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Abstract

A linear quantitative structure activity relationship model is obtained using Multiple
Linear Regression (MLR) analysis as applied to a series of 49 dipeptidyl aspartyl fluoro-
methylketone derivatives with inhibitory activity of the caspase enzyme. For the selection
of the best descriptors, the elimination selection stepwise regression method is utilized.
The accuracy of the proposed MLR model is illustrated using the following evaluation
techniques: cross validation, validation through an external test set, and Y-randomization.
Furthermore, the domain of applicability which indicates the area of reliable predictions

is defined.

1 Introduction

Novel medicines are typically developed using a trial-and-
error approach which is costly and time-consuming. The
application of Quantitative —Structure Activity Relation-
ship (QSAR) methodologies to this problem has the po-
tential to greatly decrease the time and effort required to
improve current medicines in terms of their efficacy or to
discover new ones. QSAR constitutes an attempt to reduce
the trial-and-error element in the design of compounds, by
establishing mathematical relationships between physical,
chemical, biological, or environmental activities of interest
and measurable or computable parameters such as topo-
logical, physicochemical, stereochemistry, or electronic in-
dices [1-6].

Apoptosis is the vital process by which cells undergo
“programed cell death” in various biological systems. Di-
verse groups of molecules are involved in the apoptosis
pathway. One set of mediators implicated in apoptosis be-
longs to the aspartate-specific cysteinyl proteases or cas-
pases [7-9]. Caspases are a family of proteases that relay
a “doomsday” signal in a stepwise manner reminiscent of
signaling by kinases. Caspases are present in all cells as la-
tent enzymes. A member of this family, caspase-3 has been
identified as being a key mediator of apoptosis of mamma-
lian cells [10]. Excessive apoptosis is responsible, at least
in part, for a variety of diseases for example liver disease
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[11], brain ischemia [12], myocardial infraction [13], Hun-
tington’s disease, and Alzheimer’s disease [14].

In the past, two attempts have been made to build
QSAR models in the general field of apoptosis. Hansch
et al. [15] presented a QSAR study containing a variety of
phenolic compounds causing apoptosis and later [16] the
same scientific group presented a QSAR of apoptosis in-
duction in various cancer cells.

In this study we utilized 49 dipeptidyl aspartyl fluorome-
thylketones [17-19] aiming at the investigation of their
role as inhibitors of caspase-3 enzyme and the develop-
ment of a QSAR model. Sixty-one physicochemical and
topological descriptors were considered as input candi-
dates to the model. The descriptors were calculated using
Topix (www.lohninger.com/topix.html) and ChemSar
which is included in the ChemOffice (CambridgeSoft Cor-
poration) suite of programs. A rigorous variable selection
procedure was adopted to define a small set of statistically
significant physicochemical and topological descriptors
that can determinate and predict the activity of the com-
pounds that consisted our dataset. The QSAR models
were obtained by Multiple Linear Regressions (MLRs).
The result of this study is the development of a new linear
QSAR model containing four variables. In order to vali-
date the proposed methodology, we used two validation
strategies: Y-randomization and external validation using
division of the entire dataset into training and test sets.
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2 Materials and Methods

2.1 Dataset

In this QSAR study 49 biological data from [17-19] were
used. In order to model and predict the specific activity
(inhibition of caspase-3), 61 physicochemical constants,
topological, and structural descriptors (Table 1) were con-
sidered as possible input candidates to the model. All the
descriptors were calculated using Topix and ChemSar.

The objective of this work was to determine the best
variables which afford the most significant linear QSAR
models linking the structure of these compounds with their
inhibitory activity.

2.2 Stepwise Multiple Regression

As mentioned in Section 1, the Elimination Selection
Stepwise Regression (ES-SWR) algorithm [20] was used
to select the most appropriate descriptors. ES-SWR is a
popular stepwise technique that combines Forward Selec-
tion (FS-SWR) and Backward Elimination (BE-SWR). It
is basically a forward selection approach, but at each step
it considers the possibility of deleting a variable as in the
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backward elimination approach, provided that the number
of model variables is greater than 2. The two basic ele-
ments of the ES-SWR method are described next in more
detail.

