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INTRODUCTION 
 

According to the latest Global Cancer Statistics 2020 

report, over 2,200,000 female breast cancer (BC) cases 

are diagnosed each year, ranking first in new cases of all 

tumors. With 685,000 deaths, BC is the fifth leading 

cause of cancer mortality globally. BC accounts for 1 in 

every 4 cancer diagnoses and 1 in every 6 cancer deaths 

in women, ranking first in incidence in the great majority 

of nations (159 of 185) [1]. Because of the heterogeneity 

of BC, early diagnosis and advancements in therapy are 

critical. Currently, the treatment of BC is mainly based 
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ABSTRACT 
 

Background: Pyroptosis is a new form of programmed cell death (PCD), also known as cellular inflammatory 
necrosis. Its discovery has resulted in a novel approach to the progression and medication resistance of breast 
cancer (BC). However, there is still a significant gap in the investigation of pyroptosis-related genes in BC. 
Methods: The mRNA expression profiles and clinical data of BC patients were obtained from the Gene 
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Then, using the TCGA cohort, we 
created a predictive multigene signature including pyroptosis-related genes and verified it using the two GEO 
cohorts. A pyroptosis-related gene signature was created by combining several bioinformatics and statistical 
methodologies to predict patient prognosis and responses to immunotherapy and chemotherapy. Furthermore, 
a nomogram based on the gene signature and clinicopathological markers was created to better classify the risk 
and quantify the risk assessment of individual patients. 
Results: A pyroptosis-related gene signature consisting of 15 genes was established. The pyroptosis-related 
gene signature classified the patients into two groups: high-risk and low-risk. When combined with clinical 
variables, the risk score was discovered to be an independent predictor of overall survival (OS) in BC patients. 
Some immunological pathways and genes were linked to pyroptosis, according to Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) evaluations. Patients in the high-risk group had a worse 
prognosis and were not very sensitive to immunotherapy. However, several chemotherapeutic agents were 
predicted to have greater potential for patients in the high-risk group. Finally, a nomogram was developed that 
included a classifier based on the 15 pyroptosis-related genes, tumor stage, age, and histologic grade. This 
nomogram demonstrated good classification capacity and might help with clinical decision-making in BC. 
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on surgical resection, systemic chemotherapy and 

endocrine therapy [2]. The present effectiveness of 

immune checkpoint antagonists in other solid cancers 

has rekindled interest in immunotherapy-based BC 

treatment and prevention [3–5]. However, pablizumab 

and atezolizumab are the only currently FDA-approved 

immunotherapeutic agents for application in the clinical 

treatment of BC. Considering the limitations of BC 

treatments and the heterogeneity of BC, a new 

therapeutic target is urgently needed to improve the 

clinical outcome of BC; thus, a reliable novel prognostic 

model is also needed to make targeted therapies more 

feasible. 

 

A growing number of studies have described new 

mechanisms of programmed cell death in recent years, 

including cell swelling, autophagy, ferroptosis, and 

pyroptosis. The most notable of these procedures is 

pyroptosis. In 2001, Cookson BT and Brennan Ma 

proposed the pyroptotic cell death mechanism as a new 

form of caspase-1-dependent programmed cell death for 

the first time [6]. Pyroptosis is a specific kind of 

proinflammatory cell death program that differs from 

other types of cell death. In particular, pyroptosis is 

distinguished by gasdermin family-mediated pore 

formation and subsequent cellular lysis, as well as the 

release of multiple proinflammatory intracellular 

cytokines [7]. In terms of its mechanism, researchers 

mainly believe that there are canonical pathways and 

noncanonical pathways involved in pyroptosis. In 

canonical pathways, pyroptotic processes have been 

proven to involve the activation of typical caspase-1 [8]. 

Pyroptosis is also well preserved in noncanonical 

pathways that involve the activation of atypical caspase-

4/5/11 (human caspase-4/5 and mouse caspase-11) [8]. 

Pyroptosis has been detected in a number of solid 

tumors, indicating that it might be a possible target for 

solid tumor treatment [9]. 

 

Research on the relationship between BC and 

pyroptosis is also gradually increasing. Recent studies 

have shown that NLRP3 inflammasome-mediated cell 

death occurs in BC [10]. The tumor suppressor DRD2 

has been shown to trigger pyroptosis in BC [11]. Some 

common chemotherapeutic agents, such as cisplatin, 

have also been found to induce pyroptosis in BC [12]. 

In fact, the role of pyroptosis in BC and other types of 

cancers is complicated. Recent studies have indicated 

that inducing pyroptosis in BC cells has opposite effects 

on tumor growth in two mouse breast tumor models, 

although they focused on different gasdermins [13, 14]. 

Meanwhile, because no pyroptosis-related drugs have 

been approved for clinical use, there are no more studies 
or data to clarify the relationship between pyroptosis 

and BC outcomes. There are also no predictive models 

available for BC. 

Current predictions about the prognosis of BC patients 

are still mainly focused on the molecular level. This is 

most evident in the differential expression of the 

estrogen receptor (ER), progesterone receptor (PR), and 

human epidermal growth factor receptor 2 (HER2) 

(HER2). These conventional variables, however, are 

insufficient for making appropriate treatment decisions, 

and as a result, numerous molecular tests based on 

multiple gene expression patterns have been created to 

better predict the prognosis and treatment responses of 

BC patients. The most commonly used clinical gene 

prediction models for BC are 21-gene and 26-gene 

prediction models [15, 16]. It is therefore crucial to 

accurately profile the prognostic genes of BC, and 

exploring the genetic profiles associated with BC is also 

important for the precise treatment of BC. 
 

Based on the available findings and data, we sought to 

confirm whether pyroptosis is associated with the 

prognosis of BC. Furthermore, we hoped to develop a 

pyroptosis-related signature to determine the prognosis 

of BC patients. The most valuable aspect of a predictive 

model is that it provides more information for the 

selection of clinical treatment options. For example, the 

21-gene test in breast cancer is now guiding clinical 

practice [15, 17]. Therefore, we also hope that our model 

can provide more reference advice in the treatment of 

tumors (including immunotherapy and chemotherapy). 

This will provide a stronger theoretical foundation for 

the precise management of BC patients. Finally, we tried 

to assess the connection between pyroptosis and 

immunotherapy and chemotherapy in anticipation of 

discovering more new treatment strategies. 

 

RESULTS 
 

Schematic diagram of the study design 
 

Fifty-two candidate pyroptosis-related genes with 

relevance scores greater than 1.0 were identified from 

the GeneCards database, and CASP8, GZMB and ZBP1 

were identified from the literature, for a total of 55 

candidate genes to be finalized (Supplementary Table 1). 

