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Abstract 

Background:  Colorectal cancer (CRC), a commonly diagnosed cancer often develops slowly from benign polyps 
called adenoma to carcinoma. Altered gut microbiota is implicated in colorectal carcinogenesis. It is warranted to find 
non-invasive progressive microbiota biomarkers that can reflect the dynamic changes of the disease. This study aimed 
to identify and evaluate potential progressive fecal microbiota gene markers for diagnosing advanced adenoma (AA) 
and CRC.

Results:  Metagenome-wide association was performed on fecal samples from different cohorts of 871 subjects (247 
CRC, 234 AA, and 390 controls). We characterized the gut microbiome, identified microbiota markers, and further 
constructed a colorectal neoplasms classifier in 99 CRC, 94 AA, and 62 controls, and validated the results in 185 CRC, 
140 AA, and 291 controls from 3 independent cohorts. 21 species and 277 gene markers were identified whose 
abundance was significantly increased or decreased from normal to AA and CRC. The progressive gene markers 
were distributed in metabolic pathways including amino acid and sulfur metabolism. A diagnosis model consisting 
of four effect indexes was constructed based on the markers, the sensitivities of the Adenoma Effect Index 1 for AA, 
Adenoma Effect Index 2 for high-grade dysplasia (HGD) adenoma were 71.3% and 76.5%, the specificities were 90.5% 
and 90.3%, respectively. CRC Effect Index 1 for all stages of CRC and CRC Effect Index 2 for stage III–IV CRC to predict 
CRC yielded an area under the curve (AUC) of 0.839 (95% CI 0.804–0.873) and 0.857 (95% CI 0.793–0.921), respectively. 
Combining with fecal immunochemical test (FIT) significantly improved the sensitivity of CRC Effect Index 1 and CRC 
Effect Index 2 to 96.7% and 100%.
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Conclusions:  This study reports the successful diagnosis model establishment and cross-region validation for colo-
rectal advanced adenoma and carcinoma based on the progressive gut microbiota gene markers. The results sug-
gested that the novel diagnosis model can significantly improve the diagnostic performance for advanced adenoma.

Keywords:  Colorectal cancer, Advanced adenoma, Metagenomic sequencing, Progressive microbiota gene markers, 
Diagnosis model

Background
Colorectal cancer (CRC) is a major public health concern 
worldwide and ranks third among all cancers in terms of 
incidence and second in terms of mortality [1]. It has now 
become the third most commonly diagnosed cancer and 
the fourth most common cancer cause of death in 2016 
across China [2]. Accumulating evidence suggests that 
microbial dysbiosis in the human gut may be an impor-
tant environmental factor in CRC, and several species of 
bacteria have garnered attention owing to their associa-
tions with colorectal carcinogenesis [3–8].

Recently, it is shown that the fecal microbiome could 
be a source of targeted non-invasive biomarkers for colo-
rectal adenoma and cancer. Yu et  al. reported the first 
successful cross-ethnic validation of metagenomic gut 
microbial markers for CRC [9]. Further another study 
showed that Fusobacterium species could serve as bio-
markers to differentiate patients with CRC and advanced 
adenoma (AA) from controls [10]. A novel bacterial 
marker m3 for the non-invasive diagnosis of colorectal 
adenoma has been identified and evaluated [11].

It is well known that the occurrence of CRC is a multi-
gene, multi-step process caused by the interaction of 
environmental factors with its genome. In most cases, 
the disease begins as a benign adenomatous polyp, which 
develops into advanced adenoma with high-grade dyspla-
sia and then progresses to invasive cancer [12]. Therefore, 
it is clinically valuable to find non-invasive progressive 
fecal microbiota biomarkers that can reflect the dynamic 
changes of the disease from normal to adenoma and CRC 
by continuously increasing or decreasing. Nevertheless, 
reports of such markers are limited at present.

Here, we performed a metagenomic analysis of sam-
ples from colorectal advanced adenoma and carcinoma 
patients with different stages and control subjects and 
identified the progressive microbiota biomarkers. Then, 
we constructed a diagnosis model based on these mark-
ers and evaluated its performance as a diagnostic tool for 
AA and CRC.

