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Background: Ferroptosis is a form of programmed cell death (PCD) that has been
implicated in cancer progression, although the specific mechanism is not known. Here,
we used the latest DepMap release CRISPR data to identify the essential ferroptosis-
related genes (FRGs) in glioma and their role in patient outcomes.

Methods: RNA-seq and clinical information on glioma cases were obtained from the
Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). FRGs
were obtained from the FerrDb database. CRISPR-screened essential genes (CSEGs) in
glioma cell lines were downloaded from the DepMap portal. A series of bioinformatic and
machine learning approaches were combined to establish FRG signatures to predict
overall survival (OS) in glioma patients. In addition, pathways analysis was used to
identify the functional roles of FRGs. Somatic mutation, immune cell infiltration, and
immune checkpoint gene expression were analyzed within the risk subgroups. Finally,
compounds for reversing high-risk gene signatures were predicted using the GDSC and
L1000 datasets.

Results: Seven FRGs (ISCU, NFS1, MTOR, EIF2S1, HSPA5, AURKA, RPL8) were
included in the model and the model was found to have good prognostic value (p <
0.001) in both training and validation groups. The risk score was found to be an
independent prognostic factor and the model had good efficacy. Subgroup analysis
using clinical parameters demonstrated the general applicability of the model. The
nomogram indicated that the model could effectively predict 12-, 36-, and 60-months
OS and progression-free interval (PFI). The results showed the presence of more
aggressive phenotypes (lower numbers of IDH mutations, higher numbers of EGFR and
PTEN mutations, greater infiltration of immune suppressive cells, and higher expression of
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immune checkpoint inhibitors) in the high-risk group. The signaling pathways enriched
closely related to the cell cycle and DNA damage repair. Drug predictions showed that
patients with higher risk scores may benefit from treatment with RTK pathway inhibitors,
including compounds that inhibit RTKs directly or indirectly by targeting downstream PI3K
or MAPK pathways.

Conclusion: In summary, the proposed cancer essential FRG signature predicts survival
and treatment response in glioma.
Keywords: glioma, ferroptosis, cancer essential genes, LASSO analysis, risk model, clinical outcomes,
drug screening
INTRODUCTION

Gliomas are common primary malignant tumors of the central
nervous system (1), representing nearly half of all primary
intracranial neoplasms (2) and 80% of all malignant brain
tumors (3). At present, the main treatment strategy for gliomas
throughout the world is surgery (4) followed by postoperative
adjuvant radiotherapy and chemotherapy (5, 6). Despite
therapeutic advances, glioma patients have a poor prognosis (7),
especially those with high-grade tumors (8), due to high levels of
tumor cell diversity, proliferation, and metastasis (9). It has been
hoped that the use of molecular markers may improve glioma
characterization and predict survival (10, 11) but, thus far, the
results, including those of clinical trials, have been disappointing
(12). The identification of markers and potential targets that can
be used for prediction and treatment is thus important, not only
for managing the cancer but also for drug discovery.

Ferroptosis is a recently identified form of programmed cell
death that is dependent on iron (13, 14). It has been linked with
the outcomes of several cancers, including hepatocellular
carcinoma, breast cancer, renal cell carcinoma, lung squamous
cell carcinoma, and pancreatic carcinoma (15–19). Invasive and
metastatic tumor cells have been found to be susceptible to
ferroptosis (20) suggesting that targeting the process may be
useful for treating cancer. However, there is limited information
on the feasibility of targeting FRGs in glioma. The use of CRISPR-
Cas9 knockout screening can elucidate relationships between
genotype and phenotype through ablation of gene expression on
a genome-wide scale and the consequent phenotypic alterations,
for the specific identification of genes that could be targeted for
inducing tumor growth inhibition or death. Our aim was to
combine the CRISPR data to construct a novel prognostic
signature based on the identified glioma-essential ferroptosis-
related genes to specifically predict clinical outcomes and,
importantly, to suggest directions for gene-targeted therapy.
MATERIAL AND METHODS

