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Introduction

As COVID-19 specific treatment is not yet available, 
antiviral medications are being used as experimental 
adjuncts to supportive care for COVID-19-affected 
people (Nicola et al. 2020). The total number of con-
firmed global COVID-19 cases as of March 2022, is 
468 million and more than 6 million deaths reported 
globally. After being declared a global pandemic by 
the World Health Organization (WHO), COVID-
19 has resulted in the loss of livelihoods with a rip-
pling effect on the global economy since March 2020 
(Shang et  al. 2021a). Even  with  attempts  to contain 
the virus through measures such as masks, hand sani-
tizers, social distance and travel restrictions, and min-
imal social gatherings, transmission of the virus con-
tinues (Sanders et  al. 2020; Abuga and Nyamweya 
2021; Prajapati et al. 2022).

Although, measures like quarantine along with 
isolation have shown to be most effective meas-
ures of spread of COVID-19 transmission (Girum 
et al. 2020), treating viral infections using drugs like 
recombinant interferons (Darazam et  al. 2021), viral 
polymerase inhibitors, both chemical (Chien et  al. 
2020) and herbal constituents (Saha et  al. 2021), 
inhibitors of viral proteases (Sagawa et  al. 2020; Su 
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et al. 2020; Seth et al. 2020; Mengist et al. 2021; For-
restall et  al. 2021) are reported. Inhibitors of mam-
malian host cell proteases such as ACE2 (Terali et al. 
2020) that mediate entry of the virus into the target 
cell, endosomal inhibitors of viral deproteinization 
(Shang et  al. 2021b) and drug preparations based 
on antiviral antibodies (Takashita et  al. 2022) and 
hexokinase inhibitors (Mantha et al. 2021; Icard et al. 
2021) are also effective. Favipiravir and Molnupira-
vir are viral protease inhibitors while 2DG affects 
infection-induced cytopathic effect through inhibition 
of cellular glycolysis (Sahu and Kumar 2021; Vang-
eel et al. 2022). Bhatt et al. (2022) in a recent finding, 
suggest that 2-DG can be used as a treatment regimen 
for COVID-19 since it effectively inhibits the SARS-
CoV-2 multiplication and it weakens the potential of 
the progeny virus for further infection since glyco-
lysis is a crucial step for replication of SARS-CoV-2 
(Ajaz et al. 2021; Shen and Wang 2021).

An interesting correlation between hexokinase II 
expression and viral infection is discussed by Rami-
ère et al. (2014) wherein a direct interaction between 
HCV NS5A protein and cellular HK2 is reflected due 
to increase in HK2 activity during HCV infection. 
Similarly, pharmacological inhibition of HK2 activity 
is reported to protect cells against hypertonic stress-
induced apoptosis, reduces viral induced cell death, 
and reduce viral multiplication of human rhinovirus 
infection (HRV) (Courteau et  al. 2015), newcastle 
disease virus (Al-Ziaydi et  al. 2020) etc. Hence, an 
inhibitor of hexokinase 2 appears a potent drug for 
reducing viral load.

We accidentally observed strong interactions of 
Favipiravir with Human HK II and found it very rele-
vant and crucial in the context of controlling COVID-
19. To examine its true hexokinase inhibiting poten-
tial, two other drugs, namely Molnupiravir, and 2 DG 
have also been studied on similar lines and results are 
disclosed in the current article.

Materials and methods

Reagents and kits

Hexokinase calorimetric assay kit (Product no: 
MAK91) and 2-Deoxy-d-glucose were also purchased 
from Sigma Aldrich (USA). Favipiravir was procured 
from Honour Labs Limited, Telangana, India while 

Molnupiravir was supplied manufactured by Inchem 
Labs Pvt. Limited, Andhra Pradesh, India. Rest of the 
reagents used was of analytical grade, unless men-
tioned otherwise. The concentrations of the drugs 
used for the in-vitro assays were assayed by HPLC 
methods developed and validated in-house in order to 
ascertain their purity. The % purity of the compounds 
(between 99 and 100%) matched the CoA’s of the 
respective compounds shared by the supplier.