Methods
Sample collection and public data source
Stool samples were collected from individuals under-
going colonoscopy at the Seventh Medical Center of 
Chinese PLA General Hospital. The cohort included 

individuals with digestive symptoms to outpatient gas-
troenterology clinics, as well as asymptomatic individu-
als aged 50–85 years. The exclusion criteria were: (1) use 
of antibiotics within the past 3  months; (2) vegetarian 
diet; (3) surgery or invasive procedure within the past 
3 months; (4) IBD; or (5) history of any cancer. After the 
written informed consent, each individual was asked to 
provide a stool sample before bowel preparation. The 
stool samples were divided and stored at – 80 ºC within 
1 h for further analysis.

The public data of samples downloaded from three 
previous studies,128 samples were from Yu et  al. 
(PRJEB10878), 156 samples were from Feng et al. and 199 
samples were from Zeller et al. (ERP005534) [9, 13, 14]. 
All the sequences of the 483 samples were obtained using 
an Illumina HiSeq platform with the PE100 sequencing 
strategy. The public data included 616 samples in valida-
tion cohort 1, which were downloaded from the DDBJ 
Sequence Read Archive (DRA006684 and DRA008156). 
(see Additional file  2: Table  S2) [15]. The 616 samples 
contained 291 control subjects (NC-V group), 67 mul-
tiple polypoid adenomas with low-grade dysplasia (MP 
group), 73 high-grade dysplasia (HD-V group), and 111 
CRC at stage I/II, and 74 CRC at stage III/IV. The pub-
lic data included 140 samples in validation cohort 3 
from Andrew et  al. (PRJNA447983) [16]. In this study, 
advanced adenoma (AA) was defined as adenoma with 
a ≥ 25% villous component, a diameter ≥ 10 mm, or ade-
noma with high-grade dysplasia. The stages of invasive 
adenocarcinoma were determined from the surgically 
resected specimens with the use of the American Joint 
Committee on Cancer (AJCC) staging system.

DNA extraction and whole‑genome shotgun sequencing
DNA was extracted from each frozen fecal sample using 
a QIAamp Power Fecal DNA Kit (Qiagen str. 140724, 
Hilden, Germany) according to the manufacturer’s proto-
cols. The concentration of the extracted DNA was meas-
ured with Qubit, and the molecular size was estimated by 
agarose gel electrophoresis. To find progressive markers 
that satisfied the requirement of continuous increase or 
decrease from controls to advanced adenoma and CRC 
across different cohorts or different sequencing plat-
forms, a HiSeq XTen platform (Illumina) was used in the 
samples of discovery cohort 1, while sequencing libraries 
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were generated with a TruSeq DNA Sample Prep v2 Kit 
(Illumina, Inc., San Diego, CA, USA). However, whole-
genome shotgun sequencing of the samples of discovery 
cohort 2 was carried out on a BGISeq-500 platform, and 
sequencing libraries were generated with an MGIEasy 
DNA Sample Pre Kit. The DNA library quality was both 
confirmed with a Qubitand Agilent 2100.

Criteria for CRC samples in discovery cohort 1 
After an analysis of the difference in intestinal micro-
biome between the AA group and the controls group 
(discovery cohort 1), we aimed to further investigate the 
richness of these differential markers in the CRC group. 
However, in discovery cohort 1, we did not collect CRC 
samples, so we selected some of them from the down-
loaded public raw data. We set the criteria for select-
ing CRC samples in discovery cohort 1 as follows: (1) 
sequencing platform: Illumina HiSeq PE100; (2) region 
of origin of the samples: China; (3) state: CRC; (4) sam-
ples in the same branch as the 97 samples from discov-
ery cohort 1 in the Bray–Curtis tree (see Additional file 1: 
Fig.  S3). Finally, we selected 32 CRC samples from the 
previous three studies (Fig. 1).

Quality control of metagenomic sequences 
and phylogenetic abundance profiling
Metagenomic reads with more than 50% low-quality 
bases (quality ≤ 20) or more than five ‘N’ (bases not iden-
tified) were excluded. Furthermore, the reads that could 
be mapped to the human genome (GRCh38) through 
SOAP alignment (v2.21) were discarded. The remaining 
reads in each sample were considered to be high-quality 
reads.

The sequencing reads of all of the samples in discov-
ery cohort 1 were aligned to reference genomes collected 
from NCBI and HMP. Phylogenetic abundance profiling 
was performed as described by Wen et al. [17]. A Bray–
Curtis tree analysis of the 97 samples collected in this 
study and 300 disease case samples from previous stud-
ies was constructed using the vegan R package based on 
genus abundance profiling (see Additional file 1: Fig. S3).