Data Collection and Preprocessing
Clinical andRNA-seq transcripts permillion reads (TPM)datawere
obtained from TCGA (https://xenabrowser.net) and CGGA-693
(http://www.cgga.org.cn). Patients with complete clinical data (age,
2

sex, vital status,OS,PFI, IDHstatus, 1p-19q status, andWHOgrade)
were included. In all, 1170 patients were included, representing 551
in the training cohort and 619 in the validation cohort (Table 1).
Ethical approval was waived as the study followed the TCGA and
CGGAregulations for accessing data. Information on 388 FRGswas
acquired from FerrDb (http://www.zhounan.org/ferrdb/) (Table
S1) (21) and genome-wide CRISPR information on glioma cells
was obtained fromDepMap (https://depmap.org/portal/download/
). The CERES algorithm (22) was used for the determination of
dependency scores. First, geneswithCERES scores below -1 inmore
than75%ofgliomacell lineswere included.Manyof thesegeneswith
knownhousekeeping functions that didnot represent feasible targets
were excluded, leaving 747 genes that were necessary for glioma cell
survival in vitro (Table S2) and were termed glioma essential genes.
Potentially targetable genes were identified as those falling into both
FRG and CSEG categories. The flow chart of the study is illustrated
in Figure 1.

Construction and Verification of
Risk Models
Before establishing the model, multivariate regression analysis was
performed to identify potential genes related to prognosis (p < 0.05).
TABLE 1 | The clinical features of TCGA cohort and CGGA cohort.

TCGA cohort CGGA cohort

Characteristic N = 551 N = 619
Age
Median 47.21 43.44

Gender
Male 313 356
Female 238 263

Grade
Grage 2 209 173
Grage 3 232 231
Grage 4 110 215

IDH-status
IDH_WT 188 258
IDH_Mut 363 316

1p/19q co-deletion
Non-codel 403 427
Codel 148 128

Vital status
Alive 365 296
Dead 186 323
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FIGURE 1 | Flow chart showing the design of the study.
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Suitable candidate genes were identified as those with a minimal
partial likelihood of deviance in LASSO regression and were used to
construct the prognostic model (23). Risk scores were calculated as
the sum of the products of regression coefficients and the expression
of the individual genes. A cut-off value, represented by the median
risk score, was used to separate both cohorts into high- and low-risk
groups. The prognostic efficacy of the signature was assessed by
analyzing survival. Time-dependent receiver operating
characteristic (tROC) curves were used to calculate the area under
the curve (AUC) for the 1-, 3-, and 5-year OS by using the R
package “survivalROC” (24). Analysis of clinical correlates was
performed between expression of cancer-essential FRGs and
clinical characteristics using the R package “ggplot2” (25).

Somatic Mutation, Immune
Microenvironment and Function
Enrichment Analyses
Mutation data were downloaded and visualized using the
“maftools” R package to determine the somatic mutation
landscape of glioma patients in the TCGA database, identifying
distinct ferroptosis-related subtypes (26). Immune infiltration
scores of glioma patients in the TCGA were downloaded from
TIMER2.0 (http://timer.cistrome.org/) (27) and the patients
were divided into high- and low-risk groups. The R packages
“ComplexHeatmap” (28) and “ggplot2” were used to analyze and
visualize the CIBERSORT algorithm data. Differentially
expressed genes (DEGs) were identified using the median risk
score as a threshold and the expression of the DEGs was analyzed
using the R package “DESeq2” (29). Gene Set Enrichment
Analysis (GSEA) was conducted on the TCGA cohort to
examine the biological functions and pathways of the cancer-
essential FRGs using the “clusterProfiler4.0” package in R (30).

Nomogram Construction and Verification
The nomogram for glioma prognostic prediction was established
using risk scores and clinical features (31). The accuracy and
discriminative ability of the nomogram were assessed by
calibration curves. Decision curve analysis (DCA) using the
“ggDCA” and “stdca” packages (32) in R was performed to
determine the survival net benefits at one, three, and five years
for both OS and PFI (33).