The theory of this relevance score is explained at 

https://www.elastic.co/guide/en/elasticsearch/guide/curre

nt/scoring-theory.html. To identify potential candidates 

and create a robust signature encompassing 15 

pyroptosis-related genes to predict survival, the least 

absolute shrinkage and selection operator (LASSO) 

method was utilized (Figure 1A). Subsequently, we 

validated the model from The Cancer Genome Atlas 

(TCGA) dataset as the training group in two GSE 

datasets as validation groups. To further confirm the 
model’s predictive capability, a meta-analysis was 

performed on the three datasets (Figure 1B). In addition 

to assessing the prognosis of patients, we hope that our 

https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
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Figure 1. Schematic diagram of the study design. (A) A new prognostic model related to pyroptosis has been established from the 

literature and databases. (B) The stability and generalisability of the model was verified in an external independent database. (C) Prediction 
and application of PRS for clinical response to treatment. LASSO, least absolute shrinkage and selection operator; PRS, Pyroptosis-related Risk 
Scores; AUC, area under the curve. 
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predictive model will be useful as a clinical guideline. 

We therefore analyzed the relationship between 

clinicopathological features and the pyroptosis risk score 

(PRS) and explored the relationship between PRS  

and immunotherapy. For patients with different risks, 

according to our model, we also predicted several 

different chemotherapeutic agents that could serve as 

clinical treatment options. Finally, we established a 

nomogram to evaluate and quantify the prognosis of BC 

patients based on PRS and other clinical characteristic 

variables (Figure 1C). 

 

Development of a pyroptosis-related gene signature 

for prognosis prediction 

 

To identify the genes among these 55 candidate genes 

that are most relevant to the prognosis of BC patients, 

the LASSO Cox regression model was used to identify 

genes with the greatest prognostic value. To overcome 

overfitting, tenfold cross-validation was used, with 0.01 

selected as the best λ value (Figure 2A). Finally, 15 

predicted genes (NLRC4, IRF3, ANO6, GSDMC, TP53, 

FGF21, IL36B, DHX9, FOXO3, IL36G, IL18, GJA1, 

MST1, GZMB and GBP1) were identified to have 

nonzero LASSO coefficients and were incorporated into 

the gene signature model (Figure 2B). Figure 2C depicts 

the LASSO coefficient distribution for the genes in  

the signature. To evaluate the prediction effectiveness  

of the 15 pyroptosis-related gene-based signatures in  

the TCGA cohort, a risk score was developed 

(Supplementary Table 2). Patients with a PRS greater 

than 0.168 were classified as high-risk, whereas those 

with a PRS less than 0.168 were classified as low-risk. 

Figure 3A, 3C show the distributions of risk scores, 

 

 
 

Figure 2. LASSO regression identifies prognosis-related genes. (A) The adjustment parameter (lambda) in the LASSO model was 

selected for 10-fold cross-validation by the minimum criterion. Partial likelihood deviation curves were plotted against lambda. Dotted 
vertical lines were drawn at the optimal values by using the minimum criterion and 1 standard error of the minimum criterion (1-SE criterion). 
(B) LASSO coefficient profiles of the 55 pyroptosis-related genes. A coefficient profile plot was produced against the log (lambda) sequence. A 
vertical line was drawn at the value selected using 10-fold cross-validation, where the optimal lambda resulted in 15 nonzero coefficients.  
(C) Distribution of the LASSO coefficients of the 15 immune-related gene signatures. The horizontal coordinate indicates LASSO coefficients, 
genes with negative coefficients in this regression indicate prognostic protective genes (green marker), and positive numbers indicate poor 
prognostic genes (red marker). 
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Figure 3. Prognostic analysis of the 15 pyroptosis-related gene signature model in TCGA cohort. (A) The distribution and cutoff 

value of the risk score in the TCGA cohort. (B) Kaplan–Meier curves for the OS of patients in the two groups in the TCGA cohort. (C) The 
distributions of OS status, OS and the risk score in the TCGA cohort. (D) Heatmap showing differences in the expression of 15 pyroptosis-
related genes between high-PRS group and low-PRS group. (E) tROC analysis showed that the PRS was an accurate variable for survival 
prediction. The four genes shown in the figure have the four highest AUCs among the 15 signature genes. TCGA, The Cancer Genome Atlas; 
PRS, pyroptosis-related risk score; High-PRS, high pyroptosis-related risk score; Low-PRS, low pyroptosis-related risk score; OS, overall 
survival; tROC, time-dependent receiver operating characteristic; AUC, area under the curve. 
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survival time, and survival status. As shown in Figure 

3B, patients with high and low PRSs have very different 

prognoses. Patients with high-risk scores had a 

significantly shorter survival time (P < 0.001; hazard 

ratio (HR) = 6.1; confidence interval (CI) = 4-9.4). The 

expression of the 15 genes in the gene signature was 

examined further and is depicted in a heatmap (Figure 

3D). The heatmap showed that there were differences in 

the expression of some of the predicted genes between 

the two groups. Then, the area under the curve (AUC) 

was calculated using time-dependent receiver operating 

characteristic (ROC) curve analysis. The AUCs of the 

signature for predicting overall survival (OS) at 3, 5 and 

7 years reached 0.7211, 0.6748 and 0.7208, respectively. 

We selected four of the 15 characterized genes with the 

highest AUCs for ROC analysis and calculated the 

AUCs of the four genes and PRS (Figure 3E). This also 

suggested that, when compared to a single gene, the PRS 

was the most reliable predictor of OS. We examined the 

relationships of the PRS with clinicopathological 

characteristics and clinical data to investigate the link 

between the PRS and clinical data. PRS was discovered 

to be substantially related to age, tumor stage, histologic 

subtype, and histologic grade (Table 1). 

 

In summary, low-risk patients are more prone to 

pyroptosis, or pyroptosis activity is greater in the low-

risk group; that is, low-risk patients survive longer 

because the cancer tissue in their bodies displays higher 

levels of pyroptosis, resulting in more cancer cells 

dying. However, it is worth noting that such results do 

not mean that the differential expression of several 

genes in BC induces or suppresses pyroptosis because 

some of the 15 genes in this signature are not 

differentially expressed genes. 

 

Validation of the 15 pyroptosis-related gene 

signatures in the Gene Expression Omnibus (GEO) 

cohort 

 

The pyroptosis-related gene signature was subsequently 

validated in two separate external validation sets to 

establish its stability and generalizability in various 

populations. We selected two GSE datasets from the 

GEO database as validation sets. Patients in the 

GSE21653 and GSE20685 cohorts were also assigned 

to one of two groups: high-PRS or low-PRS. The assign 

formula is the same as in the TCGA cohort. The cutoff 

value used in both validation cohorts was 0.168, which 

was consistent with that used in the training cohort. 