Gene catalog construction gene abundance profiling
All the reads of the samples in discovery cohort 1 were 
assembled by SOAPdenovo (v2.04). Four k-mers 51, 55, 
59, and 63 were used, and the N50-highest k-mer was 
chosen. After the scaffold was assembled, the scaffolds 
were split into ‘scaftigs’ by removing ‘N’ bases, and 
scaftigs of length less than 500  bp were excluded. The 
genes were predicted from the remaining scaftigs by 
MetaGeneMark (prokaryotic GeneMark.hmm version 
2.8), and the genes with a length less than 100 bp were 
filtered. All the genes were clustered using CD-HIT 

(v4.5.7) to construct a non-redundant gene catalog. 
Gene abundance profiling was performed as described 
by Wen et  al. [17]. The protein sequences in the gene 
set were aligned to the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) protein database using BLAST 
with parameters-p-rot-min score = 60-out = blast8.

Fecal immunochemical test
The FIT was performed using the Eiken OC-Sensor 
(Eiken Chemical Co., Ltd., Tokyo, Japan) to quantify 
the fecal hemoglobin. Stool samples with a hemoglobin 
greater than 20 µg/gm of dry stool (equal to 100 ng/mL 
of the buffer) were considered positive according to the 
manufacturer’s instructions.

The formula of the diagnosis model with different effect 
indexes
Dichotomy thought and the standard least-squares 
method were used for the modeling of each effect index 
with JMP 10 software. For the Adenoma Effect Index1 
(AEI1), the initial scores of the controls were 1, and the 
initial scores of samples with advanced adenoma and 
above (high-grade dysplastic adenomas and all CRC 
patients) were 50. For Adenoma Effect Index2 (AEI2), 
the initial scores of all the controls were 1, and the ini-
tial scores of the high-grade dysplastic adenomas and 
above (all the CRC patients) were 50. For CRC Effect 
Index1 (CEI1), the initial scores of all the controls were 
1, and the initial scores of stage I/II CRC patients and 
above (stage III/IV CRC patients) were 50. For CRC 
Effect Index2 (CEI2), the initial scores of all the con-
trols were 1, and the initial scores of stage III/IV CRC 
patients were 50. Then, the training of the model was 
carried out by fitting the scores through the standard 
least-squares method. After fitting, if the majority of 
the scores were unsatisfactory, the good scores were 
picked to replace 1 or 50, and the training was carried 
out again until there was little increase in sensitivity or 
specificity. Finally, we obtained the following formulas 
for AEI1, AEI2, CEI1, and CEI2.

where ei represents the parameters of AEI1 (see Addi-
tional file 2: Table S8), xi represents the gene IDs, be is the 
intercept of AEI1, and abun(xi) is the relative abundance 
of the progressive disease gene markers in the intesti-
nal microbiome in each sample (see Additional file  2: 
Table S9).

AEI1 =

277∑

i=1

ei · {ln[abun(xi)+ 0.0000000001] + 23.026} + be,
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where fi represents the parameters of AEI2, and bf is the 
intercept of AEI2.

AEI2 =

277∑

i=1

fi · {ln[abun(xi)+ 0.0000000001] + 23.026} + bf ,

CEI1 =

277∑

i=1

gi · {ln[abun(xi)+ 0.0000000001] + 23.026} + bg ,

where gi represents the parameters of CEI1, and bg is the 
intercept of CEI1.

where hi represents the parameters of CEI2, and bh is the 
intercept of CEI2.

CEI2 =

277∑

i=1

hi · {ln[abun(xi)+ 0.0000000001] + 23.026} + bh,

Fig. 1  Study design and flow diagram
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Combinations of FIT with CEI1 and CEI2
The formula for the combination of FIT and CEI1 is:
score1 = 23.710037+ 4.082365× FIT+ 0.147425× CEI1 , with 

a cutoff of 28.55 (see Additional file 2: Table S10).
The formula of the combination of FIT and the CEI2 is:
score2 = −0.87127+ 21.769347× FIT+ 0.332905× CEI2 , with 

a cutoff of 22.75 (see Additional file 2: Table S10).