Identification of Potential Compounds
Spearman correlation analysis was used to identify compounds
negatively associated with the AUC values and glioma cell FRG
scores using the GDSC1 and GDSC2 drug response datasets
(https://www.cancerrxgene.org) (34) using Spearman’s r < −0.30
andP-values< 0.05 forGDSC1or<0.1 forGDSC2.DEGexpression
between the high- and low-risk groups was analyzed. The 150most
upregulated or downregulated genes in the high-risk group were
used for further analysis. The relationships of 978 compounds with
these 150 genes were examined in CLUE (summary connectivity
score) (https://clue.io/repurposing) (35) and the genes were The
150 genes were then analyzed using iLINCS (http://www.ilincs.org/
ilincs/) “Pharmacogenomics transcriptional signatures” (36)
connectivity algorithms.
Frontiers in Oncology | www.frontiersin.org 4
Statistical Analysis
R version 4.0.2 was used for all analyses. Differences in normally
distributed data were analyzed by unpaired t-tests, and those in
non-normally distributed data by the Wilcoxon test. P-values <0.05
were considered significant.

RESULTS

Construction and Verification of Risk Models
Ten genes (ISCU, NFS1, MTOR, EIF2S1, HSPA5, AURKA, RPL8,
LONP1, RRM2, and CHMP6) that fell into both the FRG and
CSEG categories were used for further study (Figure 2A).
Multivariate Cox regression showed that seven cancer-essential
FRGs (ISCU, NFS1, MTOR, EIF2S1, HSPA5, AURKA, and RPL8)
were significantly associated (p<0.05) with OS (Figure 2B).
LASSO was then applied to reduce the number of these genes.
As the partial likelihood was minimal, all the genes were retained
and used for the construction of the risk model (Figures 2C, D).
The risk score of the training cohort was calculated as
0.4181306×expression of HSPA5-0.2335796×expression of
MTOR-0.0372456 ×expression of NFS1 +0.8788312×expression
of ISCU-0.2320588×expression of EIF2S1+ 0.7371187×expression
of AURKA-0.1765609×expression of RPL8.

Prognostic Assessment Using the RiskModel
Patients in the training cohort were assigned to high- and low-
risk groups according to the median risk score. Kaplan-Meier
curves showed that members of the high-risk groups had
significantly lower OS (p<0.001 in both cohorts) (Figures 3A,
B). The AUCs for one-, three-, and five-year OS were 0.840,
0.906, and 0.833, respectively, in the training set (Figure 3C) and
0.638, 0.734, and 0.736, respectively, in the validation set
(Figure 3D). The risk scores were then ranked in relation to
OS and the levels of the seven cancer-essential FRGs were
determined in the low- and high-risk groups, as shown in the
heatmaps (Figures 3E, F). This indicated that a higher risk score
was associated with lower OS for both groups, levels of the
AURKA, EIF2S1, and HSPA5 genes were elevated in high-risk
individuals in the training set, and all seven genes were strongly
expressed in the high-risk category of the validation cohort.

Relationships Between Risk Model Gene
Levels and Clinical Characteristics
m_sc_clean_body_s.tgaThe relationships between the levels of
the seven signature genes and the clinical features of glioma
patients from TCGA were investigated. The expression levels of
these genes in tumor tissue were significantly different in
comparison with those in normal tissues (Figure 4C). The
levels of AURKA, EIF2S1, and HSPA5 were significantly
associated with age (Figure 4A), grade (Figure 4D), the 1p/
19q codeletion (Figure 4E), and isocitrate dehydrogenase (IDH)
status (Figure 4F). The risk model genes were not related to sex
(Figure 4B). In addition, immunohistochemical data on the risk
model genes in normal and tumor specimens were downloaded
from The Human Protein Atlas (https://www.proteinatlas.org/)
for further verification (Figure 4G).
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Prognostic Value of the Risk Model for
Subgroups of Clinical Classifications
Patients in both the training and validation cohortswere divided into
subgroups according to clinical features, including the age, sex, IDH
status, 1p/19q con-deletion status, and WHO classification of the
TCGA (Figure 5A) and the CGGA (Figure 5B) patients, as well as
the primary/recurrent tumor types of the CGGA patients
(Figure 5B). The subgroups were assessed in terms of median risk
scores and survival curves were compiled for each of the clinical
features. The results showed that the riskmodelwas effective for these
factors, except for patients with IDH-mut in the training cohort
(Figure 5A) and thosewith the 1p/19q con-deletion andWHOIV in
both the training and validation groups (Figures 5A, B).