Similar to the training group, in both validation cohorts, 

we also analyzed the distributions of the risk score 

(Figure 4A, 4B) and survival status (Figure 4C, 4D). 
The results were highly consistent with the TCGA 

group. The gene expression heatmaps are shown in 

Figure 4E, 4F. Both external validation sets’ analytical 

results were very consistent with those of the training 

set. In the two validation cohorts, Kaplan–Meier 

analysis revealed that low PRS predicted better OS than 

high PRS. (P =0.0011, Figure 4G; P =0.028, Figure 

4H). Next, we conducted a meta-analysis of genetic 

variables in the training cohort as well as two validation 

cohorts separated into two groups. The meta-analysis 

found that all patients with greater PRS had a poorer 

prognosis than those with lower PRS, as illustrated in 

Figure 5A. (fixed effect model overall HR = 4.14, 95% 

CI 3.07–5.58; random effect model HR = 3.84, 95% CI 

2.24–6.57). The meta-analysis showed medium 

heterogeneity, and we attribute this to the fact that the 

TCGA cohort contains a much larger number of cases 

than the two validation cohorts. The results of 

univariate and multivariate Cox regression analyses in 

the TCGA database are depicted using forest plots 

(Figure 5B, 5C), and the full data are given in 

Supplementary Table 3. In the TCGA cohort, the risk 

score was discovered to be an independent prognostic 

predictor. (HR=2.9, CI 2.1–4.1, P < 0.01; HR=2.33, CI 

1.52–3.56, P < 0.01). Furthermore, in both cohorts, 

tumor stage and age were independent prognostic 

indicators (P < 0.01). These results demonstrate the high 

stability and generalizability of the 15 pyroptosis-

associated gene prediction model in BC patients. 

 

Functional and heterogeneity analyses of the 15 

pyroptosis-related genes in the high- and low-PRS 

groups 

 

To determine exactly what role these genes play in 

terms of their expression and function, further analyses 

are needed. We analyzed the expression and functions 

of these 15 pyroptosis-related genes. Some pyroptosis-

related genes, including ANO6, TP53, GSDMC, FGF21 

and IL36B, had high expression levels in BC patients 

(Figure 6A). We also found some genes that were not 

significantly different in expression, including DHX9, 

NLRC4, IRF3 and GJA1 (Figure 6A). We believe that 

these genes, which are not significantly differentially 

expressed but have an impact on prognosis, play a part 

in the regulation of certain functions. GO and KEGG 

pathway analyses were also utilized to investigate the 

probable functions of these genes in the two groups. 

Interestingly, the TCGA cohort’s pyroptosis-related 

genes were shown to be enriched in various cancer-

related molecular pathways, including immune-related 

pathways such as T cell activation, T cell regulation, 

and primary immunodeficiency (Figure 6B, 6C). 

Reversed-phase protein arrays (RPPAs) were utilized to 

assess the key pathways in the two groups to further 

explore tumor heterogeneity between the two groups of 
patients and to examine the variations in tumorigenesis 

processes between the two groups. The analysis results 

showed that tumor purity, proliferation scores, and 
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Table 1. Baseline characteristics of the patients in different risk groups. 

 Low (N=699) High (N=292) P-value 

Age    

Mean (SD) 57.8 (12.8) 60.1 (14.1) 0.015 

Median [Min, Max] 58.0 [26.0, 90.0] 61.0 [29.0, 90.0]  

Menopausal_State    

Post 447 (63.9%) 194 (66.4%) 0.5 

Pre 252 (36.1%) 98.0 (33.6%)  

His_Subtype    

Ductal/NST 482 (69.0%) 229 (78.4%) 0.003 

Other 217 (31.0%) 63.0 (21.6%)  

Histologic_Grade    

NA 699 (100%) 292 (100%) <0.001 

Tumor_Stage    

I 125 (17.9%) 47.0 (16.1%) 0.013 

II 406 (58.1%) 162 (55.5%)  

III 155 (22.2%) 67.0 (22.9%)  

IV 6.00 (0.9%) 11.0 (3.8%)  

Missing 7.00 (1.0%) 5.00 (1.7%)  

ER_Status    

NA 1.00 (0.1%) 1.00 (0.3%) 0.073 

Negative 131 (18.7%) 74.0 (25.3%)  

Positive 536 (76.7%) 210 (71.9%)  

Missing 31.0 (4.4%) 7.00 (2.4%)  

PR_Status    

NA 2.00 (0.3%) 1.00 (0.3%) 0.01 

Negative 191 (27.3%) 110 (37.7%)  

Positive 474 (67.8%) 174 (59.6%)  

Missing 32.0 (4.6%) 7.00 (2.4%)  

HER2_Status    

Negative 477 (68.2%) 202 (69.2%) 0.382 

Positive 100 (14.3%) 51.0 (17.5%)  

Missing 122 (17.5%) 39.0 (13.4%)  

OS.time    

Mean (SD) 44.4 (40.2) 38.2 (34.0) 0.014 

Median [Min, Max] 31.8 [1.03, 285] 25.5 [1.03, 287]  

OS    

Alive 631 (90.3%) 225 (77.1%) <0.001 

dead 68.0 (9.7%) 67.0 (22.9%)  

 

apoptosis scores differed between the high- and low-

risk groups (Figure 6D–6F). All three scores may 

indicate that high-risk patients have more malignant 

tumor cells that are prone to metastasis and have more 

difficulty undergoing apoptosis. The pathway scores, 

which are protein expression signatures of pathway 

activity, associated with tumor lineage were from an 

RPPA in prior work in the literature [18]. Given the 

highly heterogeneous character of breast cancer, the 

prognosis of different subtypes of BC patients differs 

considerably. As a result, we investigated the prognosis 

of patients in various risk categories among different 

subtypes of BC patients. The results showed that in 

patients with HER2 and LUMINAL subtypes, the low-

risk group had a better prognosis than the high-risk 

group (Figure 6H, 6I), while the prognosis of patients 

with triple-negative breast cancer (TNBC) was not 

(Figure 6G). 

 

Response to chemotherapy and immunotherapy of 

high- and low-PRS patients 

 

Systemic chemotherapy remains the foundation of BC 

treatment. However, some refractory, advanced tumors 

lack more chemotherapy options. Therefore, we used 

two chemotherapy drug response databases (PRISM and 
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Figure 4. Validation of the gene signature in the external validation sets. The distribution and cutoff value of the risk score in the 

groups in the GSE20685 (A) and GSE21653 (B). The distributions of OS status, OS and the risk score in the GSE20685 (C) and GSE21653 (D). 
The expression heatmap of the 15 pyroptosis-related prognostic genes between the high and low-PRS groups in the GSE20685 (E) and 
GSE21653 (F). Kaplan-Meier curves for the OS of patients in the high-risk group and low-risk group in the GSE20685 (G) and GSE21653  
(H) cohorts. TCGA, The Cancer Genome Atlas; GSE, gene expression omnibus series; OS, overall survival; PRS, pyroptosis-related risk score; 
High-PRS, high pyroptosis-related risk score; Low-PRS, low pyroptosis-related risk score. 
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CTRP) to identify new highly sensitive chemotherapy 

candidates for high PRS patients. First, the AUC values 

and PRSs were analyzed by Spearman correlation 

analysis to identify chemicals with negative correlation 

coefficients (Spearman r < -0.01 for CTRP and -0.01 for 

PRISM). Next, an examination of drug response 

differences between the high- and low-PRS groups was 

performed to find drugs with lower estimated AUC 

values in the high-PRS group [log2-fold change  

(FC) >0.07]. It is essential to note that a lower AUC 

indicates higher drug sensitivity. Three CTRP-derived 

compounds (cucurbitacin-I, PI-103 and SB743921)  

and three PRISM-derived compounds (including 

temsirolimus, mitoxantrone and ispinesib) were found 

to be potentially sensitive in the high-PRS group. In the 

high-PRS group, all of these drugs displayed a negative 

connection with the PRS and lower calculated AUC 

values. (Figure 7A for CTRP and Figure 7B for 

PRISM). For the chemotherapy drug analysis, we also 

analyzed the responses to some of the known and 

widely used chemotherapy drugs, cisplatin and 

fluorouracil. The results showed that these two common 

chemotherapy drugs also differed significantly in high- 

and low-risk populations. The low-risk populations had 

 