Hexokinase assay

The hexokinase (HK) assay was carried out using the 
HK calorimetric assay kit (Sigma, St. Louis, USA) 
as per manufacturer’s instructions. Briefly, from the 
inhibitor stock solution, a known amount of aliquot 
was withdrawn in order to achieve 0.1 mM concentra-
tion of all the three inhibitor solutions in the well and 
2 µl of HK positive control was added to each well. 
The volume was made up to 50 µl with HK assay 
buffer. To each well 50 µl of the reaction mix  was 
added as mentioned on the sigma protocol. For con-
trol samples, same procedure was followed without 
addition of an inhibitor solution. The samples were 
mixed in well by pipetting. The plate was incubated 
in dark for 5  min at room temperature. After 5  min 
(Tinitial) incubation, initial absorbance [(A450)initial] 
was measured at 450  nm using 96-well plate reader 
(Thermo Scientific). Plate was incubated for 45 min 
taking measurements every 10  min. Final measure-
ment [(A450)final] and time of final reading (Tfinal) was 
used to calculate enzyme activity.

One unit of HK was defined as that amount of 
enzyme that generates 1.0 µmole of NADH per min-
ute at pH 8.0. The HK activity achieved without any 
inhibitor solution was considered as 100% while HK 
with inhibitor solution was estimated with reference 
to the control sample. Samples were tested in trip-
licates and presented as mean ± SD. The statistical 
analysis was done on Graph-pad prism (version 9) 
software by applying students ‘t’ test with multiple 
comparisons.

Favipiravir was dissolved in DMSO as 2  mg/
ml stock to achieve 12.73  mM concentration, while 
Molnupiravir stock solution was prepared in DMSO 
to achieve 30.39  mM concentration and 2-Deoxy-
2-glucose stock solution made as 1.6 mg/ml in water. 
All stock solutions were diluted with water to achieve 
0.1 mM concentration in the final assay reaction.
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Molecular docking studies

Molecular docking of HK II with various ligands 
was performed by AutoDock 4.2.6 program, using 
the implemented empirical free energy function and 
the Lamarckian Genetic Algorithm (LGA). In all the 
dockings, a grid map with 126 × 84 × 82 points and 
a grid-point spacing of 1.000 Å was applied and the 
grid maps were calculated using AUTOGRID, ver-
sion 3.0. The hydrogen bond were depicted using 
Discovery studio 2020 Client and Chimera softwares 
and interactions analyzed using Pymol software, 
UCSF Chimera and Accelrys Discovery Studio Visu-
alizer software.

The analysis of the docked protein–ligand com-
plexes was carried out for determining the compara-
tive binding energies along with the dissociation con-
stant (Kd) of the docked molecular complexes. The 
tested ligands were 2 Deoxy-d glucose, Favipiravir, 
Cyanrona-20 and Molnupiravir. The 3-D structure of 
these ligands was introduced in Pymol software for 
conversion of 3-D structure from SDF to PDB format. 
Using Pymol software, metals were also removed 
from the ligands structure for an appropriate dock-
ing study and further docking studies were carried 
out using the prepared ligands saved in PDB format. 
The crystal structure of target protein hexokinase II 
protein (PDB: 1NZT) was retrieved from Protein 
Data Bank (PDB) with PDB IDs and were subjected 
to docking process. The ligands were docked against 
with high Auto Dock V4.2 software.

Results

In‑vitro hexokinase inhibition study

It is clear from Fig. 1, of the three drugs tested, Favip-
iravir is the most potent hexokinase inhibitor followed 
by Molnupiravir and 2DG. The status of the hexoki-
nase inhibition by Cyan-20 and Remdesivir is not 
given because we did not have them at our disposal 
to conduct the in-vitro hexokinase inhibition experi-
ments. Favipiravir at 0.1  mM concentration showed 
50% HK II inhibition while at the same concentra-
tion, Molnupiravir and 2DG showed an inhibition of 
4% and merely 0.3% respectively.