Comprehensive Analyses of Somatic
Mutations, Immune Cell Infiltration, and
Immune Checkpoint Expression in the
Different Risk Groups
Intuitively, the landscapes of somatic genetic alterations
provided the 20 most frequently mutated genes in each risk
Frontiers in Oncology | www.frontiersin.org 5
cohort of TCGA samples. The results showed that 91.6% of
patients in the low-risk group had IDH mutations, in contrast
to only 38.5% in the high-risk group (Figures 6A, B), while
PTEN and EGFR had higher rates of mutation in the high-risk
group (Figure 6B). The immune cell infiltration scores of each
sample were estimated using the CIBERSORT algorithm.
Notably, the levels of regulatory T cells (Tregs) and M2
macrophages were higher in the high-risk group (Figures 6C,
D) and the expression of immune checkpoint genes (CD274,
CTLA4, CEACAM1, LAG3, TIGIT, PDCD1, and BTLA) were
also higher in the high-risk group (Figure 6E). These results
indicated that high-risk patients may be sensitive to PTEN or
EGFR inhibition or the blocking of immune checkpoint
gene expression.

Construction and Verification
of Nomogram
Univariate and multivariate analyses demonstrated that the risk
score and clinical characteristics (age, grade, IDH status, and 1p/
19q status) were risk factors linked to glioma prognosis in
A B

DC

FIGURE 2 | Venn diagram showing overlap of 10 genes between the CSEGs and FRGs (A). Top prognosis-associated candidate genes identified by Cox regression
(B). Re-filtering of genes in (B) by LASSO (C, D). *p < 0.05, **p < 0.01, ***p < 0.001.
June 2022 | Volume 12 | Article 897702
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TCGA.(Figures 7A, B). The risk score was added to the
nomogram prediction model for accurately predicting 12-, 36-
and 60-months OS (Figure 7C) and PFI (Figures 7D). The
calibration plots showed that the predicted and actual one- three-
and five-year OS and PFI approximated well, indicating the good
performance of the nomogram in comparison with an ideal
model (Figures 7E, F). The clinical value of the nomogram was
confirmed by DCA (Figures 7G, H).
Frontiers in Oncology | www.frontiersin.org 6
Gene Set Enrichment Analysis to
Reveal the Functional Roles of Essential
FRGs in Glioma
The expression of the DEGs in the high- and low-risk groups
in the TCGA cohort was examined to investigate their
functions in glioma. Further functional analysis was
performed by GSEA using the HALLMARK (Figure 8A),
KEGG (Figure 8B), and Reactome (Figure 8C) databases.
A B

D

E F

C

FIGURE 3 | Kaplan-Meier curves showing risk scores of FRG signature genes in both training and validation cohorts (p < 0.001) (A, B). tROC curves for one-,
three- and five-year survival (C, D). Heatmaps of risk score rankings, survival, and levels of cancer-essential FRGs in the training and validation cohorts (E, F).
June 2022 | Volume 12 | Article 897702
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Examination of the top 30 pathways showed that the TP53
signaling pathway was enriched in all three databases. Many
of the enriched signaling pathways in the three databases were
closely related to the cell cycle and DNA damage repair. Other
enriched pathways were associated with tumor progression,
including the IL6/JAK/STAT3, KRAS, and PI3K/AKT/mTOR
signaling pathways, which corresponded to the higher
mutation rate of EGFR and PTEN in high-risk patients
mentioned above.
Frontiers in Oncology | www.frontiersin.org 7
Identification of an RTK Pathway
Inhibitor With Significant Inhibitory Activity
in High-Risk Patients
Correlation analysis identified six GDSC1-derived compounds,
namely, voxtalisib, rucaparib, trametinib, LL.Z1640.2,
KU.57788, and SB.505124.1, and five GDSC2-derived
compounds, namely, MIM.1, epirubicin, AZD4547,
GSK1904529A, and AZD5363 (Figures 9 D, E). Although
these candidate compounds showed high drug sensitivities in
A B