 
 

Figure 5. Verification of the generalizability and stability of the prediction model in TCGA cohort. (A) Meta-analysis of the TCGA 
training set and 2 external validation sets. (B) Univariate Cox regression analyses of OS in the TCGA training cohort. (C) Multivariate Cox 
regression analyses of OS in the TCGA training cohort. 
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Figure 6. Functional and heterogeneity analysis of 15 pyroptosis-related genes between high- and low-PRS groups.  
(A) Volcano plot of differentially expressed genes between the low- and high-risk groups. Orange indicates the 15 pyroptosis-related gene 
signature. (B) The most significant or shared GO enrichment terms in the TCGA cohort. (C) The most significant or shared KEGG pathways in 
the TCGA cohort. (D) The Boxplots show differences in tumor purity between the high and low-PRS group. (E) The Boxplots show differences 
in proliferation score between the high and low-PRS group. (F) The Boxplots show differences in apoptosis score between the high and low-
PRS group. (G) Results of survival analysis of high- and low- risk groups in TNBC breast cancer patients. (H) Results of survival analysis of high- 
and low- risk groups in LUMINAL breast cancer patients. (I) Results of survival analysis of high- and low- risk groups in HER2 breast cancer 
patients. The Kruskal–Wallis test was performed to calculate the P-value. GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; PRS, pyroptosis-related risk score; High-PRS, high pyroptosis-related risk score; Low-PRS, low pyroptosis-related risk score. 
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Figure 7. Response to chemotherapy and immunotherapy of high- and low-IRS patients. (A, B) The bubble plot shows the degree 
of negative correlation between AUC values and PRS scores of three CTRP-derived compounds (A) and three PRISM-derived compounds (B). 
Longer lines in the graph indicate a stronger negative correlation, predicting greater drug sensitivity. Boxplots indicate the results of 
differential drug response analysis between the PRS high and PRS low groups for the three CTRP-derived compounds (A) and the three 
PRISM-derived compounds (B). Note that lower values on the y-axis of boxplots imply greater drug sensitivity. (C) Evidence from multiple 
sources to identify the most promising therapeutic agents for the high-IRS group. Six compounds come from CTRP and PRISM are shown on 
the diagram, respectively. (D) Proportion of immune-responsive and nonimmune-responsive populations in the PRS high- and low-expression 
groups. (E, F) Survival analysis graph showing differences in survival between PRS-high and IRS-low groups in nonimmune-responsive (E) and 
immune-responsive (F) patients. (G) Differences in immune infiltration scores of 24 immune cell types in high and low PRS groups in TCGA 
database. * means p <0.05, ** means p <0.01, *** means p<0.005, **** means p<0.001. 
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lower AUC values, indicating greater sensitivity to the 

two common chemotherapeutic agents. (Supplementary 

Figure 1). Multiple-perspective studies were undertaken 

to assess the therapeutic potential of these compounds 

in BC to further evaluate whether the compounds we 

found had potential clinical utility. First, a detailed 

assessment of the literature in PubMed was conducted 

to discover experimental and clinical evidence of the six 

prospective medications in the treatment of BC. Second, 

the log2 FC values of the differential mRNA and 

protein expression levels of genes relevant to drug 

targets between tumor and normal tissues were 

determined, and a larger log2 FC value suggested better 

potential for BC therapy. Third, CMap analysis was 

utilized to confirm compounds whose gene expression 

patterns were oppositional to the BC-specific expression 

patterns (the expression of some genes was raised in 

tumor tissue but lowered after treatment with particular 

drugs). Lower CMap scores imply that these chemicals 

might have therapeutic potential for BC (Figure 7C). 

The approaches described above are based on published 

literature [19]. 

 

In addition to chemotherapy, immunotherapy is a new 

direction for BC treatment. Additionally, in our 

previous GO and KEGG analyses, we found that  

these genes appear to be inextricably linked to the 

immune system. Therefore, we sought to determine 

whether there was a difference in the response to 

immunotherapy between the high- and low-risk  

groups. Figure 7D depicts the predicted response to 

immunotherapy of patients with high and low PRS. In 

the high-PRS group, only 63% of patients were 

expected to react to immunotherapy, but in the low-PRS 

group, this proportion was 80%. Based on these 

findings, we hypothesize that patients with low PRS 

may be more susceptible to immunotherapy. Patients 

with a high PRS had a poorer prognosis in both groups 

when survival analysis was performed individually in 

the immunotherapy-responsive and immunotherapy-

nonresponsive groups (Figure 7E, 7F). These findings 

imply that patients with high PRS are not especially 

sensitive in terms of immunological response. This may 

be because of the different expression of genes 

associated with immunity. To further explore the 

relationship between the PRS and immune status, the 

immune infiltration scores in TCGA were calculated by 

using the Immune Cell Abundance Identifier 

(ImmuCellAI), which is used to precisely assess the 

abundance of 24 immune cell types, including 18 T cell 

subsets. (Figure 7G). It is encouraging to note that most 

of the immune cells, especially the various types of T 

cells, demonstrated significant differences in the 
different PRS groups (adjusted P < 0.05). These 

findings imply that the 15 pyroptosis-related genes we 

selected are potentially related to immune infiltration. 

Developing a prediction nomogram for BC patients 

 

Independent risk indicators were used to develop a risk 

assessment nomogram to provide a clinically relevant 

strategy for predicting the OS probability of BC patients 

(Figure 8A). These indicators included age, tumor stage, 

PR status, HER2 status, ER status and the risk score 

related to pyroptosis. Figure 8B–8D show calibration 

plots for 3-, 5-, and 7-year survival probabilities in the 

TCGA cohort, indicating that the nomogram had a high 

degree of accuracy. This indicates that our nomogram 

has a high predictive value. 

 

DISCUSSION 
 

Tumor development is dependent on the survival and 

death of tumor cells. Therefore, studying cell death can 

help us decipher the underlying mechanisms of tumors. 