Statistical analysis
The differential species-level markers between controls 
and patients with advanced adenoma in discovery cohort 
1 were tested by Wilcoxon rank-sum test, and a P-value 
of 0.05 or less was considered statistically significant. 
These differential species markers were further filtered 
using the mRMR algorithm (side-channel attack R pack-
age), and the top 100 markers were used for the next 
step. Finally, the 25 markers with the highest MCC were 
selected to build an SVM classifier (the e1071 R pack-
age). The progressive disease markers were identified by 
the Kruskal–Wallis test with the threshold FDR < 0.05 
and the median abundance values of the control group, 
advanced adenoma group, and CRC group should be 
increased (or decreased) by more than 1.5 times continu-
ously in the discovery cohort 1, and the markers should 
also be through the same requirements in discovery 
cohort 2 (see Additional file  2: Table  S3). Areas under 
the receiver operating characteristic curves (AUCs) were 
constructed using the pROC R package. Spearman cor-
relation coefficients by using an R script were calculated 
in the abundance profiling of the progressive microbiota 
biomarkers and the clinical information of subjects (see 
Additional file 2: Table S1). If the clinical data was ‘NA’, 
the abundance profiling of the sample was eliminated 
from the abundance profiling table. A heatmap of the 
spearman correlation coefficients was constructed using 

R packages g-plot and RColorBrewer. For a comprehen-
sive description of the details of the establishment of the 
diagnostic model, see online supplementary methods.

Results
Patient cohorts and differences in gut microbiome 
between advanced adenoma and controls
The mean age of the 227 subjects (30 CRC, 98 advanced 
adenomas, and 99 control subjects) from Beijing in the 
discovery cohort was 60.0  years (see Additional file  2: 
Table  S1). We carried out a metagenomic study in a 
cohort including 48 patients with AA and 49 control 
subjects. The genus and species composition of the gut 
microbiome differed between the 2 groups (see Addi-
tional file  1: Fig.  S1). At the genus level, Blautia, Bifi-
dobacterium, Dorea, Sutterella, and Tyzzerella were 
enriched in patients with AA (p < 0.05, see Additional 
file  1: Figs.  S1a, S2a). Parabacteroides and Coprobacter 
were enriched in controls (p < 0.05, see Additional file 1: 
Fig.  S1b, S2a). At the species level, specific gut bacteria 
including Bilophila wadsworthia, Eubacterium sp. CAG 
76, Ruminococcus torques, Bifidobacterium longum, 
Dorea longicatena, Blautia obeum, and Dorea formici-
generans were enriched in patients with AA (p < 0.05, see 
Additional file  1: Fig.  S1c, S2b), whereas other bacteria 
as Bacteroides sp. 4_1_36, Bacteroides sp. D20, Para-
bacteroides merdae, Bacteroides finegoldii, Bacteroides 
sp. UW, Alistipes sp. AL_1 and Alistipes onderdonkii 
were enriched in controls (p < 0.05, see Additional file 1: 
Fig. S1d, S2b). We selected 25 biomarkers at the species 
level (p < 0.05, see Additional file 2: Table S4) that could 
significantly discriminate advanced adenoma patients 
from control subjects (AUC = 0.892, 95% CI 0.827–0.957, 
Fig. 2a, b).
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Fig. 2  a The Matthews correlation coefficient analysis showed the best markers in the SVM modeling for AA. ROC curves of the 25 species markers 
for the discrimination between advanced adenoma (b) and colorectal cancer (c) and control subjects in the discovery cohort 1.
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Phylogenetic abundance analysis and gene catalog 
construction
We downloaded 483 samples (fecal samples, microbiome, 
Illumina HiSeq platform) from three previous studies. 
All downloaded samples and 97 samples (48 AA and 49 
controls) collected in this study were used in phyloge-
netic abundance analysis and to construct a gene catalog. 
The gene catalog contained 5990347 genes. We further 
found that CRC samples from Austria, France, Germany, 
Hong Kong, and Beijing were distributed in different 
branches by using a Bray–Curtis tree analysis (see Addi-
tional file 1: Fig. S3). Furthermore, following the criteria 
set in the previous method, we selected 32 samples from 
the three studies as the CRC group in discovery cohort 
1 (Fig.  1). ROC curve analyses showed that the 25 spe-
cies markers selected in the previous step performed well 
in distinguishing CRC patients from control subjects 
(AUC = 0.912, Fig. 2c).