D E F

G

C

FIGURE 4 | Relationships between the levels of the seven cancer-essential FRGs and clinical features. Age (A), sex (B), normal versus tumor tissue (C), WHO grade
(D), 1p/19q co-deletion status (E), and IDH status (F). Immunohistochemistry showing the protein expression of risk model genes in normal and tumor specimens of
The Human Protein Atlas (G). ns, p≥0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
June 2022 | Volume 12 | Article 897702
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A

B

FIGURE 5 | Survival analysis by the risk model in relation to subgroups of clinical features in the training (A) and validation cohorts (B).
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A B

D E

C

FIGURE 6 | Comprehensive analyses of genomic alterations, immune cell infiltration, and immune checkpoint expression between the different risk groups.
Distribution of sex, age, IDH status, 1p/19q condel status, and the top 20 most frequently mutated genes are illustrated for each cohort (A, B). Heatmap showing
the CIBERSORT scores of different immune cell distributions in the different subgroups (C). Dot plot showing immune cell CIBERSORT scores and the expression
levels of immune checkpoint gene in the high- and low-risk groups (D, E). ns, no significance,*p < 0.05, **p < 0.01, ***p < 0.001.
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the high-risk group, this evidence is insufficient for supporting
the conclusion that they are effective for treating gliomas.
Therefore, iLINCs and CLUE were used to determine which
compounds could counteract cancer- or glioma-specific gene
expression (i.e., gene expression was increased in tumor tissues
but decreased in response to treatment with the compound).
We submitted 150 genes with the highest and lowest
expression, respectively, to CLUE and 150 genes with the
lowest expression to iLINCs. The CLUE results (cMAP
scores) were subsequent ly normalized. The top 20
compounds with the potential to reverse the action of FRGs
in high-risk patients are listed in Figures 9A–C. Of these, only
epirubicin was found to match the GDSC2 results directly, with
the other compounds showing similar matches. Thus, we
concluded that patients with FRG scores may benefit more
from an RTK pathway inhibitor, either by direct inhibition of
the RTK or indirect inhibition through targeting downstream
effectors such as the PI3K or MAPK pathways.
Frontiers in Oncology | www.frontiersin.org 10
DISCUSSION

Ferroptosis is a recently described iron-dependent form of PCD,
differing from other PCD types such as apoptosis and
necroptosis (37). The ferrDB database contains information on
all genes linked to ferroptosis and provides the latest resources
for research (21). Five ferroptosis-related gene signatures are
currently recognized as related to survival in glioma. Gene
signatures have been constructed from the investigation of 60-
80 candidate genes (9, 38, 39) identified by previous publications.
When Zhou and Sun downloaded 173 and 303 FRGs,
respectively, from the ferrDB database (40, 41), the overall
number of candidate genes was relatively small. The numbers
and functional classification of FRGs in the ferrDB are constantly
updated as new information becomes available, and new analyses
of ferroptosis signatures for glioma have become more necessary.
In this study, we applied the latest data including 388 driver,
suppressor, and marker genes from the ferrDB database
A B