Characteristics of the drugs tested in this study

The characteristics of Favipiravir, Cyan 20, Mol-
nupiravir, and 2DG are compared in Table  1. The 
EC50 value of Molnupiravir for RdRp is 0.22  µM, 
while it is 0.67  µM and 67.61  µM, for Remdesi-
vir and Favipiravir respectively indicating that 
Molnupiravir is the most effective RdRp inhibi-
tor (Zhao et  al. 2021). The EC50 values for cyano-
rona-20 for SARS-COV-2 replication in Vero E6 
cells, was 0.48 µM, while for Favipiravir and Rem-
desivir, it is reported as > 100  µM and 23.88  µM 
respectively (Rabie 2021). For Molnupiravir, EC50 
values is against HCoV-NL63 replication with a 
value of 8.8 µM (Wang et al. 2021) and 0.7 mM for 
2 DG (Bhatt et  al. 2022). The active metabolite of 

Fig. 1   Hexokinase inhibi-
tion potential of Favipiravir 
and Molnupiravir. All 
values are mean ± SD, 
n = 3. ****P < 0.001 for 
favipiravir (adjusted P 
value < 0.0001), *P < 0.05 
for Molnupiravir (adjusted 
P value 0.0124) when com-
pared to 2-deoxy-2-glucose 
(2DG)
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Molnupiravir has a half-life of 1–1.75  h (Painter 
et  al. 2021), and 2DG has a half-life of 1.5  h 
(Dwarakanath and Jain 2009). Favipiravir has a 
half-life of 2.5 to 5.5 h (Agrawal et  al. 2020) with 
54% plasma binding making it a stable molecule 
due to low first-pass metabolism (Wanat 2020). At 
a single dose of 150  mg/kg in animals (Abdelnabi 
et  al. 2021), Molnupiravir inhibits viral multipli-
cation by introducing errors in the covid-2 virus 
genome (Malone and Campbell 2021), causing 
mutations of 33 and 31 in viral RNA of treatment 
groups, respectively, while at 300  mg/kg, Favip-
iravir causes C-to-T and G-to-A mutations of 14 
and 21, respectively (Zhirnov and Chernyshova 
2021). Although, Molnupiravir is effective against 

SARS-CoV-2, SARS-CoV, Middle East respira-
tory syndrome coronavirus (MERS-CoV), and sea-
sonal and pandemic influenza viruses (Painter et al. 
2021; Wang et al. 2021), it also targets viruses that 
cause equine encephalitis such as EEEV, WEEV, 
and VEEV (Painter et  al. 2019, 2021; Wang et  al. 
2021) and is still being tested in humans for safety 
and efficacy against COVID-19 subjects (Wahl et al. 
2021). Favipiravir, on the other hand, inhibits 53 
types of influenza viruses, as well as Ebola, arena-
virus, bunyavirus, filovirus, West Nile virus, yel-
low fever virus, foot-and-mouth disease virus, and 
Lassa virus (Furuta et al. 2013, 2017; Agrawal et al. 
2020).

Table 1   Comparison 
between Favipiravir, 
Molnupiravir, 2DG and 
Remdesivir

Drug Property References

1 Favipiravir
Docking energy with Human HK-II First report This study
Hexokinase II inhibition, 0.12 mM 55% This study
RdRp inhibition 67.61 μM Zhao et al. (2021)
Half life 2.5 to 5.5 h Painter et al. (2021)
Inhibition of SARS-CoV-2 in vitro, EC50  > 100 μM Rabie (2021)

2 Molnupiravir
Docking energy with Human HK-II First report This study
Hexokinase II inhibition, 0.3 mM  ~ 10% This study
RdRp inhibition 0.22 μM Zhao et al. (2021)
Half life 1–1.75 h Painter et al. (2021)
Inhibition of SARS-CoV-2 in vitro, EC50 8.8 μM Wang et al. (2021)