2.2.1 Forward Selection

According to the standard forward selection algorithm,
the variable considered for inclusion at any step is the one
yielding the largest single degree of freedom F-ratio
among the variables that are eligible for inclusion. The
variable is included only if the corresponding F-ratio is
larger than a fixed value F;,. Consequently, at each step,
the jth variable is added to a k-size model if

RSS, — RSS,
P} = max ( £ kﬂ) > En (1)
J

2
Sk+j

In the above inequality RSS is the Residual Sum of
Squares and s is the mean square error. The subscript k+j
refers to quantities computed when the jth variable is add-
ed to the k variables that are already included in the mod-
el.

Table 1. Physicochemical constants, topological and structural descriptors.

ID Description Notation ID Description Notation

1 Molar Refractivity MR 2 Diameter Diam

3 Partition Coefficient (Octanol Water) Clog P 4 Molecular Topological Index TIndx

5 Principal Moment of Inertia Z PMIZ 6 Number of Rotatable Bonds NRBo

7 Principal Moment of Inertia Y PMIY 8 Polar Surface Area PSAr

9 Principal Moment of Inertia X PMIX 10 Radius Rad
11 Connolly Accessible Area SAS 12 Shape attribute ShpA
13 Connolly Molecular Area MS 14 Shape coefficient ShpC
15 Total Energy TotE 16 Sum of Valence Degrees SVDe
17 LUMO Energy LUMO 18 Total Connectivity TCon
19 HOMO Energy HOMO 20 Total Valence Connectivity TVCon
21 Balaban Index Blndx 22 Wiener Index Windx
23 Cluster Count CIsC 24 Randic 0 Chi0
25 Randic 1 Chil 26 Randic 2 Chi2
27 Randic 3 Chi3 28 Randic 4 Chi4
29 Randic Information 0 Chilnf0 30 Randic Information 1 Chilnf1
31 Randic Information 2 Chilnf2 32 Randic Information 3 Chilnf3
33 Randic Information 4 Chilnf4 34 Kier-Hall 0 Ki0
35 Randic Mod ChiMod 36 Xul Xul
37 Xu2 Xu2 38 Xu3 Xu3
39 Balaban Topological TopolJ 40 Topological Radius TopoRad
41 Topological Diameter TopoDia 42 Number of Bramches NBranch
43 Number of Rings NRings 44 Wiener Dim Wiener Dim
45 Bertz Bertz 46 AtomCompMean Inc
47 AtomCompTot AtomCompTot 48 Zagrebl Zagrebl
49 Zagreb2 Zagreb2 50 Quadratic Quadr
51 ScHultz ScHultz 52 Kappal Kappal
53 Kappa3 Kappa3 54 Kappa2 Kappa2
55 Wiener Distance WienerDistCode 56 Wiener Information InfWiener
57 DistEqMean DistEqMean 58 DistEqTotal DistEqTotal
59 InfMagnitDistTot InfMagnitDistTot 60 Polarity Polarity
61 Gordon Gordon
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We have slightly modified the above algorithm in order
to ensure that the selected variables are not highly inter-
correlated. More specifically, a variable is added to a k-
size model if the criterion described by Eq. 1 is satisfied
and additionally all the correlation coefficients with the k
variables that have already been selected by the algorithm
are below a fixed value.

2.2.2 Backward Elimination

The variable considered for elimination at any step is the
one yielding the minimum single degree of freedom F-ra-
tio among the variables that are included in the model.
The variable is eliminated only if the corresponding F-ra-
tio does not exceed a specified value F,,. Consequently, at
each step, the jth variable is eliminated from the k-size
model if

RSS,_; — RSS
F' - min (#) <F0ut (2)

g j 52
The subscript k—j refers to quantities computed when the
jth variable is eliminated from the k variables that have
been included in the model so far.