D

E F G H

C

FIGURE 7 | Univariate and multivariate analyses of clinical features in relation to prognosis (A, B). Nomograms for prediction of OS and PFI (C, D). Nomogram
calibration using OS and PFI for predicted and actual one- three-, and five-year outcomes (E, F). DCA of nomograms for OS and PFI for one- three-, and five-year
survival (G, H).
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(Figure 2A). At the same time, before the conventional screening
of genes using univariate and multivariate Cox regression
analysis, we collected data on CRISPR-screened glioma-
associated genes from the DepMap portal (Figure 2A) and
investigated their intersection with the FRGs. This led to the
identification of 10 cancer-essential FRGs (ISCU, NFS1, MTOR,
EIF2S1, HSPA5, AURKA, RPL8, LONP1, RRM2, and CHMP6)
which were closely related to ferroptosis and essential for glioma
cell proliferation and survival. The use of the CRISPR screening
technique explored potential cancer-essential FRGs, which may
shed light on the discovery of targetable FRGs in other tumors or
diseases for research.

After multivariate and LASSO analyses, seven cancer-essential
FRGs (ISCU, NFS1, MTOR, EIF2S1, HSPA5, AURKA, and RPL8)
were used to construct the risk model (Figures 2B–D). This model
was shown to have stable prognostic prediction capability in both
the training and validation cohorts (Figures 3A–D) and the
subgroups based on clinical features in the validation cohort
(Figure 5). Further analysis showed that the risk score
independently predicted survival in glioma and was effective for
predicting both OS and progression-free survival (Figures 7C–D).
These findings strongly implied that these seven cancer-essential
FRGs play important roles in many aspects of glioma development
and progression.We further examined the classifications of the risk
model genes, finding that three (ISCU, NFS1, and HSPA5) were
suppressors of ferroptosis, two (EIF2S1 and AURKA) were marker
genes, RPL8 was classified as a driver gene, and MTOR was
classified as both a driver and a suppressor gene. Thus, most of
the risk model genes were ferroptosis suppressors. On the other
Frontiers in Oncology | www.frontiersin.org 11
hand, all the risk model genes had been identified by CRISPR
screening as glioma-associated in glioma cell lines and thus would
be involved in the promotionofproliferation (22). In terms of single
gene functions, ISCU encodes part of the iron-sulfur (Fe-S) cluster
scaffold that synthesizes Fe-S clusters in the mitochondria (42). It
has been found that ISCU is targeted by miR-210-3p to block the
growth and migration of glioma cells in vitro (43). NFS1 encodes
several proteins involved in supplyingSderived fromcysteine toFe-
S clusters and inhibits cysteine transport, triggering ferroptosis and
reducing tumor cell growth (44). HSPA5 is involved in protein
folding in the endoplasmic reticulum(45), assists in fungal infection
of epithelial cells (46), and has been implicated in both proliferation
and apoptosis (47). Its expression is promoted by iron in the nasal
epithelium (48–50) and is used as a target for >treating chemo-
resistant cancers (51). mTORplays amajor role in variousmetabolic
processes, mediating the actions of a variety of hormones, growth
factors, and other signaling molecules (52–54). The risk model gene
AURKA is involved in cell cycle modulation (55, 56), specifically
duringmitosis (57), and also regulates phosphorylation of p53/TP53,
affecting cancer development (58). In terms of somatic mutation, we
found that the frequency of the IDH1 mutation was greater in the
low-risk group, in contrast to the higher mutation rates seen in both
PTEN and EGFR in the high-risk group (Figures 6A, B), suggesting
that themutation frequencies in thosegenesmayhavedifferent effects
on ferroptosis. Previous studies have shown that IDH-mut glioma
patients had a better prognosis than thosewithwild-type IDH, across
all WHO grades (11, 40), that EGFR amplification was correlated
with poor prognosis (59), and that PTENmutations could promote
the infiltration of immunosuppressive tumor-associated
A B C

FIGURE 8 | Enrichment analysis of cancer-essential FRG signature genes in the TCGA cohort. The top 30 gene sets of HALLMARK (A), KEGG (B), and
Reactome (C).
June 2022 | Volume 12 | Article 897702