3 2DG
Docking energy with Human HK-II Reported Gao et al. (2020)
Hexokinase II inhibition, 1 mM 21% This study
RdRp inhibition Not available
Half life 1.5 h Dwarakanath and Jain, 2009
Inhibition of SARS-CoV-2 in vitro, EC50 0.7 mM Bhatt et al. (2022)

4 Remdesivir
Docking energy with Human HK-II First report This study
Hexokinase II inhibition, 1 mM Not done This study
RdRp inhibition 0.67 μM Zhao et al. (2021)
Half life 1 h Tempestilli et al. (2020)
Inhibition of SARS-CoV-2 in vitro, EC50 23.88 μM Rabie (2021)

5 Cyan 20
Docking energy with Human HK-II First report This study
Hexokinase II inhibition, 1 mM Not done This study
RdRp inhibition Not available
Anti-viral agent Yes Rabie (2021)
Inhibition of SARS-CoV-2 in vitro, EC50 0.48 μM Rabie (2021)
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Molecular docking studies

The values of the net anticipated binding free energy 
(ΔGbind) for interactions between HK II and different 
ligands was calculated using several factors such as 
hydrogen bond (ΔGhbond), electrostatic (ΔGelec), tor-
sional free energy (ΔGtor), and desolvation (ΔGdesolv) 
and are presented in Table  2. Ligand-binding affini-
ties were predicted as negative Gibbs free energy 
(∆G) scores (kcal/mol), which were calculated on 
the basis of the AutoDock Vina scoring function. The 
optimal conformation with the lowest docked energy 
was found by the docking search. The interaction of 
Favipiravir with protein HK II is shown as a crystal 
structure in Fig. 2a while Figs. 3a, 4a and 5a and 6a 
shows such interactions of HKII with Molnupiravir, 
2DG, Remdesivir and Cyan20, respectively. The sur-
rounding amino acids of the HK II protein with vari-
ous ligands is represented in Figs. 2b, 3b, 4b, 5b and 
6b for Favipiravir, Molnupiravir, 2DG, Remdesivir 

and Favi-Cyan20 respectively. Panel C of Figs. 2c, 3c, 
4c, 5c and 6c denotes the active site of HK II with 
Favipiravir, Molnupiravir, 2DG, Remdesivir and 
Cyan20, respectively. 

It is clear from Table 2, despite having the highest 
binding affinity to the predicted active site of the pro-
tein (total binding energy − 5.84 kcal/mole), the favi-
piravir derivative—Cyan 20 formed three H-bonds 
with Leu734, Arg779, and Thr784 amino acid resi-
dues present at the predicted active site of the protein 
(Fig. 6d). Favipiravir, on the other hand, has a binding 
energy of − 4.68  kcal/mole, generating four hydro-
gen bonds with Met 119, Ile 114, Gly87, and Phe 90 
(Fig. 2d). 2DG and Molnupiravir had the next high-
est binding energies of − 3.4 and − 3.12 kcal/mole, 
respectively. 2DG established two H bonds with 
Glu79 and Lys147 in HK II (Fig. 4d), whereas Mol-
nupiravir showed 3 H bonds with Thr336, Ser340, 
and Ser415 (Fig. 3d). Remdesivir has the lowest bind-
ing energy of − 2.21 kcal/mole, making H-bonds with 

Table 2   Detailed binding energy and intermolecular energy of all the possible HK II (PDB ID = 2NZT) docked with selected drugs

2DG- 2 Deoxy d glucose, T-705- Favipiravir, EIDD-2801 Molnupiravir, Cyan 20 Cyanorona
a ΔGbind = Net predicted binding Energy, (kcal/mol)
b ΔGelec = electrostatic energy (kcal/mol)
c ΔGdesolv = desolvation energy (kcal/mol)
d ΔGtor = torsional free energy (kcal/mol)

Ligand (ΔGbind)a No. of H bonds Interacting residues Final intermolecu-
lar energy (kcal/
mol)