2.3 Y-Randomization Test

This technique ensures the robustness of a QSAR model
[21, 22]. The dependent variable vector (biological action)
is randomly shuffled and a new QSAR model is devel-
oped, including the selection of the best possible variables
using the ES-SWR algorithm. The procedure is repeated
several times and the new QSAR models are expected to
have low R* and RZ, values. If the opposite happens then
an acceptable QSAR model cannot be obtained for the
specific modeling method and data.

2.4 Estimation of the Predictive Ability of a OSAR
Model

According to Tropsha group [22, 25, 26] a QSAR model is
considered predictive, if the following conditions are satis-
fied:

R*>0.6 3)
R? — R? R*—RI2

(R R o (R =R2) o
085<k<1150r0.85<k <1.15 (5)

Mathematical definitions of R2, R?, k, and k’are based on
regression of the observed activities against predicted ac-
tivities and the opposite (regression of the predicted activi-
ties against observed activities). The definitions are pre-
sented clearly in [22] and are not repeated here for brevity.
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2.5 Defining Model Applicability Domain

In order for a QSAR model to be used for screening new
compounds, its domain of application [23, 24] must be de-
fined and predictions for only those compounds that fall
into this domain may be considered reliable. Extent of ex-
trapolation [22] is one simple approach to define the ap-
plicability of the domain. It is based on the calculation of
the leverage h; [25] for each chemical, where the QSAR
model is used to predict its activity:

h = x} (X" X)x, (6)

In Eq. 6, x; is the descriptor-row vector of the query com-
pound and X is the k x n matrix containing the k descrip-
tor values for each one of the n training compounds. A lev-
erage value greater than 3k/n is considered large. It means
that the predicted response is the result of a substantial ex-
trapolation of the model and may be not reliable.

3 Results and Discussion

For the selection of the most important descriptors, the
aforementioned stepwise multiple regression technique
was used. In order to automate the procedure, we have de-
veloped in-house software that realizes the modified ES-
SWR algorithm. The most significant descriptor according
to the ES-SWR algorithm is the lipophilicity (Clog P) fol-
lowed by Highest-Occupied Molecular Orbital (HOMO)
and Lowest-Unoccupied Molecular Orbital (LUMO) en-
ergies and mean information index on atomic composition.
The four above-mentioned descriptors are not highly cor-
related (Table 2).

All the structures before the calculation of the descrip-
tors were fully optimized using CS mechanics and more
specifically MM2 force fields and the Truncated-Newton—
Raphson optimizer, which provide a balance between
speed and accuracy [20].

Lipophilicity is known to be important for absorption,
permeability, and in vivo distribution of organic com-
pounds [26, 27] and has been used as a physicochemical
descriptor in QSARs with great success [28, 29]. Molecular
Orbital (MO) surfaces visually represent the various stable
electron distributions of a molecule. According to Frontier
orbital theory, the shapes and symmetries of the HOMO

Table 2. Correlation matrix of the four selected descriptors.

Clog P HOMO LUMO ACM
CLog P 1.00
HOMO 0.41 1.00
LUMO -0.32 0.12 1.00
ACM —0.04 0.34 —0.01 1.00
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Table 3. Caspase-3 inhibiting activity of the dipeptide inhibitors. SAR of the N-protecting group.