In addition to the familiar methods of apoptosis and 

necrosis, more forms of programmed cell death are 

being discovered by researchers. For example, 

ferroptosis has been hotly studied in recent years [20]. 

Research on pyroptosis has also become more frequent 

but has mostly focused on more in-depth basic studies. 

Little has been reported in the literature as to whether 

this new mode of cell death can provide clinicians with 

some therapeutic insight. There are also few studies in 

the field of BC. Therefore, we sought to investigate the 

relationship between pyroptosis and BC clinical data in 

anticipation of obtaining more new methods that can be 

used for clinical diagnosis and treatment. 

 

In our study, we first identified 55 candidate pyroptosis-

related genes from the literature and the GeneCards 

database. LASSO Cox regression was performed to 

establish a new prognostic model comprising 15 

pyroptosis-related genes that was validated in 2 external 

cohorts. Unlike many other signature articles, we did not 

select differentially expressed genes in BC when we 

identified the initial candidate pyroptosis-related genes. 

Many genes with significant differential expression were 

not predictive of the prognosis of patients. The 

significance of a pyroptosis-related signature is mainly 

to provide some suggestions for clinical work, so we still 

consider the prognosis of the patient as the first 

principle. Therefore, we included as many genes related 

to pyroptosis as possible when we included candidate 

genes. In fact, our team used both methods to make our 

initial candidate gene list (differential gene screening 

and database relevance screening). We found that the 

predictive power (mainly the AUC values) of the 

predictive models built by differential gene screening 

was not as good as the method we have chosen now. The 

final 15 genes we obtained were NLRC4, IRF3, ANO6, 

GSDMC, TP53, FGF21, IL36B, DHX9, FOXO3, 

IL36G, IL18, GJA1, MST1, GZMB and GBP1. Among 
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our final selection of 15 genes, IL18, NLRC4, IRF3, and 

GJA1 were not differentially expressed genes in BC but 

still had a good predictive role. 

 

As an inflammatory type of regulated cell death, the 

main pathological characteristics of pyroptosis are cell 

swelling and lysis. This process is accompanied by the 

release of many proinflammatory factors, including 

many members of the interleukin family, such as IL18 

and IL1. There are two main pathways of pyroptosis 

activation: (i) GSDMD (gasdermin D)-dependent 

activation regulated by caspase 1/4/5/11 and (ii) 

GSDME-dependent activation regulated by caspase 3 

[21–24]. The GSDM family plays a crucial role in the 

 

 
 

Figure 8. Predictive nomogram for PRS and clinical features. (A) The 15 pyroptosis-related prognostic model for predicting 3-, 5-, and 

7-year OS in BC patients. The independent risk factors were used to build a risk estimation nomogram to predict the probability of OS in BC 
patients. (B) The calibration plots for 3-year survival probabilities in the TCGA cohort. (C) The calibration plots for 5-year survival probabilities 
in the TCGA cohort. (D) The calibration plots for 7-year survival probabilities in the TCGA cohort. 
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activation of pyroptosis. Activated caspases cleave the 

hinge region between the N- and C-terminal domains of 

GSDMD or GSDME, releasing the lethal active segment 

and leading to pyroptosis [25, 26]. The GSDM family is 

mainly responsible for pore formation during the 

activation of pyroptosis. GSDMC has also been reported 

to have a pore-formation domain and can induce 

pyroptosis [14, 26]. Thus, it is reasonable that IL18 and 

IL36 from the interleukin family and GSDMC from the 

GSDM family were included in our final 15 genes. 

 

We carefully analyzed the pathway of these 15 genes 

regulating pyroptosis and exhibited the pathway map of 

the 15 genes in Figure 9. The whole process of pyroptosis 

is accompanied by the formation of inflammasomes,  

so genes that affect inflammasome formation are  

also very likely to affect pyroptosis. NLRC4 is a key 

inflammasome component that indirectly detects 

particular proteins from pathogenic bacteria and fungi 

and responds by building an inflammasome complex that 

promotes caspase-1 activation and cytokine production. 

Phosphorylation of NLRC4 by PKCd and leucine-rich 

repeat kinase 2 (LRRK2) triggers the formation of a 

NOD-like receptor family apoptosis inhibitory protein 

(NAIP)–NLRC4 complex and the recruitment of caspase-

1 to form an inflammasome [27]. IRF3, a member of the 

interferon regulatory family, is related to the NLRP 

family and has been shown to activate NLRP3 to 

promote pyroptosis [28]. In contrast, downregulation of 

FOXO3 reduces NLRP3 inflammasome-mediated 

endothelial cell pyroptosis in atherosclerosis [29]. 

Additionally, related to the inflammasome is FGF21. 

Existing studies support that FGF21 interferes with 

pyroptosis by inhibiting the formation of inflammasomes 

[30]. P53-specific knockdown prevented pyroptosis 

produced by lipopolysaccharide (LPS). In vivo, p53 

overexpression in A549 cells significantly reduced tumor 

development and the death rate by raising the pyroptotic 

level [31]. ANO6 belongs to the anoctamin family and is 

a multipass transmembrane protein. ANO6 exhibits 

intriguing properties in that it contributes to apoptotic cell 

death at low levels of activation, causing cell shrinkage. 

However, when activated strongly, it contributes to pore 

production and generates significant membrane blebbing, 

cell swelling, and membrane disintegration [32]. Based 

on the morphological characteristics of pyroptosis 

described earlier, we hypothesize that the high expression 

of ANO6 can promote cellular pyroptosis. DHX9 

encodes an RNA helicase. In 2017, Zhu S et al. found 

that via the RNA helicase Dhx9, NLRP9b recognizes 

short double-stranded RNA stretches and forms 

inflammasome complexes with the adaptor proteins Asc 

and caspase-1 to accelerate the maturation of IL18 and 

GSDMD-induced pyroptosis [33]. It has been suggested 

that gap junction proteins can induce pyroptosis [34]. 

GJA1, a gap junction protein, may also be involved. 

 

 
 

Figure 9. A pathway map of the 15 pyroptosis-related signature genes. Pathway map of 15 genes involved in pyroptosis regulation 

as summarized from references. ROS, reactive oxygen species; LPS, lipopolysaccharide. 
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MST1 was found to inhibit pancreatic cancer progression 

through ROS-induced pyroptosis in pancreatic cancer 

[35]. Because NK-induced pyroptosis in GSDME-

expressing cells does not require caspases, GZM 

proteases are hypothesized to cleave GSDME. GZM-

mediated cell death is caspase-independent but 

amplified by caspases because GZMB cleaves and 

activates caspase-3 [13]. GBP1 enhanced caspase-4 

recruitment to Salmonella, resulting in increased 

activation and pyroptosis [36]. 