(ΔGdesolv)c (ΔGelec)b (ΔGtor)d

2-DG − 3.40 02
(H1 = 2.52 Å, H2 = 2.43 Å)

LYS:147(H1),
PRO:149,
GLU:79(H2)

− 3.52 − 3.42 − 0.09  + 2.68

T-705 − 4.68 04
(H1 = 2.65 Å, H2 = 3.03 Å, 

H3 = 2.81 Å, H4 = 2.25 Å)

MET:119(H1),
ILE:114(H2),
GLY:87,
PHE:90(H3),
ASN:89(H4)

− 4.57 − 4.48 − 0.08  + 0.30

EIDD-2801 − 3.12 03
(H1 = 2.82 Å),
(H2 = 2.12 Å),
(H3 = 2.54 Å)

THR:336(H1),
SER:340(H2),
SER:415(H3),
GLY:299,
LYS:337

− 5.80 − 5.79 − 0.02  + 2.68

Cyan 20 − 5.84 03
(H1 = 1.89 Å),
(H2 = 2.79 Å),
(H3 = 2.33 Å),

LEU:734(H1),
ARG:779(H2,
THR:784(H3,
MET:748

− 6.43 − 6.27 − 0.17  + 0.60

Remdesivir − 2.21 02
(H1 = 1.74 Å, H2 = 3.08 Å)

SER:506,
LYS:510(H1),
LYS:618(H2)

− 5.74 − 5.53 − 0.21  + 5.07
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only two amino acids namely Lys618 and Lys510 
(Fig. 5d).

Discussion

Drug developers are making efforts to consider drug 
repurposing as one of the more appealing choices for 
addressing the sudden and abrupt advent of SARS-
CoV-2 that includes allopathic drugs such as Remde-
sivir, Dexamethasone, and Tocilizumab (Venkateshan 
2021), Emodin, Omipalisib, and Tipifarnib (Jang 
et al. 2021; Ng et al. 2021) and selected herbal drugs 
(Palghadmal et  al. 2021; Padmanabhan 2021; Khan 
and Al-Balushi 2021). Other tested medications, such 
as Chloroquinine, Hydroxychloroquine, and the Lopi-
navir-Ritonavir combination, have been withdrawn 
(Paul and Biswas 2021) due to inconsistent treatment 
reports.

COVID-19 treatment can be implemented in a 
variety of ways. Favipiravir, Molnupiravir, and Rem-
desivir are examples of drugs that affect the viral pol-
ymerase; drugs that affect COVID-19 entry to cells 
by inhibiting host proteases like Camostat, Nafamo-
stat, Aprotinin, and Bromhexine; and drugs like 2DG 
that inhibit host hexokinase activity, which depletes 
the cells of energy for the virus to multiply.

When docking the 2NZT Human Hexokinase Type 
II with Favipiravir, it was discovered that Favipiravir 
displayed strongest binding energy of − 4.68  kcal/
mol, followed by 2DG, Molnupiravir and Remdesivir 
of binding energies of − 3.4 kcal/mole, − 3.12 kcal/
mol and − 2.2  kcal/mole respectively. It is interest-
ing that the Favipiravir derivative Cyan-20 showed 
a binding energy of − 5.84  kcal/mole implying that 
Favipiarvir and its derivative formed the most stable 
complex with the HK enzyme since since more nega-
tive the binding energy is, the better is the ligand. The 
highest binding energy (most negative) was measured 