o}

T

N
H

CO,H

CH,F

QCS

R ICy (nM) (exp)  log(1/ICs)  Leverages log(1/1Cs) Training data Validation data
(exp) (limit 0.31)  (calc. by Eq.8)  log(1/1Cs) log(1/1Cs)
(calc. by Eq. 9)  (calc. by Eq.9)
1 CH; 250 —2.40 0.15 —2.00 —-2.10
2 CH;CH, 81 —-1.91 0.11 —1.95 —-2.03
3% PhCH, 61 —1.78 0.09 —-1.99 —2.06
4 CH;0 37 —-1.57 0.15 —-1.85 -1.93
5 PhCH,CH, 98 —-1.99 0.11 —1.88 —1.96
6 \r‘o 35 —1.54 0.12 —1.55 —1.64
7* O/'O 30 —1.48 0.08 —1.84 —1.89
8 PhCH,CH,0O 110 —2.04 0.09 —1.59 —1.67
9% PhCH,CH,CH,0 46 —1.66 0.12 —1.50 —1.59
10  2-Cl-C,H,CH,O 36 —1.56 0.05 —-1.32 —1.38
11 3-Cl-CH,CH,0 36 ~1.56 0.05 135 —141
12*  4-ClI-C¢H,CH,O 34 —-1.53 0.05 —1.42 —1.47
13 2-F-C,H,CH,0O 38 —1.58 0.02 —1.65 —-1.71
14 3-F-C,H,CH,O 29 —1.46 0.02 —1.69 -1.74
15%  4-F-C,H,CH,O 28 145 0.02 —1.64 ~1.69
16 24-di-C-C(H,CH,0 25 ~1.40 0.15 -123 —127
17 3,4-di-CI-C¢H;CH,O 21 —-1.32 0.13 —-1.27 —-1.31
18%  2,5-di-CL-CH,CH,O0 15 ~1.18 0.13 ~1.17 —121
19  24-di-F-C,H,CH,0 35 — 154 0.05 ~1.78 ~1.80
20%  3,4-di-F-C,H;CH,O 30 —1.48 0.05 —-1.83 —1.84
21 Ph_o 33 —1.54 0.08 —1.58 —1.66
@)
22% HO\‘(\/ 50 —-1.70 0.13 —-1.93 —2.01
)
23*  PhCH,O 30 —1.48 0.05 —1.56 —1.64

and LUMO energies are crucial in predicting the reactivity
of a species and the stereochemical and regiochemical out-
come of a chemical reaction [20]. Before calculating the
HOMO and LUMO energies (eV) all the structures were
additionally fully optimized using the AMI1 basis set.
Mean information content on atomic composition I [20]
is the mean value of the total information content and is
calculated as

- A A
Inc=— ZgA_ilogz A_i == ngg log, p, (7)

where A" is the total number of atoms (hydrogen includ-
ed), A, is the number of equal-type atoms in the gth equiv-
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alence class, and p, is the probability of randomly selecting
a gth type atom.

In order to investigate the possible existence of outliers,
the extent of the extrapolation method was applied to the
49 compounds that constitute the entire dataset (Ta-
bles 3-5). The leverages for all the 49 compounds were
computed (Tables 3-5) and one compound (id 36) was
found to lie outside the domain of the model (warning lev-
erage limit 0.31). This is justified by noticing that this spe-
cific compound (id 36) has a sufficiently more complex
substituent in place of the fluoromethylketone. The com-
pound was excluded from the rest of the analysis.

The full linear equation for the prediction of the inhibi-
tory ICs, activity is the following:

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 931
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Table 4. Caspase-3 inhibiting activity of the dipeptide inhibitors. Peptidopmimetic replacement of the P, a-amino acid.