Identification and validation of progressive microbiota 
gene markers in independent metagenomic cohorts
To identify the progressive microbiota biomarkers for 
colorectal neoplasia, we constructed discovery cohort 1 
(32 CRC, 48 AA, and 49 controls) and discovery cohort 2 
(30 CRC, 46 AA, and 50 controls, Fig. 1). We further iden-
tified the biomarkers continuously increasing or decreas-
ing from the control to advanced adenoma and then to 
the CRC group at the genus, species, and gene levels by 
using the Kruskal–Wallis test. Combining the results of 
discovery cohort 1 and discovery cohort 2, 6 genera, 21 
species, and 277 genes were found to meet the set criteria 
(see Additional file 2: Tables S5, S6, S7). We defined these 
markers as ‘progressive microbiota biomarkers’, includ-
ing Fusobacterium periodonticum, Prevotella nigrescens, 
Streptobacillus moniliformis, and Atopobium parvulum 
(see Additional file 2: Table S6). Each of the progressive 
disease gene markers had a KEGG Orthology number 
(see Additional file 2: Table S7).

To verify the stability of the progressive gene markers, 
three independent cohorts (616 samples from Shinichi Y, 
156 samples from Feng Q, and 140 samples from Andrew 
T) were used as validation cohorts (see Additional file 1: 
Fig.  S4). Although these cohorts with different sample 
sizes, they showed similar population characteristics on 
the genes. For the genes with medium distribution in the 
population (such as the genes in branch 5, see Additional 
file 1: Fig. S4), it was reflected that the more serious the 
disease was, the wider the distribution of genes in the 
population and the more samples with a high abundance 
of the genes. As the disease progresses in validation 
cohorts, the progressive microbiota gene markers show 
a continuous trend of increasing or decreasing in abun-
dance (see Additional file 1: Fig. S5).

Functional pathway analysis of progressive microbiota 
gene markers
61 decreased and 216 increased gene markers were clas-
sified as progressive microbiota gene markers. All the 61 
decreased markers belonged to six organisms, the major-
ity (90.16%) were from two strains, Roseburia intestinalis 
M50/1 (rim: 32 genes) and R. intestinalis XB6B4 (rix: 23 
genes) (Fig.  3a, see Additional file  2: Table  S7). A quar-
ter of the 216 increased markers were from one species, 
Coprococcus catus (cct: 54 genes, Fig.  3c). The abun-
dances of Roseburia intestinalis and Coprococcus catus 
changed slightly along the adenoma-carcinoma sequence 
(Fig. 3b, d).

To explore the possible mechanism of the progressive 
microbiota gene markers associated with the develop-
ment and progression of CRC, we displayed the mark-
ers on the metabolic pathways. It was shown that amino 
acid metabolism, membrane transport, and carbohy-
drate metabolism contained the most gene markers 
(see Additional file 1: Fig. S6). For instance, in the sulfur 
metabolism (map00920) pathway (see Additional file  1: 
Fig.  S7), sulfonate transport system substrate-binding 
protein (SsuACB, K15554) and homoserine O-succinyl-
transferase [EC:2.3.1.46] (K00651) were upregulated, 
and cysteine synthase (cysK, [EC:2.5.1.47], K01738) was 
downregulated. In taurine and hypotaurine metabo-
lism (see Additional file  1: Fig.  S8), phosphate acetyl-
transferase ([EC:2.3.1.8], K00625) and acetate kinase 
([EC:2.7.2.1], K00925) were upregulated. In the cysteine 
and methionine metabolism (map00270) pathway (see 
Additional file  1: Fig.  S9), homoserine O-succinyltrans-
ferase ([EC:2.3.1.46], K00651) and homoserine dehydro-
genase ([EC:1.1.1.3], K00003) were upregulated.

Establishment and evaluation of the performance 
of a novel diagnosis model for colorectal neoplasm
We established a diagnosis model based on the pro-
gressive microbiota gene markers previously identi-
fied. The trends in this model can be quantified using 
an index score. Overall, the index scores showed a con-
sistently increasing trend from control to advanced 
adenoma to CRC with different stages (Fig.  4). We 
further tested the performance of the diagnosis model 
with four effect indexes in the training cohort (see 
Additional file  1: Fig.  S10) and validation cohort, 
including the Adenoma Effect Index 1 (AEI1) for AA 
(Fig. 5a), Adenoma Effect Index 2 (AEI2) for adenoma 
with high-grade dysplasia (HGD, Fig.  5b), CRC Effect 
Index 1 (CEI1) for all stages of CRC (Fig. 5c), and CRC 
Effect Index 2 (CEI2) for stage III-IV CRC (Fig.  5d). 
The AEI1 showed a sensitivity of 71.3% and specific-
ity of 90.5% for advanced adenoma (Table  1), with an 
AUC of 0.838 (95% CI 0.771–0.906, Fig. 6a). The AEI2 
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showed the performance in detecting high-grade dys-
plasia adenoma with a sensitivity of 76.4% and specific-
ity of 90.3% (Table 1) while achieving an AUC of 0.797 
(95% CI 0.690–0.904, Fig.  6b). The sensitivities of the 
CRC Effect Index 1 for all stages of CRC, and CRC 
Effect Index 2 for CRC at stage III-IV were 60.3%, and 
74.7%, respectively, and the specificities were 94.6%, 
and 94.6%, respectively (Table  1), with AUCs of 0.846 
(95% CI 0.788–0.904) and 0.824 (95% CI 0.712–0.935), 
respectively (Fig. 6c, d).