Fig. 2   Molecular docking 
of Favipiravir binding with 
Hexokinase II (PDB ID: 
2NZT) shows 3D model 
of the interactions and the 
2D interaction patterns 
and H-bond interactions. 
The polypeptide chain of 
HK II is folded into three 
structural domains, one of 
which is predominantly 
alpha-helical (red spiral) 
and two of which each 
contain a beta-pleated sheet 
(cyan blue) flanked by 
alpha-helices. The green 
string represents the turns 
of coils. Panel A shows the 
interaction of the ligand 
(Favipiravir) with protein 
HK II; Panel B is 3D Favi-
piravir with surrounding 
amino acids of HK II; Panel 
C is Favipiravir with HK 
II (hydrophobicity surface) 
at the active binding site; 
Panel D shows the 2D view 
of interaction type of Favi-
piravir with surrounding 
amino acids of HK II
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as the ligand with maximum binding affinity as sug-
gested by Rafi et  al. (2020). The binding energy of 
Favipiravir with rdrp is − 4.9 kcal/mole and its ana-
logue6-Fluoro-4-methyl-3-oxopyrazine-2-carboxam-
ide as − 5.1 kcal/mole (Rafi et al. 2020). With Nsp14, 
Favipiravir shows a binding energy of − 5.969 kcal/
mole (Eweas et  al. 2021) while it is − 4.8818  kcal/
mole for interaction with SARS-CoV-2 3CLpro (Al-
Masoudi et al. 2020). This study indicates that Favi-
piravir shows a binding energy value of − 4.68 kcal/
mole with HKII. Docking involves the placement of 
a ligand within a binding site of the target protein 
and the prediction of the free energy of binding for 
such poses is calculated. Since the binding energy 
includes the conformational aspects of ligand and 
protein (Pantsar and Poso 2018), and also changes in 
motion (mainly an entropic effect), we believe similar 

binding energy of Favipiravir with different targets 
indicate similar binding nature.

Host esterases and anti‑COVID‑19 drug metabolism

Except for Favipiravir, the medicines used to treat 
COVID-19, like Molnupiravir, Remdesivir, and 
Dexamethasone, are converted to active metabolites 
by host esterases such as Carboxylesterase I (CES1) 
due to presence of ester linkages in all except, Favi-
piravir. It’s fascinating to learn that medications like 
dexamethasone stimulate CES1, one of the most 
abundant drug metabolizing enzymes in the human 
body, and therefore its conversion to active metabo-
lite is maximized, contributing to dexamethasone’s 
high success rate in suppressing COVID-19 devel-
opment. Furthermore, because CES1 is known to 

Fig. 3   Molecular docking of Crystal structure of human 
hexokinase II (PDB ID: 2NZT) binding with Molnupiravir 
shows 3D model of the interactions and the 2D interaction 
patterns and H-bond interaction. The polypeptide chain of 
HK II is folded into three structural domains, one of which 
is predominantly alpha-helical (red spiral) and two of which 
each contain a beta-pleated sheet (cyan blue) flanked by alpha-

helices. The green string represents the turns of coils. Panel A 
shows the interaction of the ligand (Molnupiravir) with protein 
HK II; Panel B is Molnupiravir DG  with surrounding amino 
acids of HK II; Panel C is  Molnupiravir  with HK II (hydro-
phobicity surface) at the active binding site; Panel D shows the 
2D view of interaction type of Molnupiravir with surrounding 
amino acids of HK II
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exhibit genetic variation (Merali et al. 2014), it is rea-
sonable to predict that not every COVID-19 patient 
receiving Remdesivir or Molnupiravir will have the 
same CES1-mediated metabolism. Also, some herbal 
diet supplements, such as grapefruit juice, ginseno-
sides (Gao et al. 2020), cannabinoids, lecithin (Kang 
et al. 2021), and resveratrol, as well as plant extracts 
with active constituents such as naringenin, querce-
tin, luteolin, oleanolic acid, and asiatic acid, appear to 
have the highest CES1 inhibition potential (Qian and 
Markowitz 2020) which could alter the efficacy of the 
anti-viral drugs used.