COsH
(0]
N o\)J\ CHzX
2
" P T 5 g
0 R. 6!
R, R, X ICy (nM)  log(1/ICs) Leverages  log(1/ICs)  Training data Validation data
(exp) (exp) (limit 0.31)  (calc. by log(1/1Cs) log(1/1Cs)
Eq. 8) (calc. by Eq.9) (calc. by Eq.9)
24 Ph Me F 66 -1.82 0.17 -1.72 -1.78
25%  Ph 2-Pr F 17 -1.23 0.12 —1.44 —1.52
26  Ph Cyclohexyl F 50 -1.70 0.15 —1.28 —1.35
27  PhCH, Me F 70 —1.85 0.04 -1.93 —1.98
28*  PhCH, 2-Pr F 20 —1.30 0.04 —1.67 —1.74
29  3-F-CH, 2-Pr F 6 —0.78 0.06 -1.20 —1.28
30 4-F-CH, 2-Pr F 19 —1.28 0.10 -1.15 —1.24
31*  34-diF-CiH;  2-Pr F 14 -1.15 0.10 —1.31 —1.36
32 24-diCl-CH; 2-Pr F 14 -1.15 0.16 —0.61 —0.70
33*  2,5-diCI-C¢H;  2-Pr F 5 —0.70 0.15 —0.77 —0.86
34 4-PhO-CiH, 2-Pr F 12 —1.08 0.24 —1.06 -1.14
35 Ph 2-Pr DCB* 20 —1.30 0.24 —1.78 -1.74
36" Ph 2-Pr PTP® 70 -1.85 0.41 - -
? Rejected from the dataset as outlier.
® 2,6-dichlorobenzoyloxy.
¢ 1-phenyl-3-(trifluoromethyl)pyrazol-5-yloxy.
log(1/1Csp) =—2.78 +9.32 Clog P+0.32 HOMO . .. .
+1.16 LUMO +2.671 ¢ (8) The compounds that constituted the training and valida-

n=48, s=0.30, R*=0.78, F=38.65,R%,, =0.73,
SPRESS :0.34

In order to further explore the prediction ability of the se-
lected descriptors, the dataset of 48 dipeptidyl aspartyl fluo-
romethylketone derivatives was divided into a training set
of 31 compounds and a validation set of 17 compounds. The
selection of the derivatives in the training set was made ac-
cording to the Kennard and Stone [30, 31] algorithm. The
Kennard and Stone algorithm has gained an increasing pop-
ularity for splitting datasets into two subsets. The algorithm
starts by finding two samples that are the farthest apart
from each other on the basis of the input variables in terms
of some metric, e.g., the Euclidean distance. These two sam-
ples are removed from the original dataset and put into the
calibration dataset. This procedure is repeated until the de-
sired number of samples has been reached in the calibration
set. The advantages of this algorithm are that the calibra-
tion samples map the measured region of the input variable
space completely with respect to the induced metric and
that all the test samples fall inside the measured region. Ac-
cording to Golbraikh and Tropsha [23] and Wu eral. [31],
Kennard and Stone algorithm is one of the best ways to
build training and test sets.

932 © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

tion sets are presented in Tables 3—5. The validation ex-
amples are marked with an asterisk. The rest of the study
will be concentrated on the model which is constructed
from the training set and will examine the predictive abili-
ty of the produced model. Using the four above-men-
tioned descriptors, we developed a new MLR equation
based on only the 31 training examples:

log (1/1C5)) = —3.214-0.33 Clog P+0.26 HOMO
+1.11 LUMO +2.52] 9)

n=31, s=0.33, R*=0.75, F=20.60,R%, =0.65,
Spress = 0.39

Eq. 9 was used to predict the inhibitory activity of the cas-
pase enzyme for the validation examples. The results are
presented in Figure 1 and in the last column of Tables 3 -
5, which corresponds to R}, =0.86. The results illustrated
once more that the linear MLR technique combined with
a successful variable selection procedure is adequate to
generate an efficient QSAR model for predicting the in-
hibitory activity of different compounds.

The proposed model (Eq. 9) passed all the tests for the
predictive ability (Eqgs. 3-5)

R*=0.86>0.6
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Table 5. Caspase-3 inhibiting activity of the dipeptide inhibitors. SAR of the P, amino acid.