Combination with FIT improves the diagnostic ability 
of the model for CRC​
The FIT was performed in a subgroup of samples from 
Beijing in this study (30 CRC, 98 adenomas, and 99 
controls). The combination of FIT with CEI1 and CEI2 
performed significantly superior to Indexes alone in diag-
nosing CRC, with sensitivities of 96.7% and 100% for all 
stages of CRC and stage III-IV CRC, while with specifici-
ties of 90.8% and 93.9%, respectively (Table  2). Further-
more, the combination achieved AUCs of 0.953 (95% CI 
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67.90% to 0.989) and 0.993 (95% CI 0.981–1.000), respec-
tively, also better than the FIT alone (AUC = 0.905 for 
all-stage CRC, AUC = 0.939 for advanced-stage CRC) 
(Fig. 7a, b).

Discussion
In the present study, the most salient finding was that we 
identified the progressive microbiota gene markers asso-
ciated with the development of CRC, whose abundance 
was significantly increased or decreased from normal 
to adenoma and carcinoma. We further constructed a 
diagnosis model based on the progressive gene markers 
and evaluated the application values of which in the non-
invasive diagnosis of advanced adenoma and CRC. It was 
demonstrated that the diagnosis model achieved power-
ful classification potential for distinguishing advanced 
adenoma from control subjects with a sensitivity of 
71.3%.

Early diagnosis of colonic adenomas and cancer can 
be recognized as an effective way to strongly reduce the 
incidence of CRC. Whereas, the current large-scale uti-
lization of non-invasive tests such as the FIT and car-
cinoembryonic antigen (CEA) tests are limited by low 
sensitivity [18, 19]. Therefore, novel diagnostic markers 
for early CRC are urgently needed. The human gut micro-
biota has been considered the most important ecosystem 
symbiotic with the body [20–24]. The concept of the gut 

microbiome serving as a non-invasive diagnosis tool for 
CRC is a hot research topic in recent years. Yu et al. per-
formed the first metagenomic profiling analysis of CRC 
fecal microbiomes to identify and validate microbial bio-
markers in different cohorts [9]. And growing studies 
have identified a large number of fecal microbial mark-
ers in diagnosing CRC such as Fusobacterium nucleatum 
(Fn), Fecal clostridium symbiosum, Parvimonas micra 
ATCC 33270, and Streptococcus anginosus [10, 25, 26]. 
Dai et al. identified potential diagnostic bacterial markers 
that are robust across populations and revealed that the 
comprehensive meta-analysis of shotgun metagenomics 
data can provide useful functional capacities for CRC-
associated microbiota [27]. Due to the molecular markers 
for adenoma being limited, a novel bacterial gene marker 
from a Lachnoclostrium sp., labeled as m3 has been 
identified recently with a sensitivity of 50.8% and 44.2% 
for advanced and non-advanced adenomas, respectively, 
which showed promising diagnostic accuracy for adeno-
mas [11]. These emerging pieces of evidence suggest that 
gut microbiota biomarkers are highly promising and 
may play a significant role in the detection of CRC in the 
future.