CES1 is the most abundant hydrolase, with lev-
els seven times higher in the human liver than in the 
lung, but low levels in the intestine and kidney (Li 
et  al. 2020). However, even with Remdesivir, major 
side events and mortality among COVID-19 patients 
remained high (Wang et al. 2020). The predominant 
metabolite of Remdesivir (GS-5734) that reaches the 
lungs, GS-441524, is a potent antiviral in comparison 

to its parent molecule Remdesivir (Yan and Muller 
2020), and the efficacy and pharmacokinetic profile 
of Remdesivir are compromised due to serum ester-
ase degradation (Yan and Muller 2020; Malin et  al. 
2021). The cytotoxicity of Remdesivir was dramati-
cally elevated when CES1 was overexpressed (Shen 
et al. 2021). It’s tempting to speculate that discrepan-
cies in esterase expression levels in human and ani-
mals, such as rhesus monkey, dog, minipigs, rabbit, 
rat, and mouse plasma, are the reason for efficacy dif-
ferences of the antiviral drugs in COVID-19 therapy 
(Bahar et al. 2012).

Albumin makes up 60% of total blood protein and 
has been found to have esterase activity and lower 
albumin levels seen in severe COVID-19 patients 
could potentially reduce the hydrolysis of the prod-
rugs to their active metabolites, which could affect 
the efficacy of the drugs in controlling the viral infec-
tion (Phuangsawai et  al. 2014; Huang et  al. 2020). 
Recent observations of increased albumin levels in 

Fig. 4   Molecular docking 
of 2-Deoxy-d-Glucose 
binding with Hexokinase 
II (PDB ID: 2NZT) shows 
3D model of the interac-
tions and the 2D interac-
tion patterns and H-bond 
interaction. The polypeptide 
chain of HK II is folded into 
three structural domains, 
one of which is predomi-
nantly alpha-helical (red 
spiral) and two of which 
each contain a beta-pleated 
sheet (cyan blue) flanked 
by alpha-helices. The green 
string represents the turns 
of coils. Panel A shows the 
interaction of the ligand 
(2DG) with protein HK II; 
Panel B is 3D 2 DG with 
surrounding amino acids 
of HK II; Panel C is 2 
DG with HK II (hydropho-
bicity surface) at the active 
binding site; Panel D shows 
the 2D view of interaction 
type of 2DG with surround-
ing amino acids of HK II
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patients with fewer negative outcomes, such as blood 
clot occurrences, respiratory distress, and ICU admis-
sions, support our idea (Kheir et  al. 2021). Surpris-
ingly, viral infection reduces esterase activity in 
honey bees (Rinkevich et al. 2018), implying that the 
efficacy of medications having ester linkages, such as 
Molnupiravir and Remdesivir, may be affected due 
to lower rate of conversion of their pro drug form to 
active metabolite which does not apply for drugs such 
as Favipiravir.

Human trials of anti‑COVID‑19 drugs and 
advantages of Favipiravir over other drugs

Favipiravir has shown promising results in clinical 
studies in China, Russia, and Japan, with more tri-
als in the United States, the United Kingdom, and 
India underway. Furthermore, two comparative tri-
als of Favipiravir have shown that it is superior to 

other antivirals (Cai et  al. 2020; Chen et  al. 2020; 
Doi et  al. 2020; Sanders et  al. 2020; Ivashchenko 
et  al. 2020), and other Favipiravir COVID-19 tri-
als are currently ongoing or unreported (Doi et  al. 
2020; Agrawal et  al. 2020). Favipiravir, appears a 
right drug of choice for tacking COVID-19 since 
it displays resistance to esterase action, has higher 
half-life, its safety and efficacy established, as well 
as the newly discovered hexokinase inhibition.

Recent reports by Wang et  al. (2020) show that 
Remdesivir had no statistically significant clini-
cal benefits for severe COVID-19 patients and 
Jang et  al. (2021) demonstrate effective drug com-
binations like Omipalisib/Remdesivir, Tipifarnib/
Omipalisib, and Tipifarnib/Remdesivir for inhib-
iting SARS-CoV-2 in human lung cells. Mol-
nupiravir (MK-4482, EIDD-2801), an orally active 
RdRp inhibitor, is now being studied in a phase 
3 clinical trial by Emory University, Ridgeback 