 

It is important to note that our study is not intended to 

show that the high or low differential expression of the 

15 genes does or does not lead to pyroptosis. In reality, 

there is no obvious link between the expression of these 

genes and the development of pyroptosis. As in our 

previous analysis, not all 15 genes were directly related 

to pyroptosis. Meanwhile, some genes that are closely 

related to pyroptosis, such as GSDMD and GSDME, 

were not included in our signature. Our signature only 

demonstrates that these pyroptosis-related genes may be 

combined to accurately predict the survival time of BC 

patients. 

 

Our research not only uncovers the link between these 

genes and BC prognosis but also focuses on novel 

therapeutic strategies for BC patients. In recent years, 

immune checkpoint inhibitor (ICI)-based therapies 

seem to have achieved some research results [37]. 

However, some data show that only one-third of tumor 

patients benefit from them, so there are some limitations 

to ICI treatment [38]. Although the role of pyroptosis 

has been confirmed in a variety of tumors, its exact 

relationship with the immune system is not clear. Our 

findings imply that patients with low PRS respond 

better to immunotherapy. Thus, there may be a very 

strong relationship between pyroptosis and immuno-

therapy. In 2020, Zhang et al. showed that NK cells and 

CD8+ T cells reciprocally induce pyroptosis in cancer 

cells via granzyme B, which is capable of cleaving 

GSDME [13]. In separate research published the same 

year, CD8+ T cells and NK cells were demonstrated to 

promote tumor clearance via the GSDMB granzyme A 

axis [39]. Taken together, these studies suggest that NK 

cells may activate pyroptosis but may have different 

axes in different cells. The relationship between CD8+ 

T cells and pyroptosis is still a focus of the GSDM 

family. As early as 1986, it was reported that GSDMD 

limits the cytolytic ability of CD8+ T cells [40]. An in 

vitro experiment also implied that GSDMD is required 

for the antitumor effect of CD8+ T cells [41]. Our 

findings also revealed that the immune infiltration 

capability of NK cells and CD8+ T cells differed 
considerably between the two groups of patients with 

different PRSs. In the TCGA cohort, as expected, 

patients with low PRS were more vulnerable to tumor 

immune responses than those with high PRS. 

Interestingly, it seems that some innate immune cells, 

such as macrophages, monocytes, and neutrophils, 

scored higher in the high-PRS group. In contrast, 

regulatory immune cells such as several adaptive 

immune cells such as CD8 T cells, B cells, CD4 T cells, 

etc. had higher scores in the low-PRS group. Innate 

immunity has a weak effect and a short duration of 

action. The effect of regulatory immunity remains 

strong and long. Innate immunity and regulatory 

immunity together constitute the total defense function 

of the body. We consider that strong and persistent 

regulatory immunity gives a better prognosis for 

patients. Although patients in the high-PRS group had 

seemingly high levels of innate immunity, there was 

little subsequent activation of important regulatory 

immunity, which may have contributed to poor clinical 

outcomes. However, exactly which pyroptosis-related 

genes regulate the two different immunizations requires 

more experiments to prove. 

 

Therefore, we speculate that treatment targeting ICIs in 

combination with pyroptosis is a new potential treatment 

strategy. A review supported this strategy and reported 

that ICIs efficiently killed cold tumor cells only in the 

context of the concomitant induction of pyroptosis. 

Similarly, pyroptosis induction alone failed to trigger 

efficient tumor inhibition, highlighting the importance of 

treating cold tumors with a combination of pyroptosis 

inducers and ICIs [42]. Therefore, we believe that  

after numerous in vivo and in vitro experiments, such 

new therapies may provide a new pathway for tumor 

treatment. 

 

Systemic chemotherapy remains the basis of the 

treatment of BC. However, due to the high heterogeneity 

of BC, the chemotherapy regimen selected varies from 

patient to patient. Some commonly used chemotherapy 

drugs, such as paclitaxel and cisplatin, have been 

demonstrated to limit tumor proliferation and metastasis 

by triggering pyroptosis [43, 44]. By our prediction of 

chemotherapeutic agents, we identified six agents with 

different effects in patients with high PRS and low PRS. 

These drugs are not common chemotherapeutic agents 

for BC, and more basic research would allow us to 

confirm whether they can be used in the treatment of 

BC. Cucurbitacin-I, a glucocorticoid agonist, has been 

shown to promote apoptosis and induce autophagy in a 

variety of tumors [45–47]. PI-103, a PI3K/mTOR 

inhibitor, has also been published to be related to the 

regulation of a variety of tumor cells [48, 49]. SB743921 

is a strong inhibitor of the spindle protein kinesin that is 

being researched for the treatment of myeloma in 
ongoing clinical trials [50]. Temsirolimus and ispinesib 

target mTOR and EGFR and have been shown to inhibit 

a variety of tumors [51, 52]. Among them, temsirolimus 
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is being studied in phase III clinical trials of triple-

negative BC. Mitoxantrone is a synthetic anthra-

cenedione that was originally created to enhance the 

therapeutic profile of anthracyclines. It is often used to 

treat breast and prostate cancers, lymphomas, and 

leukemias [53]. Of these six drugs, temsirolimus and 

mitoxantrone have been or are likely to be used in the 

treatment of BC. In our analysis data, patients with a 

high PRS were more sensitive to these two drugs. If 

there are more data to support this finding, the detection 

of PRS when using these two drugs in the future may 

support precision treatment. 

 

Our signature predicted many therapeutic agents with 

significant differences in drug sensitivity between the 

high- and low-PRS groups, as expected. Of note, such 

drug prediction is not aimed at general low-risk BC 

patients with a better prognosis. Rather, it is designed to 

target the high-risk population with a poorer prognosis. 

We hope that our model will aid in the prediction of 

new drugs and the identification of new therapeutic 

targets and bring new hope to patients with a poor 

prognosis. 

 

We found that some pyroptosis-related articles have 

been published recently. However, there are no articles 

related to BC. The main areas of these studies are lung 

adenocarcinoma [54], gastric cancer [55] and ovarian 

cancer [56]. In the adenocarcinoma article, the authors 

ultimately included only five genes to build the model. 

The biggest drawback is that there was no validation 

group to prove the reliability of the model. The article 

on ovarian cancer analyzed a validation group. They 

used differential genes to directly divide patients with 

ovarian cancer into two clusters and then analyzed 

survival. The results were not statistically significant. 

This supports our view that not all differentially 

expressed genes will be meaningful in terms of survival 

time. Therefore, we avoided this when we included 

candidate genes in the first step. Relatively speaking, 

the article on gastric cancer is more comprehensive, and 

it also has some reference significance for our research. 

Compared with this article, our advantage is that in 

addition to the analysis of immune infiltration, we also 

predicted potential chemotherapeutics and provided 

some new potential options for chemotherapeutic 

agents. 

 

Nevertheless, there are still some general limitations in 

our study. As with most predictive modeling articles, 

the primary source of our data is publicly available 

databases, which lack the validation of laboratory data 

and real clinical data. Even though we used two 
different GSE datasets to validate our model, it still 

cannot replace validation with real clinical data. 