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yun et al. Glioma Novel Prognostic Signature
macrophages (TAMs) (60). This suggests that FRGs represent good
indicators of malignancy-associated glioma characteristics. The
analysis of immune cell infiltration showed higher scores for
memory B cells, CD8+ T cells, CtD4+ naïve and memory T cells,
Tregs, neutrophils, and M2 macrophages in the high-risk group.
These results indicated that the patients in the two risk groups have
completely different immune microenvironments. Studies have
shown that CD4+ T cells, B cells, CD8+ T cells, neutrophils, and
M2 macrophages play important roles in the occurrence and
malignant progression of glioma (61–63) and that Tregs are closely
associated with significant immune suppression in the tumor (64),
thus supporting the results of our study. The expression of immune
checkpoints was significantly increased in the high-risk group except
for VTCN1, indicating a close relationship with glioma immune
escape. Tumor immunotherapy is currently an attractive treatment
and has achieved good results in other cancers, such as lung cancer.
Unfortunately, these have yielded little success clinically, and all
clinical trials of immunotherapyhave failed. The establishment of the
current model may be useful for screening patients for glioma
immunotherapy. The enrichment analysis also showed that the
model genes were associated with DNA replication and repair and
Frontiers in Oncology | www.frontiersin.org 12
the cell cycle, as well as several signaling pathways closely related to
tumor progression (Figures 8A–C). Indeed, the high degree of DNA
damage and poor repair capacity seen in glioma cells is a trademark
feature of cancer and is a determining factor in the growth of tumor
cell populations. The gene signature was found to be highly enriched
in the cell cycle andDNAdamage repair functions; thus,we speculate
that these genes play significant parts in cell cycle regulation and
tumor development and progression. This suggests an explanation
for the influenceofFRGsonpatient responses, although theremaybe
other reasons also.These genes are thus relevant for thediagnosis and
treatment of cancer.

The treatment of malignant brain cancers is challenging. This is
especially true of late-stage glioma which is resistant to most
traditional types of therapy (65). Recently, an association between
ferroptosis-related signatures and drug screeningwas found in liver
cancer (66) and the potential of enhancing treatment efficacy by
inducing ferroptosis has attracted attention. Although studies on
glioma have focused on the use of ferroptosis to predict prognosis,
none have investigated potential drugs (9, 36, 37). Here, we used
GDSC1, GDSC2, iLINCS, and CLUE to identify molecules that
might reverse the tumor signature, observing thatpatientswithhigh
A B

D E

C

FIGURE 9 | Drug connectivity analysis using alteration-specific transcriptional (CLUE and iLINCS). Pan-cancer in CLUE (A), pan-cancer in iLINCS (B), and glioma in
iLINCS (C) identifying 20 compounds that enhance or reverse the signature (highlighted with documented mechanisms). Compounds showing negative correlations
with AUC values and FRG scores for glioma cells were identified from GDSC1 and GDSC2. (D, E).
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FRGscoresmaybenefitmore fromtreatmentwith anRTKpathway
inhibitor, either by direct inhibition of the RTK or indirect
inhibition by targeting downstream effectors such as the PI3K or
MAPK pathways (Figure 9). For primary glioblastoma,
bevacizumab (a humanized monoclonal antibody against VEGF-
A to block angiogenesis) combined with Stupp is a currently widely
used strategy which, although it prolongs the median progression-
free survival, does not appear to influence the OS. Using the gene
signature for screening patients before deciding on the treatment
regimen may improve the efficacy of personalized treatment
of glioma.

The study has several limitations. Firstly, ferroptosis-associated
pathways are notwell understood, and it is possible that the signature
genes may function in other pathways as well, for example, in
autophagic or immune pathways. Secondly, a major limitation is
that we used a public database rather than our own samples; we
intend to collect our own glioma samples to further verify the
reliability of the research results. Finally, further basic and clinical
research is required for verification of the signature application,
which will be an important direction of our future research.

To summarize, we identified a seven-gene cancer-essential
FRG signature for the prediction of glioma patient prognosis.
The signature was found to have an excellent prognostic
capability and was utilized for calculating risk scores and drug
identification. The model thus has potential in both the diagnosis
and management of glioma.
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