Here, our study performed shotgun metagenomic-
sequenced microbial fecal samples from diverse popu-
lations and found bacterial gene markers that were 
consistently enriched or decreased in advanced adenoma 
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or CRC. The diagnosis model establishment based on the 
markers yielded strong diagnosis potential for early CRC, 
which provides a new idea for the ultimate goal would be 
to identify fecal microbial gene markers to detect colo-
rectal neoplasms. Compared with specific bacteria mark-
ers, gut microbiota gene markers can reach a stronger 
ability for advanced adenomas and are non-affected eas-
ily by environmental factors including the difference in 
ethnicity, geographic regions, and diets because of the 
validation across independent cohorts. Nevertheless, 
inconsistent with previous publications, Bifidobacterium 

which is commonly recognized as probiotics were 
enriched in patients with AA, while potentially patho-
genic Bacteroides and Parabacteroides were enriched 
in healthy controls in our study. This may be related to 
the gut microbiota in humans is a diverse and complex 
micro-ecosystem that is affected by various factors and 
cannot be answered by our study design. Even so, the 
previous study has also shown that the Bifidobacterium 
genus accumulated in ankylosing spondylitis patients 
[17]. Another study investigated the role of the gut 
microbiota in the treatment outcomes of patients with 
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Table 1  Diagnostic performance for different colorectal neoplasms of a diagnosis model with various effect indexes

AA advanced adenoma, HGD high-grade dysplasia, AUC​ areas under the receiver operating characteristic curve, CI confidence interval, AEI1 Adenoma Effect Index 1, 
AEI2 Adenoma Effect Index 2, CEI1 CRC Effect Index 1, CEI2 CRC Effect Index 2

Variables AEI1 (AA) AEI2 (HGD) CEI1 (CRC all stage) CEI2 (CRC III–IV stage)

AUC​ 0.838 0.797 0.846 0.824

95% CI 0.771–0.906 0.690–0.904 0.788–0.904 0.712–0.935

Sensitivity 71.3% (119/167) 76.4% (81/106) 60.3% (149/247) 74.7% (65/87)

Specificity 90.5% (353/390) 90.3% (352/390) 96.7% (369/390) 96.7% (369/390)
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Table 2  Diagnostic ability of a combination of CEI1 and CEI2 with the FIT for CRC​

FIT fecal immunochemical test, AUC​ areas under the receiver operating characteristic curve

Variables AUC​ 95% CI Sensitivity Specificity

CEI1+FIT (CRC all stage) 0.953 0.917 to 0.989 96.7% (29/30) 90.8% (89/98)

CEI2+FIT (CRC III-IV stage) 0.993 0.981 to 1.000 100% (13/13) 93.9% (92/98)
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metastatic CRC (mCRC) and reported that Lactobacillus 
and Bifidobacterium species exhibited higher abundance 
in the progressive disease (PD) group than in the partial 
response (PR) group [28]. Additionally, some Bacteroides 
species have been demonstrated to exhibit significantly 
lower relative abundance in patients with UC than in 
healthy controls [29]. Thus, it is still deserved to pay sig-
nificant attention to the gut microbiomes’ influence on a 
host of human diseases.

Changes in the metabolic profile can enhance the 
production of toxic metabolites to promote the devel-
opment of CRC. Functional pathway analysis of the 
progressive microbiota gene markers revealed that 
sulfonate transport system substrate-binding pro-
tein (SsuACB, K15554) was upregulated in sulfur 
metabolism, phosphate acetyltransferase ([EC:2.3.1.8], 
K00625), and acetate kinase ([EC:2.7.2.1], K00925) were 
upregulated in taurine and hypotaurine metabolism, 
while cysteine synthase (cysK, [EC:2.5.1.47], K01738) 
was downregulated (see Additional file 1: Figs. S7, S8). 
All of these could cause the increase of sulfur com-
pounds or H2S,, which could ultimately promote the 
occurrence and development of CRC (see Additional 
file  1: Fig.  S11) [30–32]. Moreover, cysteine synthase 
(cysK, [EC:2.5.1.47], K01738) was downregulated, 
which could also reduce the synthesis of l-cysteine (see 
Additional file 1: Figs. S7, S11). Cysteine is the synthetic 
precursor of the antioxidant glutathione and intestinal 

barrier mucin [33, 34]. A reduction in cysteine leads to 
a reduction in the synthesis of these two substances. A 
decrease in intestinal wall barrier mucin leads to thin-
ning of the mucosal protective barrier and increases 
the risk of infection by pathogenic bacteria or harm-
ful substances [34]. It can eventually increase the risk 
of CRC by increasing levels of vascular cell adhesion 
molecule-1, cytokines (interleukin-6 and tumor necro-
sis factor cytokine), and chemokines (high sensitiv-
ity C-reactive protein) and inducing the adhesion of 
T cells and monocytes [35–39]. Therefore, these data 
suggested progressive microbiota gene markers to be 
meaningful and highly predictive of CRC status.