Therefore, the feasibility and true predictive value of 

the pyroptosis-related gene signature in clinical 

applications needs to be validated by more prospective 

studies. 

 

In conclusion, our research systematically built a unique 

prognostic model comprised of 15 pyroptosis-related 

genes. The TCGA training cohort created this 

prognostic model, which was verified in the two GSE 

validation cohorts. According to our prediction model, 

BC patients can obtain a PRS, and according to the 

score, we can determine whether the patient is sensitive 

to immunotherapy. With this score, it is also possible to 

predict which chemotherapy drugs they are more 

sensitive to. We created a nomogram to assess the risk 

of BC patients by combining this information with 

clinicopathological factors. This model based on the 

pyroptosis-related gene signature could be a useful tool 

to facilitate the personalized management and precision 

treatment of cancer. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The training set consisted of the RNA data collected 

and clinical information from 1007 BC patients 

acquired from The Cancer Genome Atlas (TCGA). In 

addition, the GSE21653 (n=266) and GSE20685 

(n=327) datasets, all of which contain gene expression 

files from the Gene Expression Omnibus (GEO) 

database, were utilized as external validation sets.  

Only patients with overall survival (OS) times of more 

than 30 days were included in all three datasets. 

Candidate pyroptosis-related genes were identified 

mostly from the literature and the GeneCards database 

(https://www.genecards.org/) using the term pyroptosis, 

and genes with relevance scores greater than 1.0 were 

selected. In the list of candidate genes, CASP8 [57], 

GZMB [58] and ZBP1 [59] were screened by reading 

extensive literature and were not in the Genecards 

database screening results. All candidate pyroptosis-

related genes are provided in Supplementary Table 1. 

The infiltration scores of 24 immune cells were obtained 

from ImmuCellAI (http://bioinfo.life.hust.edu.cn/web/ 

ImmuCellAI/) [60] and normalized in R software 

(version 4.0.3). ImmuCellAI is a website that estimates 

the abundance of 24 immune cells using gene 

expression datasets such as RNA-Seq and microarray 

data. It may be used to quantify the difference in 

immune cell infiltration across groups and predict 

patients’ responses to immune checkpoint blockade 

treatment. It works by obtaining a reference expression 

profile for each cell type from the GEO database and 
curating a specific gene set from a publication as a gene 

signature. Then, the total expression deviation of the 

gene signatures in the input expression profiles from the 

https://www.genecards.org/
http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/
http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/
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reference expression profiles of the 24 immune cell 

types was calculated. Deviations were then assigned to 

the corresponding immune cell type based on the 

enrichment fraction of its genetic profile, which was 

calculated using the single sample gene set enrichment 

analysis (ssGSEA) algorithm [60]. Drug sensitivity data 

of cancer cell lines (CCLs) were gathered from the 

Cancer Therapeutics Response Portal (CTRP v.2.0, 

released October 2015) and the PRISM Repurposing 

dataset (19Q4, released December 2019). 

 

Study design 

 

The training set was the TCGA cohort, while the 

validation sets were the GSE20685 and GSE21653 

cohorts. Fifty-five potential pyroptosis-related genes 

were found mostly through research articles and search 

results of the GeneCards database, with pyroptosis as 

the keyword, and genes with correlation scores greater 

than 1.0 were selected. The 55 genes were then 

evaluated using the R package glmnet (version: 4.0-2) 

for least absolute shrinkage and selection operator 

(LASSO) Cox regression to filter down the possible 

pyroptosis-related genes. The 55 pyroptosis-related 

genes were found to have nonzero coefficients in the 

model, and the samples were divided into high- and 

low-risk groups based on the cutoff value of 0.1677 

obtained using the survminer R package’s surv cutpoint 

function (Version: 0.4.3). The formula of the pyroptosis 

risk score (PRS) was as follows: 

 

PRS = sum of coefficients × normalized expression 

level of pyroptosis-related genes. 

 

Finally, independent risk variables found by 

multivariate Cox regression analysis were used to create 

a nomogram for predicting patient OS. Finally, to 

evaluate the performance of the nomogram, calibration 

plots were created. The concordance index (C-index) 

was used to examine the consistency between the 

model’s projected probability and the actual outcomes. 

The R package rms was used to plot the nomogram and 

calibration plots (Version: 4.0.2). 

 

Gene set enrichment analysis (GSEA) and functional 

enrichment analysis of pyroptosis-related genes 

 

GSEA was used to discover differences in the 

mechanisms in BC patients to analyze the potential 

pathways of pyroptosis-related genes. Based on the 

risk score, genes with P < 0.05 and |log2-fold  

change (FC)| ≥1 were considered to be substantially 

differentially expressed between the high- and low-risk 
groups. The clusterProfiler R tool was used to perform 

GO and KEGG analysis on these pyroptosis-related 

genes [61]. 

Estimation of chemotherapy and immunotherapy 

responses 

 

Data on immunotherapy responses (anti-PD1 or anti-

CTLA4) were obtained from ImmuCellAI, a gene set 

signature-based technique developed for predicting 

immunotherapy responses with high accuracy by 

evaluating gene expression data [60]. Through this tool, 

we divided BC patients into immunotherapy-responsive 

and nonresponsive groups. The chi-square test was then 

used to analyze the immunotherapy response group and 

the PRS group. The infiltration scores of the 24 immune 

cells from ImmuCellAI were also used to compare the 

differences between the high- and low-PRS groups. 

 

Proteomic analysis is one of the commonly used tools in 

tumor pathophysiology. The TCGA project team has 

made extensive use of reverse-phase protein array 

(RPPA) technology to perform tumor proteomic studies. 

This microarray allows analysis of the expression and 

trends of multiple marker proteins in the sample. By 

integrating RPPA microarray data from TCGA and 

several independent tumor research projects, The 

Cancer Proteome Atlas (TCPA) is provided to facilitate 

researchers to view and analyze the visualized 

microarray data. The article was published in nature 

methods [62]. The data we used in this study were the 

breast cancer RPPA microarray data compiled by 

Ciriello G et al. and can be downloaded directly from 

the supplemental data in the article [18]. 

 

The connectivity map (CMap) is a resource that uses 

cellular responses to perturbation to find relationships 

between diseases, genes, and therapeutics. The list of 

up- and downregulated differentially expressed genes 

obtained from the experimental analysis was compared 

with the database reference dataset using CMap; a 

correlation score (-100 to 100) was calculated based on 

the enrichment of differentially expressed genes in the 

reference gene expression profile; a positive number 

indicated that the up- and downregulated differentially 

expressed genes were similar to the reference gene 

expression profile; a negative number indicated that the 

up- and downregulated differentially expressed genes 

may be opposite to the reference gene expression 

profile; finally, the reference gene expression profile 

was ranked according to the correlation score [63]. 