Fig. 5   Molecular docking 
of Remdesivir binding with 
Hexokinase II (PDB ID: 
2NZT) shows 3D model 
of the interactions and the 
2D interaction patterns 
and H-bond interactions. 
The polypeptide chain of 
HK II is folded into three 
structural domains, one of 
which is predominantly 
alpha-helical (red spiral) 
and two of which each 
contain a beta-pleated sheet 
(cyan blue) flanked by 
alpha-helices. The green 
string represents the turns 
of coils. Panel A shows the 
interaction of the ligand 
(Remdesivir with protein 
HK II; Panel B is 3D Rem-
desivir with surrounding 
amino acids of HK II; Panel 
C is Remdesivir with HK 
II (hydrophobicity surface) 
at the active binding site; 
Panel D shows the 2D view 
of interaction type of Rem-
desivir with surrounding 
amino acids of HK II
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Biotherapeutics, and Merck to treat COVID-19 
(Imran et al. 2021).

Hexokinase inhibitors and viruses

2-DG, on the other hand, is a glucose antimetabolite 
and anticancer medication that, as an analogue of 
glucose, enters cells and inhibits both glycolysis and 
glycosylation, preventing the virus from multiplying 
in infected cells (Halder and Mehta 2021). Scientists 
from the Institute of Nuclear Medicine and Allied 
Sciences (INMAS), India, the Defense Research and 
Development Organization (DRDO), India, and Dr 
Reddy’s Laboratories (DRL), India, have proposed 
an anti-COVID-19 drug after in-vitro studies revealed 
that this molecule effectively inhibits the growth of 
the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) virus (Mantha et al. 2021).

2DG inhibits the multiplication of a number of 
enveloped RNA and DNA viruses through an effect 
on the incorporation of sugars into viral glycopro-
teins. At 35  mM, it inhibits the replication of Her-
pes Simplex Virus, while has little effect upon the 

replication of Newcastle disease virus or vesicular 
stomatitis (Scholtissek et  al. 1974). Reading et  al. 
(1998) showed that influenza load in the lung was 
proportional to the glucose concentration in the 
blood. Also, SARS-CoV-2 replication in monocytes 
was shown to rely entirely on ATP produced by gly-
colysis and multiplication of viruses such as dengue 
is known to require optimal glycolysis for replication 
(Fontaine et  al. 2015). In the light of these reports, 
inhibition of hexokinase II appears a potential way of 
suppressing viral infection.

Conclusion

Our observations of in-vitro suppression of human 
hexokinase activity with different allopathic antiviral 
medicines and a few herbal antiviral agents led to the 
discovery of Favipiravir as a substantial inhibitor of 
hexokinase. Under the conditions tested, hexokinase 
inhibition by Favipiravir and molnupiravir showed 25 
and 13 times higher levels of hexokinase inhibition 
than the well-known hexokinase inhibitor 2 Deoxy 

Fig. 6   Molecular docking 
of Cyan 20 binding with 
Hexokinase II (PDB ID: 
2NZT) shows 3D model 
of the interactions and the 
2D interaction patterns 
and H-bond interaction. 
The polypeptide chain of 
HK II is folded into three 
structural domains, one of 
which is predominantly 
alpha-helical (red spiral) 
and two of which each 
contain a beta-pleated sheet 
(cyan blue) flanked by 
alpha-helices. The green 
string represents the turns 
of coils. Panel A shows the 
interaction of the ligand 
(Cyan 20) with protein 
HK II; Panel B is 3D Cyan 
20 with surrounding amino 
acids of HK II; Panel C 
is Cyan 20 with HK II 
(hydrophobicity surface) 
at the active binding site; 
Panel D shows the 2D view 
of interaction type of Cyan 
20 with surrounding amino 
acids of HK II
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d glucose (2DG). The in-vitro data is supported by 
the molecular docking studies that reflect that Favi-
piravir is the most potent ligand for a robust contact 
with Hexokinase II followed by Molnupiravir and 2 
DG. This data shows that Favipiravir has the lowest 
amount of viral replication suppression, but because 
of its hexokinase inhibitory property, one could 
assume an additional mode of action of hexokinase 
inhibition, making this molecule more powerful than 
the other molecules examined.
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