To our knowledge, this is the first attempt to estab-
lish and validate the diagnosis model for colorectal 
advanced adenoma and carcinoma based on the pro-
gressive gut microbiota gene markers. Functional path-
way analysis of these markers showed that certain gene 
functions were significantly associated with CRC. These 
findings in the current study could enable future work 
that aims to precisely determine the contribution of gut 
microbiota to CRC development and hypothesis-driven 
mechanistic studies. Despite best efforts, our study 
had the limitation. As the performance of the diagno-
sis model was evaluated in these case–control samples, 
future validation is required in large sample cohorts 
representative of the CRC screening populations.
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Conclusions
In conclusion, we identified progressive gene markers 
development along the colorectal adenoma-carcinoma 
sequence based on the metagenomic analysis of the fecal 
microbiome. We further reported the successful diagno-
sis model establishment and cross-region validation for 
colorectal advanced adenoma and carcinoma, represent-
ing a vital step forward in finding a non-invasive, sensi-
tive, and specific diagnostic for colorectal neoplasms.
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Additional file 1: Fig. S1. Differences in phylogenetic abundance 
between advanced adenoma patients (red) and control subjects (blue). 
The phylotypes that were increased (a, c) or decreased (b, d) in the 
advanced adenoma patients at the genus and species levels. Wilcoxon 
rank-sum tests were used to identify the differentially abundant genera 
and species. Fig. S2. Linear discriminant analysis (LDA) effect size (LEfSe) 
analysis revealed the genus difference (a) and species difference (b) in 
fecal microbiota between the advanced adenoma patients (negative 
score) and the control subjects (positive score). Fig. S3. The Bray-Curtis 
tree of 49 controls and 48 advanced adenoma patients and 300 disease 
cases from the previous papers. It was based on the top 30 genus abun-
dance profiling. The 32 CRC samples were all in Hongkong and had the 
same branch as the 49 controls and the 48 advanced adenoma patients 
in the Bray-Curtis tree. Fig. S4. The relative abundance of the progres-
sive gene markers in the five cohorts. Five cohorts were arranged on the 
horizontal axis, including discovery cohort 1, discovery cohort 2, validation 
cohort 1, validation cohort 2, and validation cohort 3. Each cohort has 
three groups (control group, adenoma group, and CRC group). All 277 
progressive disease gene markers were arranged on the vertical axis. Fig. 
S5. The 15 progressive gene markers with decreased abundance (a) and 
15 markers with increased abundance (b) were shown in the validation 
cohort. Some of the median values of the gene abundance were zero, 
however, the third quartile values of the gene abundance can reflect 
the expected trend. Fig. S6. The increased and decreased progressive 
fecal microbiota gene markers distributed in the KEGG pathways. Fig. 
S7. The progressive gene markers in the sulfur metabolism pathway. The 
genes with a red frame were up-regulated from the control group to the 
advanced adenoma group and then to the CRC group, and the genes 
with the green frame were down-regulated. Fig. S8. The progressive gene 
markers in taurine and hypotaurine metabolism pathway. The gene with 
a red frame was up-regulated from the control group to the advanced 
adenoma group and then to the CRC group. Fig. S9. The progressive gene 
markers in cysteine and methionine metabolism pathway. The genes with 
a red frame were up-regulated from the control group to the advanced 
adenoma group and then to the CRC group, and the genes with the 
green frame were down-regulated. Fig. S10. ROC curves of various effect 
indexes in discriminating patients with advanced adenoma and CRC 
from control subjects in the training cohort, respectively. (a) The ROC of 
Adenoma Effect Index 1 (AEI1) for advanced adenoma. (b) The ROC of 
Adenoma Effect Index 2 (AEI2) for adenoma with high-grade dysplasia. (c) 
The ROC of CRC Effect Index 1 (CEI1) for all stages of CRC. (d) The ROC of 

CRC Effect Index 2 (CEI2) for stage III-IV CRC. Fig. S11. Schematic diagram 
of the functions of the progressive microbiota gene markers. The increase 
of the H2S, decrease in cysteine, and accumulation of homocysteine of 
the gene markers are related to the occurrence and development of CRC. 
The biofilm regulator gene was also upregulated in colorectal adenoma 
and carcinoma, consistent with its roles in CRC carcinogenesis such as 
destroying the intestinal barrier and dysbiosis.
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