2) since it can
be observed from Corollaries 4 and 5 that for kNN and
RkNN queries, we only require the section of the PDF of
DomCount(B,R) where DomCount(B,R) < k, i.e. we
only need to know the probabilities P (DomCount(B,R) =
x), x < k. This can be exploited to improve the runtime
of the computation of the PDF of DomCount(B,R) as

follows: Consider the iterative computation of the generating
functions F1, ...,F |cand|. For each F l, 1 ≤ l ≤ |cand|, we
only need to consider the coefficients ci,j in the generating
function F i where i < k, since only these coefficients have
an influence on P (DomCount(B,R) = x), x < k (cf.
Section 4). In addition, we can merge all coefficients ci,j ,
ci′,j′ where i = i′, i + j > k and i′ + j′ > k, since all
these coefficients only differ in their influence on the upper
bounds of P (DomCount(B,R) = x), x ≥ k, and are treated
equally for P (DomCount(B,R) = x), x < k. Thus, each
F l contains at most

∑k+1
i=1 i coefficients (one ci,j for each

combination of i and j where i + j ≤ k). Thus reducing the
total complexity to O(k2 · |cand|).

Finally, we show how to compute the expected rank (cf.
[14]) of an uncertain object.

Corollary 6. Let Q = R be an uncertain query object. The
problem is to rank the uncertain objects Ai according to their
expected rank E(Rank(Ai)) w.r.t. the distance to Q. The
expected rank of an uncertain object Ai can be computed as
follows:

E(Rank(Ai)) =

N−1∑
i=0

P (DomCount(Q,B) = i) · (i+ 1)

Other probabilistic similarity queries (e.g. kNN and RkNN
queries with a different uncertainty predicate instead of a
threshold τ ) can be approximated efficiently using our tech-
niques as well. Details are omitted due to space constraints.

VII. EXPERIMENTAL EVALUATION

In this section, we review the characteristics of the proposed
algorithm on synthetic and real-world data. The algorithm will
be referred to as IDCA (Iterative Domination Count Approx-
imation). We performed experiments under various parameter
settings. Unless otherwise stated, for 100 queries, we chose B
to be the object with the 10th smallest MinDist to the reference
object R. We used a synthetic dataset with 10,000 objects
modeled as 2D rectangles. The degree of uncertainty of the
objects in each dimension is modeled by their relative extent.
The extents were generated uniformly and at random with
0.004 as maximum value. For the evaluation on real-world
data, we utilized the International Ice Patrol (IIP) Iceberg
Sightings Dataset5. This dataset contains information about
iceberg activity in the North Atlantic in 2009. The latitude and
longitude values of sighted icebergs serve as certain 2D mean
values for the 6,216 probabilistic objects that we generated.
Based on the date and the time of the latest sighting, we added
Gaussian noise to each object, such that the passed time period
since the latest date of sighting corresponds to the degree of
uncertainty (i.e. the extent). The extents were normalized w.r.t.
the extent of the data space, and the maximum extent of an
object in either dimension is 0.0004.

5The IIP dataset is available at the National Snow and Ice Data Center
(NSIDC) web site (http://nsidc.org/data/g00807.html).
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A. Runtime of the Monte-Carlo-based Approach

To the best of our knowledge, there exists no approach
which is able to process uncertain similarity queries on prob-
abilistic databases with continuous PDFs. A naive approach
needs to consider all possible worlds and thus needs to inte-
grate over all object PDFs, implying a runtime exponentially
in the number of objects. Since this is not applicable even
for small databases, we adapted an existing approach to cope
with the conditions. The approach most related to our work is
[21], which solves the problem of computing the domination
count for a certain query and discrete distributions within the
database objects. Thus the proposed comparison partner works
as follows: Draw a sufficiently large number S of samples
from each object by Monte-Carlo-Sampling. Then, for each
sample qi ∈ Q of the query, apply the algorithm proposed in
[21] to compute an exact probabilistic domination count PDF
of an object B. As proposed in [21], this is done using the
generating function technique and using an and/xor tree to
combine individual samples into discrete distributed uncertain
objects. Finally, accumulate the resulting certain domination
count PDFs of each qi ∈ Q into a single domination count
PDF by taking the average. The execution time for this
approach, which we will refer to as MC in the following,
is shown in Figure 5. It can be observed that for a reasonable
sample size (which is required to achieve a result that is close
to the correct result with high probability) the runtime becomes
very large.

Note that our comparison partner only works for discrete
uncertain data (cf. Section VII-A). To make a fair comparison
our approach relies on the same uncertainty model (default:
1000 samples/object). Nevertheless, all the experiments yield
analogous results for continuous distributions.
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B. Optimal vs. Min/Max Decision Criterion

In the first experiment, we evaluate the gain of pruning
power using the complete similarity domination technique
(cf. Section III-A) instead of the state-of-the-art min/max
decision criterion to prune uncertain objects from the search
space. The first experiment evaluates the number of uncertain
objects that cannot be pruned using complete domination
only, that is the number of candidates are to evaluate in our
algorithm. Figure 6(a) shows that our domination criterion
(in the following denoted as optimal) is able to prune about
20% more candidates than the min/max pruning criterion. In
addition, we evaluated the domination count approximation
quality (in the remainder denoted as uncertainty) after each
decomposition iteration of the algorithm, which is defined as
the sum

∑N
i=0DomCount

i
UB(B,R)−DomCountiLB(B,R).