 

CTRP, which contains sensitivity data for 481 chemicals 

in 835 CCLs, and the PRISM Repurposing dataset 

(19Q4, published December 2019), which contains 

sensitivity data for 1448 chemicals in 482 CCLs, were 

used to gather drug sensitivity data for CCLs. The AUC 
value is presented in these two datasets as a measure of 

drug sensitivity, with lower AUC values suggesting 

more sensitivity to treatment. Each TCGA sample’s  
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drug sensitivity was assessed using the R package 

pRRophetic (Version: 4.15-1), which has a built-in  

ridge regression model that was used to predict the 

chemotherapy response of clinical samples based on 

their expression profiles [19, 64]. The AUC values and 

PRSs were then examined using Spearman correlation  

to identify compounds with negative correlation 

coefficients (Spearman r < −0.25 for CTRP and −0.30 

for PRISM). Finally, an evaluation of drug response 

differences between the high-PRS (highest decile) and 

low-PRS (lowest decile) groups was conducted. 

 

Statistical analysis 

 

R version 4.0.3 was used for all statistical studies 

(2020-10-10). The Mann–Whitney U test and the 

Pearson chi-square test were used to compare 

continuous and categorical variables between the 

training cohort and validation cohort, respectively. 

GSEA was performed to test the TCGA cohort findings 

with the “c5.go.v7.2.entrez.gmt” gene set using  

the clusterProfiler R package (Version: 3.18.0; 

https://bioconductor.org/packages/clusterProfiler/) [65]. 

Using the meta R package (Version: 4.15- 1; 

https://cran.r-project.org/web/packages/meta/index.html), 

a meta-analysis was performed to assess the prognostic 

significance of the gene signature across all datasets. 

The primary predictive variables of OS were identified 

using multivariate and univariate Cox regression models 

(P < 0.05). The nomogram and calibration curve were 

plotted using the rms R package. The log-rank test was 

used to compare Kaplan–Meier survival curves. The 

volcano plot and heatmap were created using the 

ggplot2 R package. Pearson’s r correlation and 

Spearman’s rank-order correlation were used to 

calculate correlations between two continuous variables. 

The missing AUC values were imputed using K-nearest 

neighbor (KNN) imputation. P < 0.05 was regarded 

statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Response to fluorouracil and cisplatin of high- and low-IRS patients. The results of widely used 

chemotherapy drugs, fluorouracil (A) and cisplatin (B) response analysis between the high PRS and low PRS groups. The low-risk populations 
had lower AUC values, indicating greater sensitivity to the two common chemotherapeutic agents. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 1. 55 pyroptosis-related candidate genes. 

Gene symbol Description Category 

AIM2 Absent In Melanoma 2 Protein Coding 

ANO6 Anoctamin 6 Protein Coding 

APIP APAF1 Interacting Protein Protein Coding 

CAMP Cathelicidin Antimicrobial Peptide Protein Coding 

CASP1 Caspase 1 Protein Coding 

CASP3 Caspase 3 Protein Coding 

CASP4 Caspase 4 Protein Coding 

CASP5 Caspase 5 Protein Coding 

CASP8 Caspase 8 Protein Coding 

CPTP Ceramide-1-Phosphate Transfer Protein Protein Coding 

CTSG Cathepsin G Protein Coding 

DDX3X DEAD-Box Helicase 3 X-Linked Protein Coding 

DHX9 DExH-Box Helicase 9 Protein Coding 

EEF2K Eukaryotic Elongation Factor 2 Kinase Protein Coding 

ELAVL1 ELAV Like RNA Binding Protein 1 Protein Coding 

FADD Fas Associated Via Death Domain Protein Coding 

FGF21 Fibroblast Growth Factor 21 Protein Coding 

FOXO3 Forkhead Box O3 Protein Coding 

GBP1 Guanylate Binding Protein 1 Protein Coding 

GBP5 Guanylate Binding Protein 5 Protein Coding 

GJA1 Gap Junction Protein Alpha 1 Protein Coding 

GSDMA Gasdermin A Protein Coding 

GSDMB Gasdermin B Protein Coding 

GSDMC Gasdermin C Protein Coding 

GSDMD Gasdermin D Protein Coding 

GSDME Gasdermin E Protein Coding 

GZMA Granzyme A Protein Coding 

GZMB Granzyme B Protein Coding 

HDAC6 Histone Deacetylase 6 Protein Coding 

HMGB1 High Mobility Group Box 1 Protein Coding 

IL18 Interleukin 18 Protein Coding 

IL1B Interleukin 1 Beta Protein Coding 

IL36B Interleukin 36 Beta Protein Coding 

IL36G Interleukin 36 Gamma Protein Coding 

IRF3 Interferon Regulatory Factor 3 Protein Coding 

MALT1 MALT1 Paracaspase Protein Coding 

MKI67 Marker Of Proliferation Ki-67 Protein Coding 

MST1 Macrophage Stimulating 1 Protein Coding 

NAIP NLR Family Apoptosis Inhibitory Protein Protein Coding 

NLRC4 NLR Family CARD Domain Containing 4 Protein Coding 

NLRP1 NLR Family Pyrin Domain Containing 1 Protein Coding 

NLRP3 NLR Family Pyrin Domain Containing 3 Protein Coding 

NLRP7 NLR Family Pyrin Domain Containing 7 Protein Coding 

NLRP9 NLR Family Pyrin Domain Containing 9 Protein Coding 
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NR1H2 Nuclear Receptor Subfamily 1 Group H Member 2 Protein Coding 

P2RX7 Purinergic Receptor P2X 7 Protein Coding 

PARP1 Poly(ADP-Ribose) Polymerase 1 Protein Coding 

PYCARD PYD And CARD Domain Containing Protein Coding 

SQSTM1 Sequestosome 1 Protein Coding 

STING1 Stimulator Of Interferon Response CGAMP Interactor 1 Protein Coding 

STK4 Serine/Threonine Kinase 4 Protein Coding 

TET2 Tet Methylcytosine Dioxygenase 2 Protein Coding 

TP53 Tumor Protein P53 Protein Coding 

TREM2 Triggering Receptor Expressed On Myeloid Cells 2 Protein Coding 

ZBP1 Z-DNA Binding Protein 1 Protein Coding 

 

Supplementary Table 2. 15 pyroptosis-related gene-based signature. 

 exp(coef) coef 

NLRC4 1.62847457 0.48764373 

GSDMC 1.298640561 0.261317995 

DHX9 1.097058186 0.092632221 

FOXO3 1.081542489 0.078388253 

IL18 0.827962551 -0.188787354 

GJA1 0.8021137 -0.22050491 

TP53 1.19988773 0.182227994 

FGF21 1.141209354 0.132088537 

GBP1 0.656979238 -0.420102863 

GZMB 0.708450665 -0.344674856 

MST1 0.772059504 -0.258693655 

IRF3 1.456089864 0.375754667 

IL36B 1.098408554 0.093862364 

IL36G 0.852422168 -0.159673372 

ANO6 1.324949323 0.281374212 

 

Supplementary Table 3. Results of univariate and multivariate Cox regression analysis in the TCGA database. 