co
0
CH,F
o o
N
\n/ N
R; Ry
8 o}

2R2

R, R, R; ICs, (nM) log(1/1Cs) Leverages log(1/1Cs) Training data Validation data
(exp) (exp) (limit (calc. by log(1/1Cs) log(1/ICs)
0.31) Eq. 8) (calc. by Eq.9) (calc. by Eq.9)
37 i-Pr Me - 1100 —-3.04 0.08 —-2.39 —2.37
38 i-Bu H - 200 —2.30 0.08 —2.40 —2.37
39% Bn H - 400 —2.60 0.10 —2.51 —2.49
40* Me H - 600 —2.78 0.07 —2.69 —2.66
41%* H H - 1900 —3.28 0.09 —2.76 —2.72
42 NH; H - 1600 —3.20 0.26 —3.36 —3.31
43 r\COZH H - 1400 —3.15 0.13 —-2.99 —2.96
44 Et H - 100 -2 0.06 —2.57 —2.54
45 Ph H - 100 -2 0.09 —2.62 —-2.59
46 cyclohexyl H - 100 -2 0.14 —-2.29 —-2.27
47 KS\Q H - 150 —2.18 0.05 —2.04 —2.04
48 Me H Me 1400 -3.15 0.07 —2.64 —2.62
49 i-Pr H Me 2300 —3.36 0.09 —2.67 —2.63
2 _ R2 2 _ PRI
7(1? e ki) = —-0.28<0.1 or 4(12 RZROZ) =—-0.34<0.1 The extrapolation method was applied to the com-

k=0.96 and k'=1.02

For a more exhaustive testing of the predictive power of
the model, except for the classical LOO cross validation
technique, the validation of the model was carried out by a
leave five out cross-(L50) validation procedure. From the
training set we randomly selected groups of five com-
pounds. Each group was left out and that group was pre-
dicted by the model developed from the remaining obser-
vations. This process was carried out 100 times.

It is important that the model is quite stable to the inclu-
sion—exclusion of compounds as measured by values of
LOO and L50 correlation coefficients. The results of pre-
dictions on the LOO (R, ; o0 =0.65) and L50 (R%y 50 =
0.70) cross-validation test illustrated the quality of the ob-
tained model.

The model was further validated by applying the Y-ran-
domization. Several random shuffles of the Y vector were
performed and the results are shown in Table 6. The low
R? and RZ, values show that the good results in our origi-
nal model are not due to a chance correlation or structural
dependence of the training set.

QSAR Comb. Sci. 25, 2006, No. 10, 928 -935 www.qcs.wiley-vch.de

pounds that constitute the test set. The leverages for all
the 17 compounds were computed (Table 7). None of the
17 compounds fell outside the domain of the model (warn-
ing leverage limit 0.48).

4 Conclusion

Our results lead to the conclusion that the inhibition of
caspase-3 enzymes can be successfully modeled with physi-
cochemical constants and structural descriptors. The vali-
dation procedures utilized in this work (separation of the
data into two independent sets, Y-randomization) illus-
trates the accuracy and robustness of the produced models
not only by calculating their fitness on sets of training
data, but also by testing the predicting abilities of the mod-
els. The proposed method, due to the high predictive abili-
ty, could be a useful aid to the costly and time-consuming
experiments for determining inhibition of caspase-3 [22,
32]. Furthermore, the produced models could be used to
screen existing databases or virtual libraries in order to
identify novel potent compounds. In this case, the applica-
bility domain will serve as a valuable tool to filter out “dis-
similar” compounds.

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 933
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Figure 1. Experimental vs. predicted log(1/I1Cs,) values for the
training and validation sets.

Table 6. R* and R, values after several Y-randomization test.

Iteration R? R%,
1 0.13 0.00
2 0.08 0.00
3 0.25 0.07
4 0.42 0.26
5 0.32 0.11
6 0.49 0.32
7 0.19 0.05
8 0.14 0.03
9 0.21 0.06
10 0.06 0.00

Table 7. Leverages for the test set.

Compound Id Leverages (limit 0.48)

3 0.14

7 0.12

9 0.18
10 0.09
12 0.08
15 0.04
18 0.21
20 0.08
22 0.17
23 0.08
25 0.16
28 0.06
31 0.16
33 0.27
41 0.14
42 0.09
43 0.12
934 © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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