The result is shown in Figure 6(b). The improvement of
the complete domination (denoted as iteration 0) can also
be observed in further iterations. After enough iterations, the
uncertainty converges to zero for both approaches.

C. Iterative Domination Count Approximation

Next, we evaluate the trade-off of our approach regarding
approximation quality and the invested runtime of our domi-
nation count approximation. The results can be seen in Figure
7 for different sample sizes and datasets. It can be seen that
initially, i.e. in the first iterations, the average approximation
quality (avg. uncertainty of an influenceObject) decreases
rapidly. The less uncertainty left, the more computational
power is required to reduce it any further. Except for the
last iteration (resulting in 0 uncertainty) each of the previous
iterations is considerably faster than MC. In some cases (see
Figure 7(b)) IDCA is even faster in computing the exact result.

D. Queries with a Predicate

Integrated in an application one often wants to decide
whether an object satisfies a predicate with a certain prob-
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ability. In the next experiment, we posed queries in the form:
Is object B among the k nearest neighbors of Q (predicate)
with a probability of 25%, 50%, 75%? The results are shown
in Figure 8 for various k-values. With a given predicate, IDCA
is often able to terminate the iterative refinement of the objects
earlier in most of the cases, which results in a runtime which
is orders of magnitude below MC. In average the runtime is
below MC in all settings.

E. Number of influenceObjects

The runtime of the algorithm is mainly dependent on the
number of objects which are responsible for the uncertainty
of the rank of B. The number of influenceObjects depends on
the number of objects in the database, the extension of the
objects and the distance between Q and B. The larger this
distance, the higher the number of influenceObjects. For the
experiments in Figure 9(a) we varied the distance between Q
and B and measured the runtime for each iteration. In Figure
9(b) we present runtimes for different sizes of the database.
The maximum extent of the objects was set to 0.002 and the
number of objects in the database was scaled from 20,000 to
100,000. Both experiments show that IDCA scales well with
the number influencing objects.
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Fig. 9. Impact of influencing objects.

VIII. CONCLUSIONS

In this paper, we applied the concept of probabilistic
similarity domination on uncertain data. We introduced a
geometric pruning filter to conservatively and progressively
approximate the probability that an object is being dominated
by another object. An iterative filter-refinement strategy is used
to stepwise improve this approximation in an efficient way.
Specifically we propose a method to efficiently and effectively
approximate the domination count of an object using a novel
technique of uncertain generating functions. We show that
the proposed concepts can be used to efficiently answer a
wide range of probabilistic similarity queries while keeping
correctness according to the possible world semantics. Our
experiments show that our iterative filter-refinement strategy
is able to achieve a high level of precision at a low runtime.
As future work, we plan to investigate further heuristics for
the refinement process in each iteration of the algorithm.
Furthermore we will integrate our concepts into existing index
supported kNN- and RkNN-query algorithms.
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bilistic frequent itemset mining in uncertain databases. In Proc. KDD,
pages 119–128, 2009.

[6] G. Beskales, M. A. Soliman, and I. F. IIyas. Efficient search for the
top-k probable nearest neighbors in uncertain databases. Proc. VLDB
Endow., 1(1):326–339, 2008.

[7] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei. Probabilistic
reverse nearest neighbor queries on uncertain data. IEEE Trans. Knowl.
Data Eng., 22(4):550–564, 2010.

[8] J. Chen and R. Cheng. Efficient evaluation of imprecise location-
dependent queries. In Proc. ICDE, 2007.

[9] R. Cheng, J. Chen, M. Mokbel, and C. Chow. Probabilistic verifiers:
Evaluating constrained nearest-neighbor queries over uncertain data. In
Proc. ICDE, 2008.

[10] R. Cheng, L. Chen, J. Chen, and X. Xie. Evaluating probability threshold
k-nearest-neighbor queries over uncertain data. In EDBT, pages 672–
683, 2009.

[11] R. Cheng, D. Kalashnikov, and S. Prabhakar. Querying imprecise data
in moving object environments. In IEEE TKDE, 2004.

[12] R. Cheng, S. Singh, and S. Prabhakar. U-dbms: a database system for
managing constantly-evolving data. In Proc. VLDB, 2005.

[13] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter. Efficient indexing
methods for probabilistic threshold queries over uncertain data. In Proc.
VLDB, pages 876–887, 2004.

[14] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for
probabilistic data and expected results. In Proc. ICDE, 2009.

[15] T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Boosting
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